
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Does Tail Label Help for Large-Scale
Multi-Label Learning?

Tong Wei and Yu-Feng Li , Member, IEEE

Abstract— Large-scale multi-label learning (LMLL) annotates
relevant labels for unseen data from a huge number of candidate
labels. It is perceived that labels exhibit a long tail distribution
in which a significant number of labels are tail labels. Most
previous studies consider that the performance would benefit
from incorporating tail labels. Nonetheless, it is not quantified
how tail labels impact the performance. In this article, we disclose
that whatever labels are randomly missing or misclassified,
the impact of labels on commonly used LMLL evaluation
metrics (Propensity Score Precision (PSP)@k and Propensity
Score nDCG (PSnDCG)@k) is directly related to the product of
the label weights and the label frequencies. In particular, when
labels share equal weights, tail labels impact much less than
common labels due to the scarcity of relevant examples. Based on
such observation, we propose to develop low-complexity LMLL
methods with the goal of facilitating fast prediction time and
compact model size by restraining less performance-influential
labels. With the consideration that discarding labels may cause
the loss of predictive capability, we further propose to preserve
dominant model parameters for the less performance-influential
labels. Experiments clearly justify that both the prediction time
and the model size are significantly reduced without sacrificing
much predictive performance.

Index Terms— Large-scale multi-label learning (LMLL),
performance metric, scalability, tail label.

I. INTRODUCTION

LARGE-SCALE multi-label learning (LMLL) [1], [2] aims
to annotate objects with the relevant labels from an

extremely large number of candidate labels. LMLL recently
owns many real-world applications. For example, in webpage
categorization [3], millions of labels (categories) are collected
in Wikipedia, and one needs to annotate a new webpage
with relevant labels from such a big candidate set; in image
annotation [4], millions of people tags are in the repository
and one wishes to tag each individual picture from such a
big candidate tags; in recommendation system [5], millions
of items are presented and one hopes to make informative
personalized recommendations from the big candidate items;
Because of the high dimensionality of label space, traditional
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Fig. 1. Number of examples for each label is presented on (a) Wiki10 and
(b) EUR-Lex data sets. The horizontal axis indicates the indices of labels,
while the vertical axis indicates the number of associated examples in the
training data. The vertical red line indicates that labels to the left of it (more
than 70%) occur in at most 15 examples on each data set.

multi-label learning approaches, such as [6]–[8], become
infeasible, and new algorithms are required. Recently, LMLL
has been drawing increasing attention and many approaches
have been proposed [9]–[25].

In LMLL, one important statistical characteristic is that
labels follow a power-law distribution as illustrated in Fig. 1.
Infrequently occurring labels (referred to as tail labels) possess
limited training examples and are harder to predict than
frequently occurring ones (referred to as common labels).
How does the tail label impact the performance? It turns
out that this intrinsic question has less discussion in most
LMLL studies although tail labels have recently attracted
increasing attention [20], [26]. Existing approaches believe
that the ultimate performance would benefit from leveraging
tail labels [13], [15], [16]. Conventional approaches take all
labels into account to train models and make predictions over
the entire label set in which a significant fraction of labels are
tail labels.

To answer this question, in this article, we compute the
impact of labels on commonly used LMLL evaluation metrics
(Propensity Score Precision (PSP)@k and Propensity Score
nDCG (PSnDCG)@k). Through analyzing the scenarios that
labels are missing and misclassified, our analyses consistently
show that the impact on commonly used evaluation metrics
is directly related to the product of the label weights and the
label frequencies. This explicitly discloses that, when labels
share equal weights, such as in evaluation metrics P@k and
nDCG@k, tail labels impact much less than common labels.
Intuitively, as illustrated in Fig. 2, by trimming off 50% labels
with fewest relevant training examples, the performance is not
sacrificed, while both the prediction time and the model size
are clearly reduced.
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Fig. 2. Performance of state-of-the-art LMLL method (LEML [11])
on (a) Wiki10 and (b) EUR-Lex data sets with entire label set and label
set after trimming off 50% tail labels. Performance do not deteriorate while
the prediction time and the model size are reduced.

Base on such observation, we propose to develop
low-complexity LMLL methods with the goal of facilitating
fast prediction and compact models through restraining less
performance-influential labels. First, as tail labels have only a
few relevant instances, it is challenging to learn accurate mod-
els based on such biased label distribution. Second, we prove
that trimming off less performance-influential labels has little
impact on performance in terms of the commonly used LMLL
metrics (PSP@k and PSnDCG@k). Third, after trimming off
less performance-influential labels, both prediction time and
model size can be effectively reduced, which benefits to many
applications especially when fast prediction speed and com-
pact model size are desired. With further consideration that
discarding labels may cause the loss of predictive capability,
we propose low-complexity methods by preserving the most
significant model parameters for less performance-influential
labels. Experiments clearly demonstrate the promising perfor-
mance of our proposed algorithms. Simultaneously, both the
prediction time and the model size are evidently reduced.

The rest of this article is arranged as follows. Section II
briefly introduces some related works in LMLL. Section III
introduces commonly used LMLL performance metrics.
Section IV studies the usefulness of tail labels in LMLL
and presents the proposed methods, which restrain less
performance-influential labels to facilitate fast prediction and
compact models. Section V compares the performance of our
proposal with state-of-the-art approaches. Section VI discusses
more metrics, which might be more suitable to measure the
performance on tail labels. Section VII concludes this article.

II. RELATED WORK

This article is mostly related to three branches of studies.

A. Tail Label of LMLL

Recently, there are some discussions on the power-law
distribution in LMLL. Bhatia et al. [13] learned embeddings
for tail labels which captures nonlinear label correlations
by preserving the pairwise distances between label vectors.
Jain et al. [16] explained that infrequently occurring tail labels

are harder to predict than frequently occurring ones since they
have little training examples. Xu et al. [15] treated tail labels
as outliers and decomposed the label matrix into a low-rank
matrix which depicts label correlations and a sparse one
capturing the influence of tail labels. Wang and Hebert [27]
and Wang [28] cast the tail label problem as transfer
learning by transferring knowledge from the data-rich head
classes to the data-poor tail classes. Li et al. [29] handled
the long-tail recommendation problem. They decomposed the
recommendations into two parts, a low-rank part to address
short-head items and a sparse part to handle long-tail items.
Liu et al. [30] proposed easy-to-hard learning paradigms for
multi-label classification to automatically identify easy and
hard labels. Tail labels are supposed to be identified as hard
labels because of the scarcity of positive training examples.
Babbar and Schölkopf [20] regarded this phenomenon as a
setup in which an adversary is generating test examples such
that the features of the test set instances are quite different
from those in the training set. Opposed to [16], they claimed
that hamming loss is a more suitable loss function to optimize
in LMLL scenario since it treats tail labels equally with
common labels. Most of these studies believe that the ultimate
performance would benefit from leveraging tail labels.

B. Prediction Time of LMLL

In many real-world applications such as recommender sys-
tems and search engines, LMLL algorithms are supposed to
respond in an extremely limited time for good user experience.

The vast amount of effort has been made to reduce
prediction time. For example, embedding-based methods
aim to project label vectors onto a low-dimensional
space based on the assumption that label matrix is low-
rank [2], [17], [31]–[36]. In addition to being able to capture
the label correlation, these methods also exhibit strong gen-
eralization guarantees. Sparse Local Embeddings for Extreme
multi-label Classification (SLEEC) [13] takes a further step
to scale up to more labels. It first clusters the data into
smaller regions. It subsequently performs local embeddings
of label vectors by preserving distances to nearest label
vectors learned using a k-nearest neighbor classifier. Another
recent line of research is tree-based methods which recursively
divide the space of labels or features to achieve fast predic-
tion speed [12], [37]–[40]. FastXML [12] is one of leading
tree-based classifiers. It optimizes an nDCG-based ranking loss
function. It recursively partitions the feature space instead of
the label space and uses the observation that only a small
number of labels are active in each region of feature space.
Zhang et al. [41] learned low-dimensional representations for
both instances and labels with deep neural networks. Similar
to [13], they use k-nearest neighbor classifier to determine
resultant labels for testing instance in the embedding space and
a clustering method to speed up the prediction phase. In addi-
tion, various strategies have been adopted to tackle the scaling
issue, such as parallelization strategy and subset column
selection. Reference [18] is based on a regularized one-vs-
rest large margin linear model. By exploiting the independence
between the submodels associated with each label, computa-
tions are accelerated with parallelization of the training stage.
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Boutsidis et al. [42] proposed to find approximate solutions of
the Column Subset Selection Problem (CSSP) more efficiently.
Later, Bi and Kwok [35] addressed this problem by selecting
a small subset of class labels that can approximately span
the original label space. This is performed by an efficient
randomized sampling procedure where the sampling proba-
bility of each class label reflects its importance among all
the labels. Recently, Niculescu-Mizil and Abbasnejad [43]
proposed a label filters method. These label filters preselect a
fairly modest set of candidate labels before the base multi-class
or multi-label classifier is applied. Liu et al. [44] incorporated
approximate nearest neighbor (ANN) methods to speed up the
testing time.

C. Model Size of LMLL

Model size is an important consideration for the practicality
of LMLL methods in order to be deployed on portable devices
with small memory. For example, in order to enable LMLL
applications such as image annotation software on the cell
phone, a compact model is an essential prerequisite because
of limited storage space.

Several methods were proposed to yield sparse solutions
explicitly or prune spurious weights to achieve sparse models.
Yen et al. [14] maximized the margin loss with �1 penalty and
yielded an extremely sparse solution without sacrificing the
expressive power of the predictor. Babbar and Schölkopf [18]
proposed a framework which controls the model size by filter-
ing out the billions of stored spurious parameters by ad hoc
usage of the off-the-shelf solvers. By weeding out ambiguous
parameters, one can obtain model size which is three orders of
magnitude smaller. Liu and Tsang [45] developed a tree-based
algorithm which learns a sparse hyperplane classifier in each
decision node. Additionally, data distribution observations are
leveraged for the early stopping of the tree model.

To the best of our knowledge, this article is the first proposal
on connecting the three above aspects of LMLL together,
i.e., studies on the impact of tail labels that help facilitate
fast prediction time and compact model size of LMLL.

III. COMMON PERFORMANCE METRICS IN LMLL

Prior to presenting our proposed methods, we introduce
two commonly used LMLL performance metrics, PSP@k and
PSnDCG@k [16], [20], in this section.

A. PSP@k

The first one is Propensity Scored Precision@k (PSP@k)
proposed in [16]. PSP@k is popularly used in LMLL applica-
tions, especially for ranking tasks such as information retrieval.
In PSP@k, only a few top predictions of an instance will
be considered. For instance, x ∈ R

d where d represents the
feature dimensionality, PSP@k is defined for a predicted score
vector ŷ ∈ R

L and ground truth label vector y ∈ {0, 1}L as

PSP@k(y, ŷ) := 1

k

∑

l∈rankk(ŷ)

yl

pl

where L represents the size of label set and rankk(ŷ) returns
the indices of k largest value in ŷ ranked in descending order.

pl = (1/(1 + C(Nl + B)−A)) is the propensity score for the
lth label, where A, B , C are set in a heuristic manner and Nl is
the number of the positive training instances. The propensities
are modeled as a sigmoidal function of log Nl proposed in [16]
based on empirical observations. By assigning larger rewards
for accurately predicted tail labels, it is expected to remove
the popularity bias.

B. PSnDCG@k

Another frequently used ranking-based performance mea-
sure in LMLL literature is propensity scored nDCG@k
(PSnDCG@k) which is defined as

PSnDCG@k(y, ŷ) := PSDCG@k
∑min(k,||y||0)

l=1
1

log(l+1)

where PSDCG@k(y, ŷ) := ∑
l∈rankk(ŷ)(yl/(pl log(l + 1))).

In particular, when setting pl = 1,∀1 ≤ l ≤ L, PSP@k
and PSnDCG@k reduce to another two popular LMLL per-
formance metrics P@k and nDCG@k, respectively.

Notably, unlike PSP@k, PSnDCG@k takes into account the
ranking of the correctly predicted labels. For instance, if there
are only one of the five labels that are correctly predicted, then
PSP@5 gives the same score if the correctly predicted label
is at rank 1 or rank 5. On the other hand, PSnDCG@5 gives
it a higher score if it is predicted as rank 1, and the lowest
nonzero score if it is predicted at rank 5.

IV. PROPENSITY SCORE-BASED LABEL RESTRAINING

In this section, we first present the proposed propensity
score-based label restraining (POLAR) through identifying and
pruning less performance-influential labels. With further con-
sideration that discarding labels may cause the loss of predic-
tive capability, we propose an extension method POLARvar by
preserving the most significant model parameters for less
performance-influential labels.

A. Preliminaries

Let D = {(x1, y1) . . . (xN , yN )} be the given training set,
where xi ∈ R

d is the input feature of the i th example and yi ∈
{0, 1}L is the corresponding label vector. Let Y = [y1; . . . , yN ]
denote the label matrix of training examples. Yi j = 1 if
example xi is relevant with the j th label, and 0 otherwise.
LMLL aims to learn a classifier f : R

d → {0, 1}L that predicts
the label vector for unseen data. Unlike traditional multi-label
learning, the label set size in LMLL is extremely large and
labels usually follow a long-tail distribution.

As aforementioned, the main idea is to identify and filter out
less performance-influential labels in terms of LMLL metrics
until the performance degeneration constraint is violated. After
that, we train LMLL models using examples of remaining
labels.

To identify less performance-influential labels, we consider
two widespread scenarios in LMLL, i.e., missing labels and
misclassified labels. We investigate how labels impact the
LMLL evaluation metrics under these two scenarios. The
analyses consistently show that the performance impact of
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the label is directly proportional to its weight in LMLL
metrics and its frequency in the training data. The analyses
provide a guideline to restrain the least influential labels. In the
following, we first present our analyses under missing labels
and misclassified labels scenarios.

B. Usefulness of Tail Labels in LMLL

1) Randomly Missing Labels: Missing labels commonly
occur in LMLL [15], [35], [36]. To quantify the impact
of labels on evaluation metrics, we compute the impact of
labels under the scenario that relevant labels are randomly
missing with a probability π [46]. Without loss of generality,
we use u j = ||Y:, j ||0 ( j = 1, . . . , L) to denote the number
of examples which are associated with the j th label. Let
w j = (1/p j ) denote the weight for the j th label defined in
evaluation metrics. ci indicates the number of relevant labels
of example xi . We provide the result in Theorem 1.

Theorem 1: Suppose that relevant labels are randomly miss-
ing with probability π , the impact of the j th label in terms of
PSP@k and PSnDCG@k is upper bounded by (1 − π)w j u j .

Proof: Because k out of ci relevant labels are selected
in the calculation of PSP@k, which has

(ci
k

)
distinct choices.

The expected impact of the j th label is computed as follows:
w j

k

N∑

i=1∧Yi j =1

(ci −1
k−1

)
(ci

k

) = (1 − ε)

N∑

i=1∧Yi j =1

w j

ci
≤ (1 − π)w j u j .

It can be perceived that the impact of the j th label is upper
bounded by the product of label weight w j , its frequency u j

and a constant.
For PSnDCG@k, it is noteworthy that every observed label

has the same rank, hence r = (1/(log(l + 1))) remains a
constant and we get

PSnDCG@k = PSDCG@k
∑min(k,‖y‖0)

l=1
1

log(l+1)

= r
∑min(k,‖y‖0)

l=1 r

∑

l∈rankk (ŷ)

yl .

Since L is extremely large in LMLL and k ≤ 5, we usually
have ||y||0 ≥ k and PSnDCG@k is cast as follows:

PSnDCG@k = r
∑k

l=1 r

∑

l∈rankk (ŷ)

yl

= 1

k

∑

l∈rankk(ŷ)

yl = PSP@k.

As a result, the analysis for PSnDCG@k is reduced to the one
for PSP@k.

2) Randomly Misclassified Labels: Another common sce-
nario is label misclassification [47], [48]. We compute the
impact of labels under the scenario that labels are ran-
domly misclassified with probability π , and similarly, reveal
the impact of labels on the LMLL evaluation metrics in
Theorem 2.

Theorem 2: Suppose that labels are randomly misclassi-
fied with probability π , the impact of the j th label on

TABLE I

SUMMARY OF THE PREDICTION TIME AND MEMORY
COMPLEXITIES OF LMLL METHODS

PSP@k and PSnDCG@k is upper bounded by ((1 − π)/
((L − 2)π + 1))w j u j .

Proof: For PSP@k, there are vi = (1 − π)ci + π(L − ci )
relevant labels in the predicted label vector. By choosing a
random subset of size k from vi labels, the influence of the
j th label to PSP@k can be computed as

w j

k

N∑

i=1∧Yi j =1

(vi−1
k−1

)
(vi

k

) =
N∑

i=1∧Yi j =1

w j

vi
≤ (1 − π)w j u j

(L − 2)π + 1
.

This depicts that the impact of the j th label is upper bounded
by ((1 − π)/((L − 2)π + 1))w j u j . It is intriguing to observe
that the upper bound of misclassified labels is smaller than
that of missing labels. The reason is owing to the fact that
missing labels in the missing label scenario are assumed to be
relevant labels, while misclassified labels might be irrelevant.
Therefore misclassified labels have little impact to PSP@k.

For PSnDCG@k, similar to the proof in Theorem 1,
the proof for PSnDCG@k is reduced to the one in PSP@k
and we obtain same conclusive remark for PSnDCG@k.

With the analyses above, in both label-missing and
label-misclassified scenarios, we conclude that the impact of
labels in terms of frequently used LMLL metrics (PSP@k
and PSnDCG@k) is proportional to the product of the label
weights and the label frequencies.

C. Less Performance-Influential Labels Removing

Based on the analyses, we rank the labels according to the
value of w j u j , j = {1, . . . , L} in ascending order and filter
out labels with little performance influence. Because of the
significantly large number of labels, it is very expensive to
discard labels one by one until the performance deterioration
constraint is violated. To this end, a binary search is developed
to efficiently determine the cutoff threshold based on the
observation that the performance is monotonically decreasing
as the number of removed labels increases. By performing this,
the computational cost is reduced from O(L) to O(log L).
Algorithm 1 summarizes the elaborate procedure of binary
search for label removing.

In the following, we analyze the prediction time and model
size complexities of the resultant model after employing the
proposed strategy. We first list the prediction time complexity
and memory complexity of LMLL methods in Table I. For
embedding-based methods, r denotes the low-rank parameter.
For tree-based methods, T denotes the size of the ensemble
and Mt is the average number of nodes in the trees. L̂ denotes
the number of nonzero elements in the label vector of each
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Algorithm 1 Less Performance-Influential Labels Removing
Input: propensity score w; data D; performance of model
trained on the entire label set p�; performance reduction
tolerance ε
Output: model M trained on the most performance-influential
labels
1: sort labels according to wl × Nl in ascending order
2: L ′

left = 1, L ′
right = L

3: while L ′
right − L ′

left > 1 do
4: L ′

curr = (L ′
left + L ′

right)/2
5: M = train (D, L ′

curr)
6: if perf (M) ≥ p� − ε then
7: L ′

left = L ′
curr

8: else
9: L ′

right = L ′
curr

10: end if
11: end while
12: return M = train(D, L ′

left)

leaf node on average and H represents the average length of
the path traversed by instance x to reach the leaf node in the
T trees. It is effortless to see that as the number of labels
L decreases, both prediction time and memory complexities
reduce. To minimize the performance loss, we propose to
identify less performance-influential labels by computing label
impact on commonly used LMLL performance metrics.

Next, we explain the complexities of the proposed
approach. Let L ′ denote the number of less performance-
influential labels and L ′ 
 L is consistently observed in
the experiments. For embedding-based methods, the prediction
time and model size complexities reduce to O(r(d + L ′) +
L ′ log L ′) and O(r(d + L ′)), respectively. For tree-based
methods, both L̂, Mt and H decrease as the label set becomes
smaller. If the trees are balanced, then H = log N ≈ log L.
The average cost of prediction becomes O(T d log L ′). There-
fore, the overall prediction time and model size complexities
are reduced.

D. Less Performance-Influential Labels With Discriminant
Parameter Preserving

Although directly discarding less performance-influential
labels can bring significant reduction on model size and predic-
tion time; however, it is not always desirable owing to the loss
of predictive capability. To this end, we propose to preserve
discriminant model parameters for performance-influential
labels. Concretely, given a pretrained model with model
parameters arranged in a matrix M ∈ R

d×L (such as [18],
[20], [43]) where d and L are the dimensionality of feature
space and label space, respectively, we ensure that at least
δ parameters are preserved for each label, i.e., ||M:, j ||0 ≥
δ, j = 1, . . . , L. Ultimately, we fix the most discriminant
label parameters such that the predictive capabilities for less
performance-influential labels are kept. By doing this, the pre-
diction time and model size complexities are both reduced
from O(d L) to O(d L ′ + δ(L − L ′)). The elaborate procedure
is summarized in Algorithm 2.

Algorithm 2 Less Performance-Influential Labels With
Discriminant Parameter Preserving

Input: pretrained model M̂; inverse propensities w; data D;
performance of model trained on the entire label set p̂;
performance reduction tolerance ε; number of parameters to
preserve δ
Output: model M with discriminant parameters preserved for
less performance-influential labels
1: sort labels according to wl × Nl in ascending order
2: preserve δ parameters with largest absolute value in M̂:, j ,

for 1 ≤ j ≤ L, and store the resultant model as M′
3: call Algorithm 1 and obtain M̃, as well as the number of

less performance-influential labels L ′
4: M = [M′

:,1:L ′ ; M̃]
5: return M

TABLE II

DATA SET STATISTICS

V. EXPERIMENTS

To validate our theoretical findings and efficacy of the
proposed approach POLAR and its variant POLARvar,
we conduct experiments with two leading embedding-based
method LargE-scale Multi-Label learning (LEML) [11],
SLEEC [13], a state-of-the-art tree-based method
FastXML [12], a classic multi-label learning approach
Binary Relevance (BR) [49], and two model compression
methods Primal and Dual Sparse approach to multiclass and
multilabel classification (PD-Sparse) [14] and Distributed
Sparse Machines for Extreme multi-label Classification
(DiSMEC) [18]. Experiments are carried out on four LMLL
benchmark data sets. The comprehensive statistics are listed
in Table II. All the data sets and implementation of LEML
and FastXML are publicly available and can be downloaded
from the Extreme Classification Repository.1

Because of computational reasons, we only report results on
one train/test split of each data set. Because multiple train/test
splits would mean multiple times more training time and,
in LMLL setting, training is expensive on large data sets.
Moreover, it allows fair comparisons for different methods
by training and testing on the same train/test split, which is
available in the Extreme Classification Repository.

A. Propensity Score-Based Label Removing

To verify the effectiveness of our propensity score-based
label-removing strategy, we compare the results in terms of
PSP@k and PSnDCG@k using an embedding-based method

1http://manikvarma.org/downloads/XC/XMLRepository.html
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TABLE III

COMPARISON WITH LEML IN TERMS OF MODEL SIZE, PREDICTION
TIME, PSP@k (%), AND PSNDCG@k (%)

LEML [11] and a tree-based method FastXML [12] as the
base models. As suggested by Jain et al. [16], we set A =
(0.5 + 0.6)/2 = 0.55, B = (0.4 + 2.6)/2 = 1.5, ε = 1%
on all data sets. From Table III, POLAR saves prediction
time and model size on all data sets compared with LEML.
On the aspect of prediction time, POLAR saves more than
90% prediction time on two large data sets, i.e., EUR-Lex
and Wiki10. On the aspect of model size, POLAR reduces
more than 50% and 39% on Delicious and EUR-Lex, respec-
tively. This is because the success of LEML mainly depends
on the low-rank assumption, which tends to be violated
because of the presence of tail labels. Therefore, tail labels
make an extremely limited contribution to the performance of
LEML. POLAR provides an appropriate approach to preserve
the validity of low-rank assumption by elegantly trimming off
the less performance-influential labels.

The results for FastXML are presented in Table IV. Sim-
ilarly, POLAR achieves comparable results, meanwhile saves
prediction time and model size on all data sets. On the aspect
of prediction time, POLAR saves more than 40% and 34%

TABLE IV

COMPARISON WITH FASTXML IN TERMS OF MODEL SIZE,
PREDICTION TIME, PSP@k (%), AND PSNDCG@k (%)

TABLE V

PERFORMANCE COMPARISON IN TERMS OF PSP@K (%) AND

PSNDCG@K (%) WITH RANDOM SAMPLING (RANDS) ON
DELICIOUS DATA SET. THE RANDOM SAMPLING METHOD

WAS RUN TEN TIMES AND THE AVERAGE

NUMBERS ARE REPORTED

prediction time on Delicious and Wiki10. On the aspect of
model size, POLAR reduces more than 50% and 39% on
Delicious and EUR-Lex, respectively. The reason lies in the
fact that the number of split partitions and the depth of trees
during the training process are both reduced as the number
of labels decreases; therefore, the size of tree model and the
prediction time spent on leaf nodes are cut down consequently.

We also compare our method with random sampling
method, which randomly removes an equal number of labels
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TABLE VI

PERFORMANCE COMPARISONS BETWEEN THE PROPOSED POLARvar, BR, DISMEC, AND PD-SPARSE IN TERMS OF PSP@k (%),
PSNDCG@k (%), AND MODEL SIZE WITH δ = 5 AND ε = 1%. “-” INDICATES THE RESULT IS NOT AVAILABLE

with POLAR. Table V depicts that random sampling usually
results in severe degeneration in terms of all six performance
measures. The empirical results demonstrate that POLAR can
accurately identify less performance-influential labels on dif-
ferent data sets and trades off negligible predictive perfor-
mance for a significant reduction in prediction time and model
size.

B. Propensity Score-Based Label Restraining

In applications where removing labels is undesirable,
we show that POLARvar performs well. In this experiment,
we set δ = 5 and ε = 1%. In addition to state-of-the-art
LMLL approaches (LEML and FastXML), we try to enable
classic multi-label learning methods, such as BR, on large-
scale data sets. For BR, it suffers two aspects of disadvantages.
First, as BR trains a binary classifier for each label, which
is computationally and memory intensive on large data sets.
Second, the prediction speed is very slow because it examines
each label to distinguish that label from the rest. Third, as it
learns a weight vector for each label, the space consumption
is extremely large. In the following, we apply the proposal on
BR and resolve the above-mentioned obstacles.

As it is well known that the prediction speed of BR
is proportional to the number of labels, our proposal
clearly reduces the prediction time significantly since many
less performance-influential labels are removed. Therefore,
we only look at the effectiveness of POLARvar in terms of
reduction in model size. Comparison results with the plain BR
and two leading model compression methods DiSMEC [18],
PD-Sparse [14] are depicted in Table VI. Inspired by
Babbar and Schölkopf [18] that a large fraction of weights
lie close to 0, we shed weight which lie in [−0.01, 0.01]
as suggested in the article. On relatively small data sets,

i.e., Bibtex, POLARvar reduces above 48% model size and
loses no more than 1% performance in terms of six metrics.
Considering that label distribution on Bibtex is relatively
balanced and hence only a few labels can be pruned, otherwise
resulting in serious performance deterioration. On large data
sets, we obtain a significant reduction in model size with
negligible generalization performance deterioration.

We also compare POLARvar with state-of-the-arts on two
large data sets in Figs. 3 and 4. Although POLARvar is
built on the BR scheme, it achieves comparable or even
smaller model size compared to state-of-the-art approaches.
However, in terms of predictive performance, solvers relied
on structural assumptions such as FastXML (tree), LEML
(low-rank), and SLEEC (piecewise-low-rank) do not perform
as well as POLARvar in most cases. This may owe to the
fact that low-rank or tree assumption does not exactly hold
in these data sets. On the aspect of model size, we can see
that POLARvar gets an order of magnitude smaller model size
than FastXML and SLEEC.

This not only shows that POLARvar retains the predic-
tive capabilities on the less performance-influential labels
very well by preserving discriminant label parameters but
also brings marginal model size reduction. Notably, how-
ever, that the POLARvar can be used in conjunction with
many multi-label classifiers, and hence better performance
can be obtained by replacing BR with advanced classifiers
(e.g., [18], [20]).

C. Extreme Case Study

When label weight equals 1, PSP@k and PSnDCG@k
reduce to P@k and nDCG@k, respectively. We illustrate the
effectiveness of POLAR in Table VII using BR as the base
model. It is effortless to see that significant reduction in
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Fig. 3. Comparison with existing algorithms on EUR-Lex and Wiki10 in terms of nDCG@k (%) and P@k (%).

TABLE VII

PERFORMANCE COMPARISON BETWEEN POLAR AND BR IN TERMS OF P@k (%), NDCG@k (%), PREDICTION TIME,
AND MODEL SIZE. ↓ INDICATES PREDICTION TIME OR MODEL SIZE REDUCTION OVER BR

Fig. 4. Comparison with state-of-the-art approaches on EUR-Lex and
Wiki10 data sets in terms of model size.

both prediction time and model size is achieved thanks to
the long-tail distribution. Note that, both P@k and nDCG@k
remain comparable with the plain BR. This demonstrates
that POLAR is effective in applications where labels share
equal importance and in such extreme cases tail labels help
facilitate fast prediction speed and compact model size.

D. Parameter Study

We also investigate how different values of ε impact the
predictive performance and the model size when using BR
as the base model. Fig. 5 demonstrates that the performance
deteriorates as ε increases because ε determines how many
tail labels would be discarded. Therefore, it deteriorates the
performance when too many informative labels are pruned.
On the aspect of model size, POLAR is able to reduce 80%
model size even when ε = 1%. Although more significant

reduction can be gained with a larger value of ε, it comes
at the cost of losing generalization performance. In practice,
we set ε = 1% as it was observed to yield good performance.

E. Comparison Between Reductions in Prediction
Time and Model Size

From the experimental results, one intriguing observation is
that the reduction on model size is not as significant as that on
prediction time. To figure out the reasons, we take LEML [11]
as an example of the analysis. As an embedding-based method,
the label matrix is first projected onto a low-dimensional space.
Without loss of generality, we assume the dimensionality of
the projection space is r , and the learned projection matrices
W and H have size d×r and r×L, respectively, where d is the
number of features, r is the low-rank parameter and L is the
number of labels. Consequently, as r is very small, reducing
L by trimming off less performance-influential labels will
have limited reduction on model size. In terms of prediction
time, it involves matrix multiplication Xt WH, where Xt is
test data with size Nt × d , where Nt is the number testing
examples. Therefore, the predictive complexity is proportional
to O(Nt r(d + L)). By removing less performance-influential
labels, the prediction time reduces more effective than model
size because Ntr is much larger than r .

From the experimental results, we conclude that the pro-
posed methods, POLAR and POLARvar, are able to select the
cutoff thresholds adaptively on various data sets. They can also
yield fast prediction speed as well as compact model size with-
out losing predictive capability on less performance-influential
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Fig. 5. Study on different value of ε with λ set to 0.01. x-axis: value of ε (%). y-axis (Left): percentage of model size reduction compared to the plain BR.
y-axis (Right): P@k.

labels. We apply our strategies not only to embedding-based
and tree-based approaches but also to classic multi-label
learning method BR, which validates the applicability of our
strategies.

VI. DISCUSSION

Our analyses and empirical studies suggest that to evaluate
the performance of LMLL methods on tail labels, the choice
of the performance metric is critical because of the long tail
distribution. Although the propensity score-based performance
metrics (PSP@k and PSnDCG@k) proposed in [16] can, to a
certain extent, alleviate this problem, the parameters A, B ,
and C are set in a heuristic manner when calculating label
propensities for the given data set. Opposed to [16], [20]
claimed that hamming loss is a more suitable loss function
to optimize since it takes all labels into account during
optimization instead of only the top k predictions considered
in PSP@k and PSnDCG@k.

Additionally, to increase the diversity of predicted labels,
we adapt the term coverage, which has been widely used
in recommender systems to measure the diversity of recom-
mended items [50], [51]. Coverage is defined as the fraction
of items that appear in the users’ recommendation lists. In the
context of LMLL, we define the coverage as

Coverage = | ∪1≤i≤N Ri |
L

where Ri is the set of relevant labels of instance i correctly
annotated. However, directly optimizing the coverage objec-
tive is very difficult, and we leave this problem for future
work.

VII. CONCLUSION

In this article, we study how tail labels impact the frequently
used LMLL performance metrics. Our analyses based on
examining the performance impact for the missing labels and
the misclassified labels, explicitly disclose that label impact is
directly related to the label weights and the label frequencies.
In a particular case where all labels share equal weights, tail
labels impact much less than common labels because of the
scarcity of relevant examples, which reduces our preliminary
work in [48]. Based on our analyses, we propose developing
low-complexity LMLL methods to facilitate fast prediction

and compact model by restraining less performance-influential
labels. Two approaches based on less performance-influential
labels removing and discriminant parameters preserving are
presented for the variants of demands. Extensive experiments
verify the efficacy of the proposed methods in terms of
promising classification performance, as well as the clear
benefits on prediction time and model size reduction. The
contribution of this work is that we provide a different aspect
for LMLL, revealing that significant attention should be paid
to the design of performance metrics, to effectively exploit the
great merit of tail labels.
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