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Abstract—It is usually expected that learning performance can be improved by exploiting unlabeled data, particularly when the number

of labeled data is limited. However, it has been reported that, in some cases existing semi-supervised learning approaches perform

even worse than supervised ones which only use labeled data. For this reason, it is desirable to develop safe semi-supervised learning

approaches that will not significantly reduce learning performance when unlabeled data are used. This paper focuses on improving the

safeness of semi-supervised support vector machines (S3VMs). First, the S3VM-us approach is proposed. It employs a conservative

strategy and uses only the unlabeled instances that are very likely to be helpful, while avoiding the use of highly risky ones. This

approach improves safeness but its performance improvement using unlabeled data is often much smaller than S3VMs. In order to

develop a safe and well-performing approach, we examine the fundamental assumption of S3VMs, i.e., low-density separation. Based

on the observation that multiple good candidate low-density separators may be identified from training data, safe semi-supervised

support vector machines (S4VMs) are here proposed. This approach uses multiple low-density separators to approximate the

ground-truth decision boundary and maximizes the improvement in performance of inductive SVMs for any candidate separator. Under

the assumption employed by S3VMs, it is here shown that S4VMs are provably safe and that the performance improvement using

unlabeled data can be maximized. An out-of-sample extension of S4VMs is also presented. This extension allows S4VMs to make

predictions on unseen instances. Our empirical study on a broad range of data shows that the overall performance of S4VMs is highly

competitive with S3VMs, whereas in contrast to S3VMs which hurt performance significantly in many cases, S4VMs rarely perform

worse than inductive SVMs.

Index Terms—Unlabeled data, semi-supervised learning, safe, S3VMs, S4VMs
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1 INTRODUCTION

TRADITIONAL supervised learning often assumes that
large numbers of labeled data are readily available for

training. In many practical applications, however, the
acquisition of class labels is expensive because the label-
ing process requires human effort and expertise. For
example, in computer-aided medical diagnosis, large
numbers of X-ray images can be obtained from routine
examinations, but it is costly and difficult for physicians
to mark all focuses in all images. In this case, training
with only labeled data may not lead to a good perfor-
mance. It is possible to employ semi-supervised learning
[10], [34], [51], [52] that exploits the wide availability of
unlabeled data to improve performance. During the past
decade, semi-supervised learning has attracted significant
attention. It has been found useful in many applications,
including text categorization [23], image retrieval [42],
bioinformatics [24], and natural language processing [19].

Existing semi-supervised approaches can be roughly
grouped into four categories. The first category is generative
methods, e.g., [35], [36]. These methods extend supervised
generative models by incorporating unlabeled data, and
estimate model parameters and labels using techniques
such as the EM algorithm [17]. The second category is
graph-based methods, e.g., [2], [7], [34], [48], [53]. These

methods encode both the labeled and unlabeled instances
in a graph and then assign class labels to the unlabeled data
such that their inconsistencies with both the labeled data
and the underlying graph are minimized. The third cate-
gory is disagreement-based methods, e.g., [8], [50]. These
methods typically involve multiple learners and improve
them through the exploitation of disagreement among the
learners. The fourth category is semi-supervised support
vector machines (S3VMs), e.g., [4], [23]. They use unlabeled
data to regularize the decision boundary so that it can pass
through low-density regions [12].

It is generally accepted that by using unlabeled data,
semi-supervised learning can help improve the perfor-
mance, particularly when the number of labeled data is lim-
ited. Many empirical studies, however, show that there are
cases in which the use of unlabeled data decreases the per-
formance [7], [11], [13], [14], [16], [20], [36], [47], [50]. Such
phenomena undeniably encumber the deployment of semi-
supervised learning in real applications, especially tasks
requiring high reliability, because users usually require that
new techniques (such as semi-supervised learning) should
perform at least as well as existing techniques (such as pure
supervised learning). For this reason, it is desirable to have
safe semi-supervised learning approaches which never
reduce learning performance significantly when using unla-
beled data. This is a challenging task, and only a few
authors have explicitly tried to reduce the chance of perfor-
mance degeneration [14], [27], even though there are
already many studies on semi-supervised learning. Safe,
here means that the generalization performance is never sta-
tistically significantly worse than methods using only labeled
data. It is meaningless to talk about a single trial, because
for a single trial, even exploiting more labeled data might
result in a worse performance.
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Cozman et al. [16] discussed the reason why unlabeled
data can increase classification error for generative meth-
ods. They conjectured that the performance degeneration is
caused by incorrect model assumptions, because fitting
unlabeled data based on an incorrect model assumption
will mislead the learning process. However, it is very diffi-
cult to make a correct model assumption without sufficient
domain knowledge. For graph-based methods, researchers
realized that graph construction is the crucial problem.
However, developing a good graph in general situations
remains an open problem. Disagreement-based methods
usually use pseudo-labels of unlabeled data provided by
multiple learners to enhance the labeled data set. In this
way, incorrect pseudo-labels may disrupt the learning pro-
cess. One possible solution is to use data editing techniques
to examine data that may have been pseudo-labeled [27].
However, such solutions work well only on dense data.
This is because data editing techniques usually rely on the
data neighboring information. With S3VMs, the correctness
of the optimization objective has been studied on very small
data sets [11]. However, there is no clear solution that can
be used to prevent performance from degeneration when
using unlabeled data. There are also some general discus-
sions on the usefulness of unlabeled data from a theoretical
perspective [1], [3], [38]. In particular, in [1], the authors
showed that when unlabeled data provide a good regular-
izer, a purely inductive supervised SVM on labeled data
using such a regularizer guarantee a good generalization.
Deriving such a good regularizer, however, remains an
open problem.

Particularly, S3VMs have been widely applied to many
tasks [10], and their representative algorithm, TSVM [23],
has won the Ten-Year Best Paper Award for machine learn-
ing in 2009. Most research efforts on S3VMs address its com-
plexity [11], [15], [23], [28], with little effort on its safeness,
although many empirical studies have shown that S3VMs
also reduce performance, sometimes even seriously [10],
[42], [47].

This paper focuses on improving the safeness of S3VMs.
First, because the main use of unlabeled data is to determine
data distribution, it is here conjectured that the degradation
of the performance degeneration of S3VMs is caused by
unlabeled instances that are obscure or misleading for the
discovery of the underlying distribution. For this reason,
the S3VM with unlabeled data selection (S3VM-us)
approach is here proposed. It uses hierarchical clustering to
estimate the reliability of unlabeled instances and then
removes the ones with the lowest reliability.

Our empirical studies show that S3VM-us improves the
safeness of S3VMs. However, its improvement in perfor-
mance using unlabeled data is not as considerable as
S3VMs. To develop a safe and well-performing approach,
we then examine the fundamental assumption of S3VMs,
i.e., low-density separation (LDS), and get another conjec-
ture on the reason of performance degeneration. Given a
few labeled data and many more unlabeled data, there is
usually more than one large-margin low-density separator.
However, it is hard to determine which one is optimal based
on the limited labeled data. Although these low-density
separators are all consistent with the limited labeled data,
they can be very diverse with respect to the instance space.

In this way, incorrect selection may result in a reduced
performance. Based on this observation, the S4VMs (Safe
S3VMs) approach, the main contribution of this paper, is
proposed. S4VMs use multiple low-density separators to
approximate the ground-truth decision boundary and maxi-
mize the improvement in performance against inductive
SVMs for any candidate separator. S4VMs are shown to be
safe and to achieve the maximal performance improvement
under the low-density assumption of S3VMs. An out-of-
sample extension of S4VMs is also presented so that S4VMs
can make predictions on unseen instances. Our empirical
studies performed on a broad range of data sets show that
S4VMs perform highly competitive with S3VMs. More
importantly, unlike S3VMs which significantly reduce per-
formance in many cases, S4VMs are rarely inferior to induc-
tive SVMs.

The rest of this paper is organized as follows. S3VMs are
briefly introduced in Section 2. The S3VM-us and S4VMs
are introduced in Sections 3 and 4. Empirical results are
report in Section 5. Conclusions are presented in Section 6.

2 BRIEF INTRODUCTION TO S3VMS

Inspired by the success of the large-margin principle [40],
S3VMs extend inductive supervised SVMs to semi-super-
vised learning. They simultaneously learn the optimal deci-
sion function and the labels of unlabeled instances such that
the decision boundary has a large margin on both the
labeled and unlabeled data. It was discovered that S3VMs
realize the low-density assumption [12] which states that
the decision boundary will go across low-density regions.

Formally, we consider binary classification here. Let X be

the input space and Y ¼ f�1g be the label space. Given a

set of l labeled instances fxi; yigli¼1 and u unlabeled instan-

ces fxjglþu
j¼lþ1, S3VMs aim to find a decision function

f : X ! f�1g and a label assignment on unlabeled instan-

ces y ¼ fylþ1; . . . ; ylþug 2 B such that the following func-

tional is minimized:

min
f2H
y2B

1

2
kfk2H þ C1

Xl

i¼1

‘ðyi; fðxiÞÞ þ C2

Xlþu

j¼lþ1

‘ðyj; fðxjÞÞ: (1)

Here B is a set of label assignments obtained from domain

knowledge. For example, when the class proportion of unla-

beled data is closely related to that of labeled data (also refer
to as balance constraint [11], [23]), we can set

B ¼ fy 2 f�1guj � b �
Plþu

j¼lþ1 yj

u
�
Pl

i¼1 yi
l

� bg;

where b is a small constant controlling the inconsistency of
class proportions. H is the Reproducing Kernel Hilbert

Space (RKHS) induced by a kernel function k. ‘ðy; fðxÞÞ ¼
maxf0; 1� yfðxÞg is the hinge loss used in SVMs. C1 and

C2 are two regularization parameters trading off model

complexity and empirical losses on the labeled and unla-

beled data, respectively.
Similar to supervised SVMs, S3VMs favor the decision

boundary having a large margin on all training data.
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According to [12], they inherently favor the decision bound-
ary going through low-density regions. Otherwise a large
loss will occur with respect to the objective of S3VMs [12].

Unlike supervised SVMs where the training labels are
complete, S3VMs need to infer the integer-value labels of
the unlabeled instances, resulting in a difficult mixed-
integer programming problem. Great efforts have been
devoted to coping with the high complexity of S3VMs.
Roughly speaking, they can be grouped into four catego-
ries. The first kind of approaches is based on global com-
binatorial optimization. Examples include branch-and-
bound methods [4], [11], which solve S3VMs globally and
obtain good performance on small data sets. The second
kind of approaches is based on global heuristic search,
which gradually increases the difficulty of solving the
non-convex part in Eq. (1). Examples include TSVM [23]
which gradually increases the influence of unlabeled
data (i.e., the value of C2), the deterministic annealing
approach [37] which gradually increases the temperature
of an entropy function in optimization, and the continua-
tion method [9] which first introduces a surrogate smooth
function and then gradually decreases the smoothness of
the surrogate function to approach the objective in Eq. (1).
The third kind of approaches is based on convex relaxa-
tion, which transforms Eq. (1) into a relaxed convex prob-
lem. Examples include the semi-definite programming
(SDP) relaxation [6], [43], and the minimax relaxation
[28], [29], [30] which is tighter and more scalable than the
SDP relaxation. The fourth kind of approaches is based
on efficient non-convex optimization techniques. Exam-
ples include UniverSVM [15] which employs concave-
convex procedure (CCCP) [44], and meanS3VM [28]
which employs alternating optimization [5].

Because S3VMs involve a complicated optimization task,
most previous efforts were devoted to handling the high
complexity, whereas few literatures have explicitly studied
the safeness of S3VMs.

3 S3VM-US

It is generally accepted that the major utility of unlabeled
data is to disclose useful information about the underlying
data distribution [10]. When some unlabeled instances are
obscure or misleading for the discovery of the underlying
distribution, learning performance may be reduced by using
those data. Based on this observation, S3VM-us, which tries
to exclude highly risky unlabeled instances, is proposed.

In the following, two simple approaches to exclude
highly risky unlabeled instances, i.e., the S3VM-c and
S3VM-p approaches, are first introduced and by examining
the deficiencies of S3VM-c and S3VM-p, S3VM-us is then
presented. For the simplicity of notations, the training set is
denoted as D ¼ ffxi; yigli¼1; fxjglþu

j¼lþ1g. The predicted labels
for x by inductive SVM (using labeled data only) and
S3VM are denoted as ysvmðxÞ and ys3vmðxÞ, respectively.
The transpose of a vector is denoted by the superscript 0.

3.1 Two Simple Approaches

3.1.1 S3VM-c

The first simple approach S3VM-c is motivated by [38]. It
suggests that unlabeled data will be helpful when the

component density sets are discernible, where component
density sets refer to regions of data distribution with
non-zero probability density. To implement this idea, in
S3VM-c, the component density sets are simulated by
clusters obtained with a clustering algorithm, and the
discernibility is simulated by a disagreement between
S3VM and inductive SVM based on bias and confidence. It
is noteworthy that other simulations are also possible.
As Algorithm 1 shows, we rely on the prediction of
S3VM if S3VM obtains the same bias but enhances the
confidence of the inductive SVM. Otherwise we will rely
on the prediction of the inductive SVM.

3.1.2 S3VM-p

The second simple approach S3VM-p is motivated by the
confidence estimation in label propagation methods [48],
[53], where the confidence can be naturally regarded as a
measurement of the reliability of unlabeled data.

Formally, to estimate the confidence of unlabeled data, let

yl¼ ½y1; . . . ; yl�0 2 f�1gl�1 and Fl ¼ ½ðyl þ 1Þ=2; ð1� ylÞ=2� 2
f0; 1gl�2 be the vector- and matrix-form of labeled data,

respectively. Let W ¼ ½wij� 2 RðlþuÞ�ðlþuÞ be the similarity

matrix of training data, and L ¼ D�W the Laplacian

matrix of W, where D is a diagonal matrix with entries

di ¼
Plþu

j¼1 wij, i ¼ 1; . . . ; lþ u. According to [53], the predic-

tions of unlabeled dataFu are derived as,

Fu ¼ L�1
u;uWu;lF

l; (2)

where Lu;u refers to a sub-matrix of L on the block of
unlabeled data, Wu;l refers to a sub-matrix of W on the
block between labeled and unlabeled data, and L�1

u;u

refers to the inverse matrix of Lu;u. In Fu, note that the
two entries of each row refer to the confidence estima-
tions belonging to two different classes. We then assign
each unlabeled instance xj with the label ylpðxjÞ ¼
sgn ðFu

j�l;1 � Fu
j�l;2Þ, and the confidence hj�l ¼ jFu

j�l;1�
Fu

j�l;2j, j ¼ lþ 1; . . . ; lþ u. As Algorithm 2 shows, after
confidence estimation, similar to S3VM-c, we consider
the risk of unlabeled data by bias and confidence. If S3VM
obtains the same bias of label propagation and the confi-
dence is high, we use the S3VM prediction. Otherwise
we use the inductive SVM prediction instead.
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3.2 S3VM-us

S3VM-c and S3VM-p have not been reported before. Our
empirical studies show that they are capable of reducing
the chances of performance degeneration. However, they
both suffer from some deficiencies. S3VM-c works in a
local manner and the relations between clusters are never
considered. In S3VM-p, as stated in [41], the confidence
estimated with label propagation methods might be incor-
rect if the label initialization is highly imbalanced. More-
over, both S3VM-c and S3VM-p heavily rely on S3VM
predictions. This might be risky when S3VM suffers from
a serious reduced performance.

The examination of the deficiencies of S3VM-c and
S3VM-p suggests us to exploit the relations between clusters
and reduce the sensitivity to the label initialization. This
motivates our S3VM-us approach.

As Algorithm 3 shows, S3VM-us employs hierarchical
clustering [22]. It first initializes each single instance as a
cluster and then merges two of the clusters with the
shortest distance. This process repeats until all the instan-
ces are merged into one cluster. It is not hard to validate
that hierarchical clustering considers the between-cluster
relations. Moreover, since hierarchical clustering is an
unsupervised method, it does not suffer from the label
initialization problem.

To estimate the reliability on unlabeled instances, let pj�l

and nj�l denote the lengths of paths from an unlabeled

instance xj to its nearest positive and negative labeled
instances, respectively. The difference between pi�l and ni�l

is simply taken as an estimation of reliability. Intuitively,
the larger the difference between pj�l and nj�l, the higher
the reliability on labeling xj.

Our empirical studies in Section 5 show that S3VM-us
effectively improves the safeness of S3VMs. However, its
improvement in performance is often marginal when com-
pared with existing S3VMs. To develop safe and well-per-
forming methods, it might be insufficient to purely rely on
the selection of unlabeled instances. This motivates us to
develop the S4VM approach presented in the next section.

4 S4VMS

As previously mentioned, the underlying assumption of
S3VMs is low-density separation. That is, the ground-truth
is realized by a large-margin low-density separator. How-
ever, as illustrated in Fig. 1, given limited labeled data and
many more unlabeled data, there usually exist multiple
large-margin low-density separators. Although these sepa-
rators all coincide well with the labeled data, they could be
quite diverse with respect to the feature space, and thus an
inadequate selection may lead to a serious performance
reduction. This observation incites us the design of S4VMs.
Specifically, S4VMs first generate a pool of diverse large-
margin low-density separators, and then try to maximize
the improvement in performance for any separator. The
pseudo-code of S4VM is summarized in Algorithm 4.

In the following, we will first introduce how to build
S4VMs given a pool of diverse large-margin low-density
separators, and then present two different implementations
for generating the pool.

4.1 Building S4VMs from a Pool of Separators

Let y� be the ground-truth label assignment and ysvm be the
predictive labels of inductive SVM on unlabeled instances.
For any label assignment of unlabeled instances
y ¼ fylþ1; . . . ; ylþug, denote gainðy;y�;ysvmÞ and lossðy;y�;
ysvmÞ as the gained and lost accuracies compared to the

Fig. 1. There are multiple large-margin low-density separators coinciding
well with labeled data (cross and triangle).
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inductive SVM. Our goal is to learn a label assignment y
such that the improved performance against the inductive
SVM is maximized,

maxy2f�1gu gainðy;y�;ysvmÞ � � lossðy;y�;ysvmÞ; (3)

where � is a parameter for trading-off how much risk the
user would like to undertake. In the sequel, we will denote
gainðy; ŷ;ysvmÞ � � lossðy; ŷ;ysvmÞ as Jðy; ŷ;ysvmÞ, for the
simplicity of notations.

The difficulty in solving Eq. (3) lies in the fact that the
ground-truth y� is unknown. Otherwise it is trivial to out-
put y ¼ y� as the optimal solution. Given a pool of T low-
density separators fŷtgTt¼1, as employed by existing S3VMs,
here we assume that the ground-truth y� is realized by a
low-density separator, i.e., y� 2 M , fŷtgTt¼1. Without fur-
ther domain knowledge in distinguishing these separators,
we then maximize the worst-case improvement over induc-
tive SVM (Eq. (4)), and denote y as the optimal solution

y ¼ arg max
y2f�1gu

min
ŷ2M

Jðy; ŷ;ysvmÞ: (4)

The following theorem shows that by taking the low-den-
sity assumption as typical S3VMs, i.e., y� 2 fŷtgTt¼1, S4VMs
are provably safe.

Theorem 1. If y� 2 fŷtgTt¼1 and � 	 1, the accuracy of y is never
worse than that of ysvm.

Proof. Note that y is the optimal solution and Jðysvm;
ŷ;ysvmÞ is zero for any ŷ, we have

min
ŷ2M

Jðy; ŷ;ysvmÞ 	 min
ŷ2M

Jðysvm; ŷ;ysvmÞ ¼ 0: (5)

Further note that y� 2 M, we have

Jðy;y�;ysvmÞ 	 minŷ2MJðy; ŷ;ysvmÞ: (6)

From Eqs. (5) and (6), Jðy;y�;ysvmÞ 	 0, i.e., gainðy;y�;
ysvmÞ 	 � lossðy;y�;ysvmÞ. Recall that � 	 1, we then
have gainðy;y�;ysvmÞ 	 lossðy;y�;ysvmÞ and thus the
theorem is proved. tu
According to Theorem 1, it is easy to get the following

proposition.

Proposition 1. If y� 2 fŷtgTt¼1 and � 	 1, the accuracy of any y
satisfying minŷ2MJðy; ŷ;ysvmÞ 	 0, is never worse than that
of ysvm.

Simply outputting the predictive results of the inductive
SVM would be also safe but evidently not useful. Thus, it is
important to study the performance improvement of
S4VMs. The following proposition shows that S4VMs
achieve the maximal performance improvement in the
worst cases.

Proposition 2. If y� 2 fŷtgTt¼1 and � ¼ 1, the accuracy of y
achieves the maximal performance improvement over that of
ysvm in the worst cases.

It is noteworthy that S4VMs are somewhat relevant to
ensemble methods [49], and the spirit of S4VMs is not spe-
cific to S3VMs, which may also be extended to other semi-
supervised learning methods.

In the following, we will present the optimization of
Eq. (4) and an out-of-sample extension of S4VMs in
Sections 4.1.1 and 4.1.2, respectively.

4.1.1 Optimization

Note that the gainðy; ŷ;ysvmÞ and lossðy; ŷ;ysvmÞ are linear
functions with respect to y, i.e.,

gainðy; ŷ;ysvmÞ ¼
Xlþu

j¼lþ1

Iðyj ¼ ŷjÞI
�
ŷj 6¼ ysvmj

�

¼
Xlþu

j¼lþ1

1þ yjŷj
2

1� ysvmj ŷj

2
;

lossðy; ŷ;ysvmÞ ¼
Xlþu

j¼lþ1

Iðyj 6¼ ŷjÞI
�
ŷj ¼ ysvmj

�

¼
Xlþu

j¼lþ1

1� yjŷj
2

1þ ysvmj ŷj

2
:

Hence, Jðy; ŷt;y
svmÞ is also linear to y and can be cast as

c0tyþ dt, where ct ¼ 1
4 ½ð1þ �Þŷt þ ð�� 1Þysvm� and dt ¼

1
4 ½�ð1þ �Þŷ0

ty
svm þ ð1� �Þ�.

By introducing an additional variable t, the inner mini-
mization in Eq. (4) can be reformulated as a maximization
problem, and Eq. (4) becomes

maxy maxt t

s. t. t � c0tyþ dt; 8t ¼ 1; . . . ; T ; y 2 f � 1gu:
(7)

Though Eq. (7) is still a difficult mixed-integer linear pro-
gramming problem, according to Proposition 1, optimal sol-
utions are not necessary for achieving safeness. A simple
method is then presented. Specifically, we first relax the
integer-form of constraint f�1gu into its convex hull
½�1; 1�u, and obtain the optimal solution of the resultant con-
vex linear programming problem. We then project it back to
an integer solution with the minimum distance. If the objec-
tive value of the resultant integer solution is smaller than
zero, ysvm is output as the final solution. It is not hard to ver-
ify that our solution satisfies Proposition 1.

It is notable that prior knowledge on low-density separa-
tors can be easily incorporated into our framework. Specifi-
cally, by introducing the dual variables aa ¼ ½a1; . . . ;aT �0 	 0
for the constraints in Eq. (7), one can have the Lagrangian of
Eq. (7) as

Lðt;y;aaÞ ¼ t �
XT
t¼1

atðt � c0ty� dtÞ: (8)

Setting the partial derivation w.r.t. t to zero, we have

@L=@t ¼ 1�
XT
t¼1

at ¼ 0: (9)

With Eq. (9), the inner maximization of Eq. (7) can be
replaced by its dual and Eq. (7) becomes

max
y2f�1gu

minPT

t¼1
at¼1;aa	0

XT
t¼1

atðc0tyþ dtÞ: (10)
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Here at can be interpreted as a probability that ŷt discloses
the ground-truth solution. Hence, if prior knowledge about
the probabilities aa is available, one can readily learn the opti-
mal ywith respect to the target in Eq. (10) using the known aa.

4.1.2 Out-of-Sample Extension

Eq. (4) works in the transductive setting [40] which could
not make predictions on unseen instances. To overcome
this, an out-of-sample extension (also named as induction
extension [52]) of S4VMs is presented.

One common practice to achieve this is to freeze the
transductive setting on the set of both testing and unla-
beled instances [52]. Formally, for any given testing
instance z, let fŷzt gTt¼1 be the predictive labels of multiple
low-density separators, and ysvm;z be the predictive label
of the inductive SVM. One need to learn a label assign-
ment for both testing and unlabeled instances such that
the objective of S4VM is maximized

max
y2f�1gu; yz2f�1g; t

t

s.t. t � ½ct; cz�0½y; yz� þ dzt ; 8t ¼ 1; . . . ; T;
(11)

where cz ¼ 1
4 ½ð1þ �Þŷzt þ ð�� 1Þysvm;z� and dzt ¼ dt� 1

4 ð1þ
�Þŷzt ysvm;z. This, however, will be computationally prohibi-
tive especially when there are a large number of instances
for testing.

To alleviate the computational load, we present an effi-
cient algorithm for approximate solutions. Specifically, note
that when yz is fixed to ysvm;z, Eq. (11) is equivalent to trans-
ductive S4VM, i.e., Eq. (7), and thus the solution of Eq. (7)
(denoted by �y) provides a quite good approximation to
Eq. (11). This observation motivates us to solve the follow-
ing much simpler problem instead of the complicated one
in Eq. (11),

max
yz2f�1g; t

t

s.t. t � ½ct; cz�0½�y; yz� þ dzt ; 8t ¼ 1; . . . ; T:
(12)

It is efficient to derive the optimal solution of Eq. (12). We
just need to enumerate the two possible values of yz and
then pick up the one with the smaller objective value. As
will be validated empirically in Section 5.2, our approxima-
tion is quite effective.

4.2 Generating the Pool of Diverse Separators

Denote hðf; ŷÞ as the objective function of S3VMs in Eq. (1)
for the sake of simplicity,

hðf; ŷÞ ¼ 1

2
kfk2H þ C1

Xl

i¼1

‘ðyi; fðxiÞÞ þ C2

Xlþu

j¼lþ1

‘ðŷj; fðxjÞÞ:

To generate a pool of diverse separators fftgTt¼1 and their
corresponding label assignments fŷtgTt¼1, in this paper we
consider to minimize the following function:

min
fft;ŷt2BgTt¼1

XT
t¼1

hðft; ŷtÞ þMV
�fŷtgTt¼1

�
: (13)

Here V refers to a penalty reflecting the diversity of separa-
tors, i.e., the larger the diversity, the smaller the penalty. M

is a large constant (e.g., 105 in our experiments) enforcing
large diversity. It is easy to realize that minimizing Eq. (13)
favors the separators with large margins as well as large
diversities.

We consider the penalty as a sum of pairwise terms,

i.e., VðfŷtgTt¼1Þ ¼
P

1�t 6¼~t�T dðŷ0tŷ~tu 	 1� &Þ where d is the
indicator function and & 2 ½0; 1� is a constant (e.g., 0:5 in

our experiments). It is notable that other penalty quanti-

ties can be also applicable.
Recall that fðxÞ ¼ w0fðxÞ þ b is a linear model in

S3VMs, where fðxÞ is a feature mapping induced by the
kernel k, i.e., kðx; x̂Þ ¼ fðxÞ0fðx̂Þ and b is a bias term.
Eq. (13) then becomes

min
fwt;bt;ŷt2BgTt¼1

XT
t¼1

�
1

2
kwtk2 þ C1

Xl

i¼1

‘ðyi;w0
tfðxiÞ þ btÞ

þ C2

Xlþu

j¼lþ1

‘ðŷt;j;w0
tfðxjÞ þ btÞ

�

þM
X

1�t 6¼~t�T

d
ŷ0
tŷ~t

u
	 1� &

� �
:

(14)

To address Eq. (14), in the sequel, two implementations
are presented. One is based on a global simulated
annealing (SA) search while the other is based on an effi-
cient sampling strategy.

It is notable that exhaustively searching all possible
large-margin low-density separators is prohibitive. Fortu-
nately, according to Theorem 1, generating a large-margin
low-density separator to realize the ground-truth is only a
sufficient rather than necessary condition to have safe
S3VMs. As will be validated in our empirical studies, even
on many cases in which the ground-truth is not realized by
any of the generated large-margin low-density separators,
S4VMs still work quite well.

4.2.1 Global Simulated Annealing Search

Our first implementation to address Eq. (14) is based on
global search, e.g., simulated annealing search [25]. SA is a
probabilistic method for approaching global solutions of
objective functions which suffer from multiple local min-
ima. Specifically, at each step, SA replaces the current solu-
tion by a random nearby solution with a probability. The
probability depends on two factors, i.e., the value difference
between their corresponding function targets, and a global
parameter, i.e., the temperature P , which gradually
decreases during the process. When P is large, the current
solution almost changes randomly. While as P approaches
zero, the changes are increasingly “downhill”. In theory, the
probability that SA converges to the global solution
approaches to 1 as SA procedure is continued [26].

To alleviate the low convergence rate of standard SA,
inspired by [37], a deterministic local search scheme is used.
Specifically, when fŷtgTt¼1 are fixed, fwt; btgTt¼1 are solved
via multiple individual SVM subroutines. When fwt; btgTt¼1

are fixed, fŷtgTt¼1 are updated based on local binary search.
Algorithm 5 presents the pseudo-code of our simulated

annealing approach for Eq. (14), where the local search sub-
routine is given in Algorithm 6.
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4.2.2 Representative Sampling

To further alleviate the computational burden, our sec-
ond implementation is based on heuristic representative
sampling. Recall that the goal of Eq. (13) can be realized
by finding multiple large-margin low-density separators
and then keeping only representative ones with large
diversity. This motivates us to have a two-stage method,
a) search for multiple large-margin low-density separa-
tors at first and then b) select the representative separa-
tors. Algorithm 7 presents the pseudo-code of our second
implementation.

As Algorithm 7 shows, multiple candidate large-
margin low-density separators are first obtained by
[46]. A clustering algorithm is then applied to identify
the representative separators. This approach is simple.
As will be validated empirically in Section 5, it is also
efficient and effective.

We call our S4VM using simulated annealing as S4VMa,
and the one using sampling as S4VMs.

5 EMPIRICAL STUDY

In this section, the proposed approaches are evaluated
on a broad range of tasks including five semi-supervised

benchmark data sets,1 digit1, USPS, BCI, g241c, COIL,
and 15 UCI data sets2 and four large scale data sets,
adult, mnist, real-sim, rcv1. The size of data ranges from
232 to more than 600; 000, and the dimensionality ranges
from 6 to more than 40; 000. mnist has 45 pairs of binary
classification problems, and we focus on its four most
difficult pairs [46]. Table 1 summarizes the characteristics
of the data sets.

To satisfy the balance constraint required by S3VMs, for
each data set, we randomly select 10 instances whose class
proportion is closely related to the whole data set, to be
served as labeled instances. The remaining data are served
as the unlabeled instances. The experiments repeat for
30 times. The average performance and standard deviation
are recorded.

TABLE 1
Characteristics of the Data Sets

1. http://www.kyb.tuebingen.mpg.de/ssl-book/.
2. http://archive.ics.uci.edu/ml/datasets.html.
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Inductive SVM and S3VM serve as the two baseline
approaches. For small and medium scale data sets,
LIBSVM3 [18] and TSVM4 [23] are employed. For large scale
data sets, due to the high computational load of LIBSVM
and TSVM, efficient LIBLINEAR5 [21] and UniverSVM6 [15]
serve as baselines instead. Both the linear and RBF kernels
are used for small and medium scale data sets, and linear
kernel is always used for large scale data sets.

Three S3VM variants using multiple low-density sepa-
rators are also compared. Specifically, S3VMbest presents
the best performance among the multiple candidate sep-
arators (note that this method is impractical). S3VMmin

selects the low-density separator with minimum objec-
tive value. S3VMcom combines the candidate separators
using uniform weights.

The parameters are set as follows. Following the setups
in [10], the regularization parameter C is fixed to 100 and
the width of RBF kernel is set to the average distance
between instances for inductive SVM. The regularization
parameters C1, C2 and b in the balance constraint are fixed
to 100, 0:1 and 0:1 for all S3VMs and S4VMs. For S3VM-c,
the cluster number k is fixed to 50. For S3VM-p, the parame-
ter h is fixed to 0.1 and the similarity matrix is constructed
via Gaussian distance where the width is set to the average
distance between instances. For S3VM-us, the parameter � is
fixed to 0.1. For S4VMa, the number of separators T and the
risk parameter � are both fixed to 3. For S4VMs, the sam-
pling size N , the number of separators T , and the risk
parameter � are fixed to 100, 10 and 3, respectively. The lin-
ear program in S4VMs is conducted using the linprog func-
tion in MATLAB.

5.1 Comparison Results

Intensive comparison results are shown in Table 2.
Although simulated annealing was used to improve the effi-
ciency of S3VMs [37], it still involves high computational
load. Table 2 only reports the performance of S4VMa on 11
small UCI data sets.

Table 2 shows that S4VMa performs highly competitive
with S3VM. Specifically, S3VM significantly outperforms
inductive SVM on 5 of the 11 cases with linear kernel, and 7
of the 11 cases with RBF kernel; while S4VM significantly
outperforms inductive SVM on seven cases for both the lin-
ear and RBF kernels.

More importantly, unlike S3VM which causes significant
degeneration of the performance on one case with linear
kernel and two cases with RBF kernel, S4VMa is never infe-
rior to inductive SVM. The Wilcoxon sign tests at 95 percent
significance level confirm that S4VMa is significantly better
than inductive SVM with both linear and RBF kernels, but
S3VM does not show such a significance.

Table 2 also shows the highly competitive performance
of S4VMs and S3VM-us compared with S3VM. Specifi-
cally, in terms of pairwise comparison, S4VMs is found to
be superior to S3VM on 16 of the 27 cases with linear ker-
nel, and 11 of the 20 cases with RBF kernel. S3VM-us is

superior to S3VM on nine and eight of the 20 cases with
linear and RBF kernel, respectively. In terms of wins, with
linear kernel, S3VM outperforms inductive SVM on 44
percent (12/27) of the cases; while S4VMs and S3VM-us
outperform inductive SVM on 59 percent (16/27) and 45
percent (9/20), respectively. Similar observations can be
found for RBF kernel. On 55, 55 and 50 percent of the
cases, S3VM, S4VMs and S3VM-us significantly outper-
form inductive SVM, which are also competitive.

Unlike S3VM whose performance is found to decrease
significantly on three cases with linear kernel and six
cases with RBF kernel, S3VM-us shows decreased perfor-
mance on only one case, and S4VMs never show
decreased performance. Both S3VM-c and S3VM-p are
capable of reducing the chance of performance degenera-
tion, but they do not perform as well as S3VM-us.
S3VMmin

s and S3VMcom
s still show significantly reduced

performance in many cases. The Wilcoxon sign tests at 95
percent significance level validate S4VMs and S3VM-us to
be significantly better than inductive SVM with both lin-
ear and RBF kernels, but other semi-supervised methods,
such as S3VM, S3VM-c, S3VM-p, S3VMmin

s and S3VMcom
s ,

do not obtain significance.
Although S3VM-us is found to be safer than S3VM, it

employs a conservative strategy and its improvement is
often much smaller than that of S3VM. In contrast, S4VMs

takes the improvement in performance into account and
performs much better. Specifically, in terms of average per-
formance, S4VMs is superior to S3VM-us. It reaches 75.91
percent versus S3VM-us’s 74.97 percent on the 40 cases of
S3VM-us reported in Table 2. The paired t-tests at 95 per-
cent significance level show that S4VMs performed signifi-
cantly better than S3VM-us. These comparisons confirm
that S4VMs is better than S3VM-us.

The condition of Theorem 1 is already weaker than the
traditional low-density assumption in S3VMs, the theorem
may not always hold in practice. That is, the ground-truth
may not reside among the low-density separators (cf. the
performance of S3VMbest

s ). Even in such cases, S4VMs still
work well. That might be because i) Theorem 1 only
presents a sufficient rather than necessary condition for
safeness, and ii) the analysis of the diversity among low-
density separators [39], provides an explanation to S4VMs’
superiority to single separator.

5.2 Out-of-Sample Extension

Table 3 shows the performance of S4VMs with out-of-sam-
ple extension on small and medium scale data sets. For
each data set, 75 percent of instances are used for training,
among which 10 are served as labeled data and required
to be satisfied by the balance constraint. The remaining
instances are used for testing. Experiment repeats for
30 times. The average performance and standard devia-
tion are recorded.

As can be seen from Table 3 that S4VMs works quite
well with out-of-sample extension. Specifically, in terms
of wins, S4VMs performs the best in comparison with the
other three S3VMs. More importantly, unlike the other
S3VMs, such as S3VM, S3VMmin

s and S3VMcom
s , which

show significant performance reductions in many cases,

3. http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
4. http://svmlight.joachims.org/.
5. http://www.csie.ntu.edu.tw/~cjlin/linlinear/.
6. http://mloss.org/software/view/19/.
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S4VMs is never inferior to inductive SVM. The Wilcoxon
sign tests at 95 percent significance level confirm that
S4VMs is significantly better than inductive SVM with
both linear and RBF kernels, and the other three S3VMs
do not achieve significance.

5.3 Influence of the Number of Labeled Data

Table 4 shows the performance of S4VMs under different
numbers of labeled examples. As can be seen from Table 4
that S4VMs is found to be highly competitive with S3VM
for each number of labeled examples. Specifically, in terms
of wins, S3VM obtains significance on 19/20/20 of the 40
cases for 20, 50 and 100 labeled examples, respectively;
while S4VMs outperforms on 20/20/17 cases accordingly.

In terms of pairwise comparison (suppose win, tie and loss
stand for scores of 1, 0 and �1 for each data set), S4VMs out-
scores S3VM on seven data sets, scores the same as S3VM on
seven data sets, and lower on six data sets.

More importantly, in contrast to S3VM that signifi-
cantly reduces performance on 17 cases, S4VMs only
shows decreased performance on three cases which all
happen on liverDiscorders with linear kernel. The might
be because, in that setting, even the S3VMbest

s approach
(which always selects the best candidate separator) can-
not achieve a comparable performance against the induc-
tive SVM (the accuracies of S3VMbest

s are 56.9, 61.2 and
64.5 for 20, 50 and 100 labeled examples, which are all
significantly inferior to the inductive SVM). The Wil-
coxon sign tests at 95% significance level confirm that

TABLE 2
Comparison of Accuracy (Mean�std.)

Entries of semi-supervised methods (S3VM, S3VM-c, S3VM-p, S3VM-us, S3VMbest
s , S3VMmin

s , S3VMcom
s , S4VMa and S4VMs) are bolded/underlined

if they are significantly better/worse than SVM (paired t-tests at 95 percent significance level). ‘ -’ marks cases suffering from high computational cost

or memory overhead.
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S4VMs is significantly better than the inductive SVM on
each number of label examples, whereas S3VM does not
show significance.

5.4 Influence of the Number of Unlabeled Data

Table 5 shows the performance of S4VMs with different
numbers of unlabeled instances. As can be seen, similar to
the cases in Section 5.3, S4VMs still performs highly com-
petitive with S3VM, both in terms of the wins as well as
the pairwise comparison. Furthermore, unlike S3VM
which significantly hurts performance on 23 cases, S4VMs

never shows decreased performance. The Wilcoxon sign
tests at 95 percent significance level still conform that
S4VMs is significantly better than inductive SVM on each
number of unlabeled instances, and S3VM does not show
such a significance.

5.5 Influence of the Balance Constraint

One piece of prior knowledge of S3VMs is the balance con-
straint. Although the balance constraint is often a mild
assumption, it might still be violated in some cases. To
study the influence of the balance constraint, 10 labeled
examples whose class proportion is substantially different
from that of remaining unlabeled data, are randomly
selected, and the balance constraint is still required for
S3VMs and S4VM. Experiments are repeated for 30 times.
The average performance and standard deviation on UCI
data sets with linear kernel are reported in Table 6.

The results show that both the S4VMs and S3VM per-
form much worse than those without the violation of the
balance constraint (cf. results in Table 2). Moreover,
although S4VMs has already substantially improved the
safeness of S3VM, it still shows significant decrease per-
formance on two cases. This suggests that, in the cases in

TABLE 4
Accuracy of SVM and Accuracy Improvements of S4VMs and S3VM against SVM on Different Numbers of Labeled Data

The accuracy Improvement of algo against SVM is calculated by ðaccalgo � accsvmÞ. ‘ lin’ stands for the linear kernel.

TABLE 3
Comparison of Accuracy (Mean�std.) with Out-of-Sample Extension
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which the class proportion of unlabeled instances cannot
be estimated using existing labeled examples, it is still
challenging to have safe S3VMs.

5.6 Influence of Parameters

S4VMs has four parameters, i.e., sampling size N , cluster
number T , risk parameter � and the kernel type to set.
In previous empirical studies, N , T and � are set as
default values, i.e., 100, 10 and 3. Fig. 2 further studies
the influence of N , T and � with linear and RBF kernels
on five representative data sets (the results on other data
sets are similar) with 10 labeled examples by fixing other
parameters as default values.

It can be seen that, though the number of labeled
examples is small, the performance of S4VMs is quite
insensitive to the setting of the parameters. One possible
reason is that, rather than simply picking one low-density
separator, S4VMs optimize the assignment of labels in the
worst cases. This property makes S4VMs even more
attractive, especially when the number of labeled

examples is too small to afford a reliable model selection.
Moreover, paired t-tests at 95 percent significance level
confirm that S4VMs does not reduce performance on all
the cases in Figs. 2a, 2b and 2c when � 	 1.

5.7 Running Time

Following the setup in Section 5.2, Fig. 3 gives the training
and testing time of S3VM and S4VMs with linear kernel on
UCI data sets. S4VMs runs approximately 10 times of
S3VM. That is because S4VMs needs to generate T low-den-
sity separators, where T is usually a small constant (such as

TABLE 5
Accuracy of SVM and Accuracy Improvements of S4VMs and S3VM on Different Numbers of Unlabeled Data

TABLE 6
Comparison of Accuracy (Mean�std.) when the Balance

Constraint Is Violated

Fig. 2. Parameter influence with 10 labeled examples.
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10 in our experiments). It is notable that the implementation
of S4VMs is inherently parallelizable, and thus S4VMs can
be accelerated by parallel implementations or by using
more efficient S3VM solvers.

5.8 Comparison with Other S3VMs

Table 7 shows the accuracy of other S3VM implementations.
Specifically, Laplacian SVM (LapSVM) [2]7 which incorpo-
rates manifold assumption into S3VMs, and low density
separation [12]8 which first introduces a graph-based dis-
tance for instances and then optimizes the objective of
S3VM with the gradient descent method, are compared
with inductive SVM. The parameters gA, gI of LapSVM are
set to the same as the parameters C1 and C2 in S3VMs and
S4VMs (i.e., 100 and 0:1). The r in LDS is set to 4 which
achieves the best performance reported in the paper. Since
LDS is based on RBF kernel, RBF kernel is used for induc-
tive SVM and LapSVM. The other parameters are with the
default settings recommended by the paper. As shown in
Table 7, similar to TSVM [23], other S3VM implementations
like LapSVM and LDS also decrease the performance signif-
icantly in some cases.

6 CONCLUSION

The purpose of this paper is to develop safe semi-super-
vised support vector machines (S3VMs) which never per-
form significantly inferior to inductive SVMs that only
use labeled data. Based on our preliminary works in [31],
[32], this paper first proposes the S3VM-us approach. This
approach uses only the unlabeled instances that are very
likely to be helpful, and thus avoids the use of highly
risky unlabeled instances. Our empirical studies show

that this approach improves safeness but only improves
the performance slightly, usually much less than S3VMs.
To develop a safe and well-performing approach, we re-
examine the fundamental assumption of S3VMs, i.e., low-
density separation. Based on the observation that multiple
low-density separators can be identified from training
data, S4VMs (Safe S3VMs) approach, the main contribu-
tion of this paper, is proposed. This approach attempts to
avoid the risk of using a poor separator. Under the low-
density assumption used by S3VMs, S4VMs are found to
be provably safe and to achieve the maximum improve-
ment in performance. An out-of-sample extension of
S4VMs is also presented so that S4VMs can make predic-
tions on unseen instances. Our empirical studies on a
broad range of data sets show that the overall perfor-
mance of S4VMs is highly competitive with S3VMs, but
unlike S3VMs which show significant reduced perfor-
mance in many cases, S4VMs are rarely inferior to induc-
tive SVMs.

Our empirical studies in Table 2 reveal that even when
low-density assumption does not hold, S4VMs still work
well. We conjecture that this is because S4VMs exploit
multiple separators rather than relying on a single separa-
tor. In this way, its robustness benefits from an inherent
ensemble learning mechanism [49]. Further study on this
issue is an interesting future work. It is also possible to
combine the advantages of S3VM-us and S4VMs to
develop approaches that are even stronger than the cur-
rent S4VMs. Moreover, extending the spirit of S4VMs to
graph-based semi-supervised methods [2], [33], [45], [53],
as well as connecting the safeness to the generalization
are worth studying in the future.
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TABLE 7
Accuracy of Other S3VMs (Mean�std.)

Fig. 3. Training and testing time (in seconds) of S3VM and S4VMs on
UCI data sets with linear kernel.

7. http://manifold.cs.uchicago.edu/manifold_regularization/
software.

8. http://olivier.chapelle.cc/lds/.
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