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1 Towards Safe Weakly Supervised Learning
2 Yu-Feng Li , Lan-Zhe Guo, and Zhi-Hua Zhou , Fellow, IEEE

3 Abstract—In this paper, we study weakly supervised learning where a large amount of data supervision is not accessible. This includes

4 i) incomplete supervision, where only a small subset of labels is given, such as semi-supervised learning and domain adaptation; ii)

5 inexact supervision, where only coarse-grained labels are given, such as multi-instance learning and iii) inaccurate supervision, where

6 the given labels are not always ground-truth, such as label noise learning. Unlike supervised learning which typically achieves

7 performance improvement with more labeled examples, weakly supervised learning may sometimes even degenerate performance

8 with more weakly supervised data. Such deficiency seriously hinders the deployment of weakly supervised learning to real tasks. It is

9 thus highly desired to study safe weakly supervised learning, which never seriously hurts performance. To this end, we present a

10 generic ensemble learning scheme to derive a safe prediction by integrating multiple weakly supervised learners. We optimize the

11 worst-case performance gain and lead to a maximin optimization. This brings multiple advantages to safe weakly supervised learning.

12 First, for many commonly used convex loss functions in classification and regression, it is guaranteed to derive a safe prediction under

13 a mild condition. Second, prior knowledge related to the weight of the base weakly supervised learners can be flexibly embedded.

14 Third, it can be globally and efficiently addressed by simple convex quadratic or linear program. Finally, it is in an intuitive geometric

15 interpretation with the least square loss. Extensive experiments on various weakly supervised learning tasks, including semi-

16 supervised learning, domain adaptation, multi-instance learning and label noise learning demonstrate our effectiveness.

17 Index Terms—Weakly supervised learning, safe, semi-supervised learning, domain adaptation, multi-instance learning, label noise learning

Ç

18 1 INTRODUCTION

19 MACHINE learning has achieved great success in numer-
20 ous tasks, particularly in supervised learning such as
21 classification and regression. But most successful techni-
22 ques, such as deep learning [1], require ground-truth labels
23 to be given for a big training data set. It is noteworthy that
24 in many tasks, however, it can be difficult to attain strong
25 supervision due to the fact that the hand-labeled data sets
26 are time-consuming and expensive to collect. Thus, it is
27 desirable for machine learning techniques to be able to
28 work well with weakly supervised data [2].
29 Compared to the data in traditional supervised learning,
30 weakly supervised data does not have a large amount of
31 precise label information. Weakly supervised data is impor-
32 tant in machine learning and commonly appear in many
33 real applications. More specifically, three types of weakly
34 supervised data commonly exist [2].

35 � Incomplete supervised data, i.e., only a small subset of
36 training data is given with labels whereas the other
37 data remain unlabeled. For example, in image categori-
38 zation [3], it is easy to get a huge number of images
39 from the Internet, whereas only a small subset of
40 images can be annotated due to the annotation
41 cost. Representative techniques for this situation are

42semi-supervised learning [4] which aims to learn a predic-
43tion model by leveraging a number of unlabeled data
44and domain adaptation [5] which aims to exploit further
45supervision information fromother related domains.
46� Inexact supervised data, i.e., only coarse-grained
47labels are given. Reconsider the image categorization
48task, it is desirable to have every object in the images
49annotated; however, usually we only have image-
50level labels rather than object-level labels. One repre-
51sentative technique for this scenario is multi-instance
52learning [6], which aims to improve the performance
53by considering the coarse-grained label information.
54� Inaccurate supervised data, i.e., the given labels have
55not always been ground-truth. Such a situation occurs
56in various tasks such as image categorization, when
57the annotator is careless or weary, or the annotator is
58not an expert. For this type of label information, label
59noise learning techniques are one main paradigm to
60learn a promising prediction fromnoisy label [7].

61In traditional machine learning, it is often expected that

62machine learning techniques such as supervised learningwith

63the usage ofmore datawill be able to improve learning perfor-

64mance. Suchobservation,however, no longerholds forweakly

65supervised learning. There aremanystudies [4], [5], [6], [7], [8],

66[9], [10], [11], [12], [13] reportingthat theusageofweaklysuper-

67vised data may sometimes lead to performance degradation,

68thatis, thelearningperformanceisevenworsethanthatofbase-

69linemethodswithoutusingweaklysuperviseddata.Fig.1illus-

70tratestheintuition.Morespecifically,

71� Semi-supervised learning using unlabeled data may
72be worse than supervised learning with only limited
73labeled data [4], [8], [9], [10].
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74 � Domain adaptation has the phenomenon of negative
75 transfer [5], [11], [12], [13], [14] that the source
76 domain data contributes to the reduced performance
77 of learning in the target domain.
78 � Multi-instance learning may be outperformed by the
79 naive learning methods which simply assign the
80 coarse-grained label to a bag of instances [6].
81 � Label noise learning may be worse than that of learn-
82 ing from only a small amount of high-quality labeled
83 data [7], [15], [16].
84 Such observations obviously stray from the principle of
85 weakly supervised learning. It is desired to study safe
86 weakly supervised learning [17], so that the performance
87 will not be significantly hurt. There is just a little amount of
88 effort on this aspect recently, e.g., [9], [13], [18], whereas
89 they typically work on one concrete scenario. The proposal
90 suitable for various weakly supervised learning scenarios,
91 to our best knowledge, has not been thoroughly studied yet.

92 1.1 Our Contribution

93 In this paper, we present a general ensemble learning
94 scheme, SAFEW (SAFE Weakly supervised learning), which
95 learns the final prediction by integrating multiple weakly
96 supervised learners. Specifically, we propose a maximin
97 framework, which maximizes the performance gain in the
98 worst case. The framework brings multiple advantages to
99 safe weakly supervised learning. i) It can be shown that the

100 proposal is probably safe for many loss functions (e.g.,
101 square loss, hinge loss) in classification and regression, as
102 long as the ground-truth label assignment can be expressed
103 as a convex combination of base learners. ii) Prior knowl-
104 edge related to the weight of base learners can be easily
105 embedded in our framework. iii) The proposed formulation
106 can be globally and efficiently addressed via a simple con-
107 vex quadratic program or linear program. iv) It has an intui-
108 tive interpretation with the square loss function.
109 Extensive experimental results on multiple weakly super-
110 vised learning scenarios, i.e., semi-supervised learning,
111 domain adaptation, multi-instance learning and label noise
112 learning clearly demonstrate the effectiveness of our proposal.

1131.2 Organization

114This paper is organized as follows. We first introduce pre-
115liminaries in Section 2 and then present our generic frame-
116work in Section 3, in which we provide theoretical analysis
117and study the setup of the weight of base learners. More-
118over, we show how to optimize the proposed formulation
119in Section 4 and relate to some existing work in Section 5.
120Finally, we report the experimental results in Section 6 and
121conclude the paper in Section 7.

1222 PRELIMINARIES

123In weakly supervised learning, due to the lack of sufficient
124precise label information, ensemble learning that integrates
125multiple base learners [19] is known as a popular learning
126technology for weakly supervised data to derive robust per-
127formance. Specifically, suppose we have obtained b predic-
128tions ff 1; . . . ; f bg of unlabeled instances from multiple
129weakly supervised base learners, where f i 2 Hu, i ¼ 1; . . . ; b
130and u is the number of unlabeled instances. Here both clas-
131sification and regression tasks for weakly supervised data
132are considered. For classification task H ¼ fþ1;�1g and for
133regression task H ¼ R. We summarize the main notations
134appeared in our paper in Table 1.
135Many strategies have been employed to generate multi-
136ple weakly supervised learners, such as through different
137learning algorithms, different sampling methods, different
138model parameters, etc [19]. Previous studies typically focus
139on deriving good performance from multiple base learners,
140whereas failing to take the safeness of performance into
141account. In fact, the good performance of multiple base
142learners needs to compare with the baseline approach, and
143should not suffer from performance degradation.
144We let f 0 2 Hu denote the prediction of baseline
145approaches, e.g., directly supervised learning with only lim-
146ited labeled data. Our ultimate goal is here to derive a safe
147prediction f ¼ gðff 1; . . . ; f bg; f0Þ, which often outperforms
148the baseline f 0, meanwhile it would not be worse than f 0. In
149other words, we would like to maximize the performance
150gain between our prediction and the baseline prediction.

Fig. 1. In practice weakly supervised learning may be not safe, i.e., it may degenerate the performance with the usage of weakly supervised data.
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151 3 THE PROPOSED FRAMEWORK

152 We first consider a simpler case that the ground-truth label
153 assignment on unlabeled instances is known. Specifically,
154 let f� denote the ground-truth label assignment. Remind
155 that our goal is to find a prediction f that maximizes the per-
156 formance gain against the baseline f0. One can easily have
157 the objective function as

max
f2Hu

‘ðf0; f�Þ � ‘ðf ; f �Þ
159159

160 Here ‘ð�; �Þ refers to a loss function, e.g., the square loss, the
161 hinge loss, etc. Table 2 summarizes some commonly used
162 loss functions for classification and regression. The smaller
163 the value of the loss function is, the better the performance
164 becomes.
165 However, obviously f � is unknown. To alleviate it,
166 inspired by [20], we assume that f � is realized as a convex
167 combination of base learners. Specifically, f � ¼Pb

i¼1 aif i
168 where aa ¼ ½a1;a2; . . . ;ab� � 0 be the weight of base learners
169 and

Pb
i¼1 ai ¼ 1. Then we have the following objective

170 instead by replacing the definition of f �,

max
f2Hu

‘ f0;
Xb
i¼1

aif i

 !
� ‘ f ;

Xb
i¼1

aif i

 !
:

172172

173174In practice, however, one may still be hard to know
175about the precise weight of base learners. We further
176assume that aa is from a convex set M to make our pro-
177posal more practical, where M captures the prior knowl-
178edge about the importance of base learners and we will
179discuss the setup of M in the later section. Without any
180further information to locate the weight of base learners, to
181guarantee the safeness, we aim to optimize the worst-case
182performance gain, since, intuitively, the algorithm would
183be robust as long as the good performance is guaranteed
184in the worst case. Then we can obtain a general formula-
185tion for weakly supervised data with respect to classifica-
186tion and regression tasks as,

max
f2Hu

min
aa2M

‘ f0;
Xb
i¼1

aif i

 !
� ‘ f ;

Xb
i¼1

aif i

 !
: (1) 188188

189

1903.1 Analysis

191We in this section show that Eq. (1) has safeness guarantees
192for the commonly used convex loss functions as listed in
193Table 2 in the classification and regression tasks of weakly
194supervised learning. To achieve that, we first introduce a
195result as follows.

196Theorem 1. Suppose the ground-truth f� can be constructed by
197base learners, i.e., f � 2 ff jPb

i¼1 aif i;aa 2 Mg. Let f̂ and âa be
198the optimal solution to Eq. (1). We have ‘ðf̂ ; f�Þ � ‘ðf0; f �Þ and f̂
199has already achieved the maximal performance gain against f 0.

200Proof. First, we define,

Lðf ;aaÞ ¼ ‘ f0;
Xb
i¼1

aif i

 !
� ‘ f ;

Xb
i¼1

aif i

 !
:

202202

203Since Eq. (1) is a max-min formulation, the following
204inequality holds for any feasible f and aa:

Lðf ; âaÞ � Lðf̂ ; âaÞ � Lðf̂ ;aaÞ:
206206

207Let aa� make f� ¼Pb
i¼1 a

�
i f i. By setting f and aa to be f 0

208and aa�, we have,

‘ f0;
Xb
i¼1

âif i

 !
� ‘ f0;

Xb
i¼1

âif i

 !
� ‘ f0;

Xb
i¼1

a�
i f i

 !
� ‘ f̂ ;

Xb
i¼1

a�
i f i

 !
210210

211Thus,

‘ðf̂ ; f�Þ � ‘ðf 0; f �Þ: 213213

TABLE 1
Summary of Notations Used in This Paper

Notation Meaning

u number of unlabeled instances
b number of weakly supervised base learners
H output space, for classification H ¼ fþ1;�1g;

for regressionH ¼ R
f 1; . . . ; f b 2 Hu prediction of weakly supervised learners for

unlabeled instances
f 0 2 Hu prediction of baseline approach, e.g.,

supervised learning with labeled data only
f � 2 Hu ground-truth prediction for unlabeled

instances
f̂ 2 Hu final prediction for unlabeled instances
‘ð�; �Þ loss function
aa weights of weakly supervised base learners
M a convex set of weights aa
Cclf covariance matrix of bweakly supervised

learners for classification task
Creg covariance matrix of bweakly supervised

learners for regression task

TABLE 2
Commonly Used Loss Functions ‘ðp;qÞ for Classification and Regression Tasks

Loss function Definition of ‘ðp;qÞ Task h

Hinge loss 1
u

Pu
i¼1 maxf1� piqi; 0g Classification 1

Cross entropy loss 1
u

Pu
i¼1 �pi lnðqiÞ � ð1� piÞ lnð1� qiÞ Classification 1

Mean square loss 1
u

Pu
i¼1ðpi � qiÞ2 ¼ 1

u ð1� pqÞ2 Classification 4

Mean square loss 1
u

Pu
i¼1ðpi � qiÞ2 ¼ 1

u kp� qk22 Regression 2 +M

Mean absolute loss 1
u

Pu
i¼1 jpi � qij ¼ 1

u kp� qk1 Regression 1

Mean �-insensitive loss 1
u

Pu
i¼1 maxfjpi � qij � �; 0g Regression 1

The prediction q ¼ ½q1; . . .; qu� 2 Ru and the label p ¼ ½p1; . . .; pu� 2 Hu where Hu ¼ fþ1;�1gu is for classification and Hu ¼ Ru is for regression. h is the Lip-
schitz constant andM ¼ maxfjaj; jbjg for regression tasks where the prediction value is in ½a; b�.

LI ETAL.: TOWARDS SAFE WEAKLYSUPERVISED LEARNING 3
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214 Moreover, since we have already maximized the perfor-
215 mance gain in the worst case, f̂ has already achieved the
216 maximal performance gain against f0. tu
217 According to Theorem 1, we can see that Eq. (1) is a reason-
218 able formulation for our purpose, that is, the derived optimal
219 solution f̂ from Eq. (1) often outperforms f0 and it would not
220 get anyworse than f 0. In comparison to previous studies in [9],
221 [18], [20], the formulation in Eq.(1) brings multiple advantages.
222 In contrast to [9] which requires that the ground-truth is one of
223 the base learners, the condition in Theorem 1 is looser and
224 morepractical. In contrast to [18],we explicitly consider tomax-
225 imize the performance gain over baseline in Eq. (1). In contrast
226 to [20] that focuses on regression, ourwork is readily applicable
227 for both regression and classification tasks.
228 Assume that the loss function ‘ð�; �Þ is h-Lipschitz, i.e.,
229 k‘ðf1; f2Þ � ‘ðf1; f 3Þk � hkf2 � f 3k1 for any f1, f 2; f 3 2 ½�1; 1�.
230 Most of commonly used loss functions satisfy this property,
231 and we summarize the h of commonly used loss func-
232 tions [21] in Table 2. Let b�b� ¼ ½b�

1; � � � ;b�
b � 2 M be the opti-

233 mal solution to the objective,

b�b� ¼ argmin
bb2M

‘
Xb
i¼1

bif i; f
�

 !
;

235235

236 and �� be the residual, i.e., �� ¼ f � �Pb
i¼1 b

�
i f i. We have the

237 following result,

238 Theorem 2. The performance gain of f̂ against f 0, i.e.,
239 ‘ðf 0; f �Þ � ‘ðf̂ ; f�Þ, has a lower-bound �2hjj��jj1.
240 Proof. Note that

Pb
i¼1 b

�
i f i 2 ff jPb

i¼1 aif i;aa 2 Mg. Accord-
241 ing to Theorem 1, we have

‘ f0;
Xb
i¼1

b�
i f i

 !
� ‘ f̂ ;

Xb
i¼1

b�i f i

 !
� 0:

243243

244 Since f� ¼Pb
i¼1 b

�
i f i þ ��,

j‘ðf̂ ; f�Þ � ‘ f̂ ;
Xb
i¼1

b�
i f i

 !
j � hjj��jj1:

246246

247 The inequality holds for the reason that the loss function
248 is h-Lipschitz continuous. Similarly, we have, j‘ðf0; f �Þ �
249 ‘ðf 0;

Pb
i¼1 b

�
i f iÞj � hjj��jj1, which means,

�hjj��jj1 � ‘ðf̂ ; f �Þ � ‘ f̂ ;
Xb
i¼1

b�
i f i

 !
� hjj��jj1

�hjj��jj1 � ‘ðf0; f�Þ � ‘ f0;
Xb
i¼1

b�
i f i

 !
� hjj��jj1:

251251

252 Using the above two inequalities,

‘ðf0; f�Þ � ‘ðf̂ ; f�Þ

� ‘ f0;
Xb
i¼1

b�
i f i

 !
� hjj��jj1

 !
� ‘ f̂

Xb
i¼1

b�i f i

 !
þ hjj��jj1

 !

� �2hjj��jj1:
254254

255The second inequality holds due to ‘ðf 0;
Pb

i¼1 b
�
i f iÞ�

256‘ðf̂ ;Pb
i¼1 b

�
i f iÞ � 0. tu

257Theorem 2 discloses that the worst-case performance is
258only related to the quality of base learners and has nothing
259to do with the quantity of base learners.
260It is worth mentioning that Theorem 1 only gives a suf-
261ficient condition for safeness, rather than necessary condi-
262tions. Similarly, Theorem 2 only gives the lower bound of
263performance, not the exact performance. In other words,
264even if the condition of Theorem 2 is not valid, our method
265can still achieve robust performance. Our experimental
266results clearly confirm this observation.

2673.2 Weight the Base Learners

268The question remained is that how to set up M which is
269assumed as a convex set in previous sections. We can sim-
270ply set M as a simplex, i.e., M ¼ faajPb

i¼1 ai ¼ 1;aa � 0g
271as [9], [10], [20], but this strategy is too conservative. Obvi-
272ously, the setup of M can be easily embedded with a vari-
273ety of prior knowledge. For example, suppose that base
274learner f i is more reliable than f j and the set of all such
275indexes ði; jÞ is denoted as S, M could be set to faajai � aj

276� 0; ði; jÞ 2 S;aa>1 ¼ 1;aa � 0g where 1 (0) refers to the all-
277one (all-zero) vector, respectively; suppose that the impor-
278tance values of base learners are known, denoted by
279fr1; . . . ; rbg, one could set up M as faaj � g � ai � ri �
280g; 8i ¼ 1; . . . ; b;aa>1 ¼ 1;aa � 0g where g is a small constant.
281All of these require precise prior knowledge. One could
282also set M via cross validation. However, that is time con-
283suming and in weakly supervised learning, labeled data is
284too few to afford a reliable cross validation. For this reason,
285we present a method that learns the weights of base learn-
286ers from data.

2873.3 Regression

288Let Creg be the b	 b covariance matrix of the b base
289learners ff1; . . . ; fbgwith elements

Creg
ij ¼ E½ðfiðXÞ � miÞ>ðfjðXÞ � mjÞ�;

291291

292where X refers to the set of unlabeled instances and
293mi ¼ E½fiðXÞ�. Let rrreg ¼ ½rreg1 ; . . . ; rregb � be the vector of cova-
294riances between the base learners and the ground-truth
295label assignment f�ðXÞ, i.e.,

r
reg
i ¼ E½ðf�ðXÞ � uÞ>ðfiðXÞ � miÞ�;

297297

298where u ¼ E½f�ðXÞ�. We minimize the residual w.r.t the
299ground-truth for aa as,

aa� ¼ argmin
aa

E½MSE
Xb
i¼1

aifiðXÞ; f�ðXÞ
 !

�; (2)

301301

302where MSE refers to the Mean Squared Error. Eq. (2) has a
303closed-form solution [22].

304Theorem 3. (Bates and Granger, 1969) The optimal weight aa�

305satisfies that

rrreg ¼ Crega�a�: 307307

308
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309 We need to estimate Creg and rr. For Creg, it is
310 evident that ðf i � miÞ>ðf j � mjÞ is an unbiased estimation
311 of Creg

ij . Therefore, one could easily have Ĉreg with
312 elements

Ĉreg
ij ¼ ðf i � miÞ>ðf j � mjÞ;

314314

315 be the unbiased estimation of Creg. For rr, the following
316 proposition shows that it is closely related to the perfor-
317 mance of base learners.

318 Proposition 1. Assume that ffiðXÞgi¼b
i¼1 is normalized to the

319 mean mi ¼ 0; 8i ¼ 1; . . .n and the standard deviation that
320 equals to 1. Consider mean squared error as the measurement,
321 we have, the bigger the value rregi , the smaller the loss of fi.

322 Proof. For rrreg, we have,

r
reg
i ¼ EðX;YÞ½ðf � � uÞ>ðf i � miÞ� ¼ E½ðf �Þ>f i�:

324324

325 For MSE, we have,

MSEðf i; f �Þ ¼ E½ðf� � f iÞ2�
¼ E½jjf �jj2 þ jjf ijj2 � 2ðf �Þ>f i�
¼ 2� 2E½ðf�Þ>f i�
¼ 2� 2rregi :

327327

328 Hence, the bigger the value r
reg
i , the smaller the mean

329 square loss of f i. tu
330 Therefore, we set M as faajĈregaa � 1d;aa>11 ¼ 1;aa � 0g,
331 where d is a constant, indicating that the base learners have
332 a low-bound performance (e.g., better than random-
333 guess) [18]. It is easy to verify thatM is a convex set.

334 3.4 Classification

335 Similar to regression tasks, let Cclf be the b	 bmatrix repre-
336 senting the agreement between base learners with elements
337 Cclf

ij ¼ E½fiðXÞ>fjðXÞ�. Let rrclf ¼ ½rclf1 ; rclf2 ; . . . ; rclfb � be the
338 vector that represents the agreement between the base
339 learner and the ground-truth,

r
clf
i ¼ E½f�ðXÞ>fiðXÞ�:

341341

342 Taking classification accuracy as the performance measure,
343 it can be shown that,

344 Theorem 4. The optimal weight aa� in classification satisfies that
345 rrclf ¼ Cclfa�a�.

346 Similarly, we set M as faajĈclfaa � 1d;aa>11 ¼ 1;aa � 0g
347 where Ĉclf is the unbiased estimation of Cclf , with elements
348 Ĉclf

ij ¼ f>i f j.M is also a convex set.
349 In summary, on one hand, our formulation is able to
350 directly absorb the precise prior knowledge about the
351 importance of learners if available. On the other hand, it is
352 also capable of incorporating with the estimation obtained
353 by covariance matrix analysis on regression and classifica-
354 tion tasks when the precise prior knowledge is unavailable.

355 4 OPTIMIZATION

356 Another question unclear in our formulation is that, how
357 can we derive the optimal solution of Eq.(1). Eq. (1) is the

358subtraction of two loss functions, which is often non-convex
359and not trivial to derive the global optima [23]. Fortunately,
360we find that for a class of commonly used convex loss func-
361tion, Eq. (1) could be equivalently rewritten as a convex
362optimization problem and thus the global optimal solution
363is achieved. We describe the optimization procedure for
364regression and classification respectively in this section.

3654.1 Regression

366For regression, we have the following theorem,

367Theorem 5. For regression, suppose ‘ð�;Pb
i¼1 aif iÞ is convex to

368aa and 8aa, and there exists f 2 Ru such that ‘ðf ;Pb
i¼1

369aif iÞ ¼ 0, then Eq.(1) is a convex optimization.

370We first give a lemma before proving Theorem 5.

371Lemma 1. Under the condition in Theorem 5, in optimality, the
372optimal solution f̂ and âa have the following relation, i.e.,
373‘ðf̂ ;Pb

i¼1 âif iÞ ¼ 0.

374Proof. Assume, to the contrary, ‘ðf̂ ;Pb
i¼1 âif iÞ 6¼ 0. Accord-

375ing to the condition, there exists ~f such that
376‘ð~f ;Pb

i¼1 âif iÞ ¼ 0. Obviously, 0 ¼ ‘ð~f ;Pb
i¼1 âif iÞ <

377‘ðf̂ ;Pb
i¼1 âif iÞ. Hence, f̂ is not optimal, a contradiction. tu

378We then prove Theorem 5.

379Proof. Because of Lemma 1, the form of Eq. (1) for regres-
380sion task is thus rewritten as,

min
aa2M

‘ f 0;
Xb
i¼1

aif i

 !
:

382382

383Remind that ‘ð�;Pb
i¼1 aif iÞ is convex to aa, therefore,

384Eq. (1) is a convex optimization. tu
385It is worth noting that the condition in Theorem 5 is rather
386mild. Many regression loss functions, for example, mean
387square loss, mean absolute loss [24] and mean �-insensitive
388loss [25], all satisfy such amild condition in Theorem5.
389Depending on Lemma 1 and Theorem 5, the formulation in
390Eq. (3) can be globally and efficiently addressed for regression.
391We adopt mean square loss (MSE) as an example to show the
392optimization procedure since MSE is one of the most popular
393loss functions for regression. With MSE, Eq. (1) can be written
394as the following equivalent formwhich only relates to aa.

min
aa2M

�����
Xb
i¼1

aif i � f0

�����
2

: (3)

396396

397It is evident that Eq. (3) turns out to be a simple convex qua-
398dratic program. Moreover, specifically, by expanding the
399quadratic form in Eq. (3), it can be rewritten as,

min
aa2M

aa>Faa� v>aa; (4)

401401

402where F 2 Rb	b is a linear kernel matrix of f i’s, i.e,
403Fij ¼ f>i f j and v ¼ ½2f>1 f 0; � � � ; 2f>b f 0�. Since F is positive
404semi-definite, Eq. (4) is a convex quadratic program [26]
405and can be efficiently addressed by off-the shelf optimiza-
406tion packages, such as the MOSEK package.1

1. https://www.mosek.com/resources/downloads
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407 After solving the optimal solution aa�, the optimal
408 f ¼Pb

i¼1 a
�
i f i is obtained. Algorithm 1 summarizes the

409 pseudo code of the proposed method for regression task.

410 Algorithm 1. Optimization Procedure for Regression

411 Input: multiple base learner predictions ff igbi¼1 and certain
412 direct supervised regression prediction f 0
413 Output: the learned prediction �f
414 1: Construct a linear kernel matrix F where Fij ¼ f>i f j,
415 81 � i; j � b
416 2: Derive a vector v ¼ ½2f>1 f0; . . .; 2f>b f 0�
417 3: Solve the convex quadratic optimization Eq.(4) and obtain
418 the optimal solution aa� ¼ ½a�

1; . . . ;a
�
b �

419 4: Return �f ¼Pb
i¼1 a

�
i f i

420 It is not hard to realize that Eq. (3) meets a geometric pro-
421 jection problem. Specifically, let V ¼ ff jPb

i¼1 aif i;aa 2 Mg,
422 Eq. (3) can be rewritten as,

�f ¼ argmin
f2V

kf � f 0k2; (5)

424424

425 which learns a projection of f 0 onto the convex set V.
426 Fig. 2 illustrates the intuition of our proposed method via
427 the viewpoint of geometric projection.
428 According to Pythagorean Theorem (theorem 2.4.1
429 in [27]), the distance between k�f � f�k should be smaller
430 than kf 0 � f�k if f � 2 V. Such an observation is consistent
431 with Theorem 1. The viewpoint of geometric projection pro-
432 vide an intuitive insight to help understand safe weakly
433 supervised learning.

434 4.2 Classification

435 Due to the noncontinuous feasible field of f , it could not
436 simply apply the lemma 1 in regression task to classifica-
437 tion. We now show that for the hinge loss, the optimal solu-
438 tion of Eq. (1) can be achieved. For the cross entropy loss, a
439 popular loss function, it can be solved by convex optimiza-
440 tion, which only needs a simple convex relaxation tech-
441 nique. Similar tricks could be possibly applicable for
442 additional convex classification losses.
443 We first have the following lemma,

444 Lemma 2. For classification task, the optimal f̂ and âa meet
445 the relation that f̂ ¼ signðPb

i¼1 âif iÞÞ where signðsÞ is the
446 sign of value s.

447Proof. Assume, to the contrary, f̂ 6¼ signðPb
i¼1 âif iÞ.

448According to the condition, there exist ~f such that
449~f ¼ signðPb

i¼1 âif iÞ. Obviously, ‘ð~f ;Pb
i¼1 âif iÞ < ‘ðf̂ ;

450
Pb

i¼1 âif iÞ. Hence, f̂ is not optimal, a contradiction. tu
451We then have the following theorem,

452Theorem 6. Suppose that f i 2 fþ1;�1gu, 8i ¼ 1; . . . ; b. Eq. (1)
453is a convex optimization when ‘ð�; �Þ is the hinge loss.
454Proof. With Lemma 2, Eq. (1) is thus rewritten as,

min
aa2M

‘ f0;
Xb
i¼1

aif i

 !
� ‘ sign

Xb
i¼1

aif i

 !
;
Xb
i¼1

aif i

 !
:

(6)
456456

457Since f i 2 fþ1;�1gu, 8i ¼ 1; . . . ; b and ‘ð�;Pb
i¼1 aif iÞ sat-

458isfies the linearity to predictive results, the form
459‘ðsignðPb

i¼1 aif iÞ;
Pb

i¼1 aif iÞ can be equivalently rewrit-
460ten as ‘ðkPb

i¼1 aif ik1Þ. Therefore, Eq.(6) is equal to,

min
aa2M

‘ f 0;
Xb
i¼1

aif i

 !
þ ‘

Xb
i¼1

aif i

�����
�����
1

 !
: (7)

462462

463Eq.(7) is convex and a linear program. Let ~f be
Pb

i¼1 aif i,
464then, Eq.(7) can be written as,

min
aa2M

‘ðf0;~fÞ þ ‘ðk~fk1Þ s.t. ~f ¼
Xb
i¼1

aif i: (8)

466466

467By introducing two auxiliary variables z ¼ j~f jþ~f
2 ;w ¼ j~f j�~f

2 ,
468then, Eq. (8) can be transformed into,

min
aa2M;z;w

‘ðf 0;~fÞ þ ‘ð1>ðzþwÞÞ

s.t. ~f ¼
Xb
i¼1

aif i

~f þ z�w ¼ 0; z � 0;w � 0;

(9)

470470

471Furthermore, the loss function ‘ð�;~fÞ is linear function to
472~f . Therefore, the objective and constraint are linear to
473aa; z;w, thus, Eq. (9) is a linear program. tu
474Eq. (9) can be globally addressed in an efficient manner
475via the MOSEK package as well. After solving the optimal
476solution aa�, the optimal f ¼Pb

i¼1 a
�
i f i is obtained. Algo-

477rithm 2 summarizes the pseudo code of the proposed
478method for classification task.

479Algorithm 2. Optimization Procedure for Classification

480Input: multiple base learner predictions ff igbi¼1 and certain
481direct supervised regression prediction f0
482Output: the learned prediction �f
4831: Let u equals to the length of f0
4842: Solve the linear optimization Eq.(9) and obtain the optimal
485solution aa� ¼ ½a�

1; . . . ;a
�
b �

4863: Return �f ¼Pb
i¼1 a

�
i f i

487We further show that convexity is also feasible for the
488cross entropy loss, a popular loss in deep neural net-
489work [28], via a slight convex relaxation. Let

Fig. 2. Intuition of our proposal via the projection viewpoint. Intuitively,
the proposal learns a projection of f 0 onto a convex feasible set V.
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‘̂ðpÞ ¼ lnðpÞ 0:5 4 p 4 1
lnð1� pÞ 0 4 p < 0:5

�
: (10)

491491

492 It is easy to show thatwhen ‘ð�; �Þ realizes the cross entropy loss,

�‘ sign
Xb
i¼1

aif i

 !
;
Xb
i¼1

aif i

 !
¼
Xu
j¼1

‘̂
Xb
i¼1

aif i

 !
j

0
@

1
A;

494494

495 where ððPb
i¼1 aif iÞjÞ refers to the jth element of ðPb

i¼1 aif iÞ.
496 Let

gðpÞ ¼ ð2 ln 2Þp� 2 ln 2 0:5 4 p 4 1
�ð2 ln 2Þp 0 4 p < 0:5:

�
(11)

498498

499 It is not hard to verify that gðpÞ realizes the convex hull, the

500 tightest convex relaxation of ‘̂ðpÞ.
501 Theorem 7. Let ~f ¼Pb

i¼1 aif i. Consider the optimization
502 problem,

min
aa

‘ðf0;~fÞ þ
Xu
j¼1

gð~fjÞ: (12)

504504

505 It can be shown that Eq. (12) is convex and the convex relaxa-
506 tion of Eq. (1) with the cross entropy loss.

507 Proof. According to Lemma 2, the optimal f leads to
508 signðPb

i¼1 aif iÞ, which consequently makes Eq. (1) to
509 equivalently write as

min
aa

‘ðf 0;~fÞ þ
Xu
j¼1

‘̂ð~fjÞ: (13)

511511

512 Remind that ‘ðf 0;~fÞ is the convex loss and gðpÞ is the
513 convex hull of ‘̂ðpÞ. We conclude that Eq. (12) is convex
514 and the convex relaxation of Eq. (1) with the cross
515 entropy loss. tu
516 Similarly, the optimal f ¼Pb

i¼1 a
�
i f i is obtained with the

517 optimal solution aa� of Eq. (12). Similar tricks could be
518 applied to cope with other convex classification losses.

519 5 RELATED WORK

520 Effectively exploiting weakly supervised data has been
521 attracted much attention from the past decade [2], [6], [7].
522 Many methods have been developed and there are some
523 discussions on the usefulness of weakly supervised data.
524 In semi-supervised learning, many methods have devel-
525 oped such as, generative model based approaches [29],
526 graph-based approaches [30], disagreement-based appr-
527 oaches [31] and semi-supervised SVMs [32]. In very recent,
528 efforts on safely using unlabeled data attract increasing atten-
529 tion. Li and Zhou [9] aimed to build safe semi-supervised
530 SVMs by optimizing the worst-case performance gain given
531 a set of candidate low-density separators, showing that the
532 proposal is probably safe given that low-density assumption
533 holds [4]. Balsubramani and Freund [18] learned a robust
534 prediction with the highest accuracy given that the ground-
535 truth label assignment is restricted to a specific candidate set.
536 Li, Kwok and Zhou [10] concerned to build a generic safe
537 semi-supervised classification framework for variants of per-
538 formance measures, e.g., AUC, F1 score, Topk precision.
539 However, these studies are restricted on semi-supervised

540classification, and the effort on semi-supervised regression
541has not been thoroughly studied.
542In domain adaptation, a number of methods have been
543developed, e.g., instances transfer based approaches [33], fea-
544ture representation transfer based approaches [34], parameter
545transfer based approaches [35], relational knowledge transfer
546based approaches [36]. However, there are few discussions
547on how to avoid negative transfer though it is regarded as
548an important issue in domain adaptation [5]. Rosenstein
549et al. [11] empirically showed that if two tasks are dissimilar,
550then brute-force transfer may hurt the performance of the tar-
551get task. Bakker andHeskes [14] presented a Bayesianmethod
552for joint prior distribution of multiple tasks and considered
553that some of the model parameters should be loosely con-
554nected among tasks. Argyriou et al. [12] considered situations
555that the representations should be different among different
556groups of tasks and tasks within a group are easier to perform
557domain adaptation. Ge et al. [13] assigned weight to source
558domains corresponding to the relatedness to the target
559domain and constructed the final target learner uses the
560weight to attenuate the effects of negative transfer.
561In multi-instance learning, many effective algorithms have
562been developed, e.g., density-based approaches [37], k-nearest
563neighbor based approaches [38], support vector machine
564based approaches [39], ensemble based approaches [40], ker-
565nel based approaches [41] and so on [6]. However, multi-
566instance learning methods have uncertainty and sometimes
567even worse than the simple supervised learning methods.
568Ray andCraven [42] compared the performance of MILmeth-
569ods against supervised methods on MIL. They found that in
570many cases, supervised yield the most competitive results
571and they also noted that, while some methods systematically
572dominate others, the performance of algorithms was applica-
573tion-dependent. Carbonneau et al. [43] studied the ability to
574identify witnesses (positive instances) of several MIL meth-
575ods. They found that being dependent on the nature of the
576data, some algorithm performs well while others would have
577difficulty. In this paper, we use the worst-case analysis to
578overcome the model uncertainty and learn a safe prediction.
579In label noise learning, many studies have been proposed,
580such as data cleaning approaches, probabilistic label noise tol-
581erant approaches, ensemble based approaches. There are also
582a number of studies indicating that label noise will seriously
583affect the learning performance [7], [15], [16], [44]. Consider-
584able efforts have been made to enable models to be robust to
585the presence of label noise. For example, in the aspect of theo-
586retical consideration, Manwani and Satry [45] studied the
587robustness of loss functions in the empirical riskminimization
588framework and disclosed that 0-1 loss function is noise toler-
589ant while the other loss functions are not naturally noisy toler-
590ant. In the aspect of practical consideration, ensemble
591methods, e.g., bagging and boosting are regarded to be robust
592to label noise [7] and bagging often achieves a better result
593than boosting in the presence of label noise [46].

5946 EXPERIMENTS

595In this section, comprehensive evaluations are performed to
596verify the effectiveness of the proposed.2 Experiments are

2. http://lamda.nju.edu.cn/code_SAFEW.ashx
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597 conducted on all the four aforementioned weakly super-
598 vised learning tasks: semi-supervised learning (Section 6.1),
599 domain adaptation (Section 6.2), multi-instance learning
600 (Section 6.3) and label noise learning (Section 6.4).

601 6.1 Semi-Supervised Learning

602 For semi-supervised learning, we do experiments on regres-
603 sion tasks with a broad range of datasets3 that cover diverse
604 domains including physical measurements (abalone), health
605 (bodyfat), economics (cadata), activity recognition (mpg), etc.
606 The sample size ranges from around 100 (pyrim) to more
607 than 20,000 (cadata).
608 We compare the performance of the proposed SAFEW
609 with the baseline method and three state-of-the-art semi-
610 supervised regression methods. a) Baseline k-NN method,
611 which is a direct supervised nearest neighbor algorithm
612 trained on the labeled data only. b) COREG [47]: a represen-
613 tative semi-supervised regression method based on co-
614 training [31]. This algorithm uses two k-nearest neighbor
615 regressors with different distance metrics, each of which
616 labels the unlabeled data for the other regressors where
617 the labeling confidence is estimated through consulting
618 the influence of the labeling of unlabeled examples on the
619 labeled ones. c) Self-kNN: Semi-supervised extension of the
620 supervised kNN method based on self-training [48]. It first
621 trains a supervised kNN method based on only labeled
622 instances, and then predict the label of unlabeled instances
623 After that, by adding the predicted labels on the unlabeled
624 data as ”ground-truth”, another supervised kNN method is
625 trained. This process is repeated until predictions on the
626 unlabeled data no longer change or a maximum number of
627 iteration achieves. d) Self-LS: Semi-supervised extension of
628 the supervised least square method [49] based on self-train-
629 ing, which is similar to Self-kNN except that the supervised
630 method is adapted to the least square regression. e) We also
631 compare with the voting method, which uniformly weights
632 multiple base learners. This approach is found promising in
633 practice [19]. f) We also report the results of the oracle
634 method: OpW (Optimal Weighting) that learns the optimal
635 weight according to the ground-truth which we cannot
636 obtain in real applications.
637 For the baseline 1NN method, the euclidean distance is
638 used to locate the nearest neighbor. For the Self-kNN
639 method, the euclidean distance is used and k is set to 3. The
640 maximum number of iteration is set to 5 and further increas-
641 ing it does not improve performance. For the Self-LS
642 method, the parameters related to the importance of the
643 labeled and unlabeled instances are set to 1 and 0.1, respec-
644 tively. For the COREG method, the parameters are set to
645 the recommended one in the package and the two distance
646 metrics are employed by the euclidean and Mahalanobis
647 distances. For the Voting method and the proposed SAFE-

648 Wmethod, 3 semi-supervised regressors are used where
649 one is from the Self-LS method and the other two are from
650 the Self-kNN methods employing the euclidean and the
651 Cosine distance, respectively. For the proposed SAFEW, the
652 parameter d is set by 5-fold cross validation from the range
653 ½0:5u; 0:7u�. In our experiments, all the features and labels
654 are normalized into [0,1]. For each data set, 5 and 10 labeled

655instances are randomly selected and the rest ones are unla-
656beled data. The experiment is repeated for 30 times, and the
657average performance (mean
std) on the unlabeled data is
658reported.
659Table 3 shows the Mean Square Error of the compared
660methods and the proposal on 5 and 10 labeled instances.
661We have the following observations from Table 3. i) Self-
662kNN generally improves the performance, however, it
663causes serious performance degradation in 2 cases. ii) Self-
664LS is not effective. One possible reason is the performance
665of supervised LS is not as good as that of kNN in our
666experimental data sets. iii) COREG achieves good perfor-
667mance, whereas it also will significantly decrease the per-
668formance in some cases. iv) The Voting method improves
669both the average performance of Self-kNN and Self-LS, but
670in 6 cases it significantly decreases the performance. v)
671The proposed method achieves significant improvement in
6726 and 7 cases, which are the most among all the compared
673methods on 5 and 10 labeled instances, respectively. It also
674obtains the best average performance. What is more
675important, it does not seriously reduce the performance.
676vi) The OpW method cannot achieve 0 error which means
677that the assumption in Theorem 1 is usually not satisfied,
678however, the proposal still achieves safe results. This
679observation demonstrates that SAFEW is robust to the
680assumption.
681Overall the proposal improves the safeness of semi-
682supervised learning, in addition, obtains highly competitive
683performance compared with state-of-the-art approaches.

6846.2 Domain Adaptation

685We conduct compared experiments for domain adapta-
686tion on two benchmark datasets,4 i.e., 20Newsgrous and
687Landmine. The 20Newsgroups dataset [50] contains 19,997
688documents and is partitioned into 20 different news-
689groups. Following the setup in [33], [51], we generate six
690different cross-domain data sets by utilizing its hierarchi-
691cal structure. Specifically, the learning task is defined as
692the top-category binary classification, where our goal is
693to classify documents into one of the top-categories. For
694each data set, two top-categories are chosen, one as posi-
695tive and another as negative. Then we select some sub-
696categories under the positive and negative classes respec-
697tively to form a domain. In this work, we use documents
698from four top-categories: Comp, Rec, Sci and Talk to gen-
699erate data sets.
700The Landmine dataset is a detection dataset which con-
701tains 29 domains and 9 features. The data from domain 1 to
702domain 5 are collected from a leafy area; the data from
703Domain 20 to domain 24 are collected from a sand area. We
704use the whole data from domain 1 to domain 5 as the source
705domain and the data from domain 20 to domain 24 as five
706target domains. For 20newsgroup, following [52], we ran-
707domly select 10 percent instances in the target domain as
708the labeled data and use 300 most important features as the
709representation. For Landmine, 5 percent instances in the tar-
710get domain are used as the labeled data.
711We compare the performance of the proposed SAFEW
712with the baseline method and 3 state-of-the-art domain

3. https://www.csie.ntu.edu.tw/�cjlin/libsvmtools/datasets/ 4. http://www.cse.ust.hk/TL/
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713 adaptation methods. a) Baseline supervised LR method,
714 which trains a supervised logistic regression model for the
715 labeled data in the target domain only. b) Baseline domain
716 adaptation method which simply combines the data in the
717 source and target domain together to train a supervised
718 model. c) MIDA (Maximum Independence Domain Adap-
719 tation) method [53], which is a feature-level transfer learn-
720 ing algorithm that learns a domain-invariant subspace
721 between the source domain and target domain, and trained
722 a supervised model on the learned subspace. d) TCA
723 (Transfer Component Analysis) method [54], which is also
724 a feature-level transfer learning algorithm, and achieves
725 success in many domain adaptation tasks. e) TrAdaBoost
726 method [33], which uses boosting [55] to select the most use-
727 ful data in the source domain and has been proved as a
728 powerful transfer learning method. f) The OpW method
729 that has been mentioned previously.
730 For MIDA and TCA, the kernel type is set to the linear
731 kernel and the dimension of the subspace is set to 30. For
732 MIDA, TCA and the Original method, Logistic Regression
733 model is employed as the supervised model on the feature
734 space. For TrAdaBoost, SVM is adopted as the base learner
735 and the number of iterations is set to 20. MIDA, TCA and
736 the Original method are used as our base learners. Parame-
737 ter d is set by 5-fold cross validation from the range
738 ½0:5u; 0:7u�. Experiments are repeated for 30 times and the
739 average accuracies on the unlabeled instances are reported.
740 Results are shown in Tables 4. We can see that, Original,
741 MIDA and TCA methods degenerate the performance in

742many cases, while SAFEW does not suffer such a deficiency.
743Moreover, in terms of average performance, SAFEW achieves
744the best result. Therefore, our proposal achieves highly
745competitive performance with compared methods while
746more importantly, unlike previous methods that will hurt
747performance in some cases, it does not degenerate the per-
748formance. Besides, the OpW method still cannot achieve
749100 percent accuracy which demonstrates that SAFEW is
750robust to the safeness assumption.

7516.3 Multi-Instance Learning

752For multi-instance learning task, we evaluate the proposed
753methods on five benchmark data sets popularly used in the
754studies of MIL, including Musk1, Musk2, Elephant, Fox, Tiger.5

755In addition, two commonly used MIL datasets, i.e., Birds [56]
756and SIVAL [57] are also being used in experiments.
757We compare the performance of the proposed SAFEWwith
7582 baseline methods and 5 state-of-the-art domain adaptation
759methods. a) Baseline SI-SVMmethod,which assigns the label
760of its bag to each instance. The classifier assigns a label to
761each instance. b) miSVM [39], which is a transductive SVM.
762Instances inherit their bag label. The SVM is trained and clas-
763sify each instance in the dataset. It is then retrained using the
764new label assignments. This procedure is repeated until the
765labels remain stable. c) C-kNN [38], which is an adaptation
766of kNN toMIL problems. The distance between the two bags
767is measured using the minimumHausdorff distance. C-kNN

TABLE 3
Mean Square Error (mean
std) for the Compared Methods and SAFEW Using 5 and 10 Labeled Instances

5 labeled instances

Dataset 1NN Self-kNN Self-LS COREG Voting OpW SAFEW

abalone .017 
 .007 .014 
 .003 .013 
 .004 .013 
 .003 .012 
 .003 .005 
 .001 .013 
 .003
bodyfat .024 
 .008 .025 
 .009 :054
 :016 .026 
 .008 :031
 :011 .018 
 .003 .025 
 .009
cadata .090 
 .031 .073 
 .023 .067 
 .022 .069 
 .028 .069 
 .022 .039 
 .014 .070 
 .023
cpusmall .027 
 .012 :031
 :008 :050
 :021 :031
 :009 .024 
 .006 .014 
 .003 .028 
 .009
eunite2001 .052 
 .017 .037 
 .015 .024 
 .012 .037 
 .011 .031 
 .013 .018 
 .005 .032 
 .010
housing .042 
 .007 .043 
 .009 :048
 :012 .041 
 .008 .042 
 .009 .024 
 .002 .041 
 .009
mg .071 
 .035 .057 
 .015 .053 
 .011 .054 
 .019 .054 
 .013 .028 
 .009 .053 
 .013
mpg .029 
 .012 .030 
 .012 :040
 :014 .031 
 .012 .031 
 .012 .016 
 .002 .030 
 .012
pyrim .032 
 .009 .027 
 .005 :063
 :012 .029 
 .011 .025 
 .007 .013 
 .002 .025 
 .005
space_ga .005 
 .002 .005 
 .003 :030
 :005 .004 
 .002 :008
 :002 .001 
 .000 .004 
 .002

Ave. Mse. .039 .034 .044 .033 .033 .020 .032

Win/Tie/Loss against 1NN 5/4/1 4/0/6 5/4/1 5/3/2 9/0/0 6/4/0

10 labeled instances

Dataset 1NN Self-kNN Self-LS COREG Voting OpW SAFEW

abalone .020 
 .010 .014 
 .005 .013 
 .004 .012 
 .003 .012 
 .003 .004 
 .001 .013 
 .005
bodyfat .019 
 .005 .019 
 .007 :041
 :013 .020 
 .006 :023
 :009 .010 
 .002 .018 
 .007
cadata .083 
 .029 .063 
 .012 .056 
 .007 .054 
 .010 .057 
 .009 .033 
 .011 .060 
 .013
cpusmall .024 
 .012 :027
 :008 :042
 :004 :028
 :008 .020 
 .005 .012 
 .003 .025 
 .008
eunite2001 .044 
 .014 .037 
 .013 .020 
 .006 .031 
 .009 .029 
 .009 .017 
 .002 .029 
 .007
housing .039 
 .010 .036 
 .009 .036 
 .009 .035 
 .005 .034 
 .008 .021 
 .003 .035 
 .009
mg .062 
 .019 .046 
 .015 .048 
 .011 .045 
 .015 .043 
 .014 .024 
 .004 .045 
 .014
mpg .022 
 .007 .020 
 .006 :030
 :014 .021 
 .007 .021 
 .008 .011 
 .001 .020 
 .006
pyrim .023 
 .006 .021 
 .005 :052
 :014 .022 
 .006 .020 
 .007 .009 
 .001 .020 
 .006
space_ga .004 
 .001 .003 
 .001 :028
 :002 .003 
 .001 :006
 :001 .000 
 .000 .003 
 .001

Ave. Mse. .034 .029 .037 .027 .026 .016 .027

Win/Tie/Loss against 1NN 6/3/1 4/1/5 6/3/1 7/1/2 9/0/0 7/3/0

For the compared methods, if the performance is significantly better/worse than the baseline method LR, the corresponding entries are then bolded/boxed. The average per-
formance is listed for comparison. The win/tie/loss counts against the baseline method are summarized and themethod with the smallest number of losses is bolded.

5. http://www.uco.es/grupos/kdis/momil/
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768 relies on a two-level voting scheme. This algorithm was
769 widely used in instance classification [58]. d) CCE [59], which
770 is based on clustering and classifier ensembles. At first, the
771 feature space is clustered using a fixed number of clusters.
772 The bags are represented as binary vectors in which each bit
773 corresponds to a cluster. The binary codes are utilized to
774 train one of the classifiers in the ensemble. e)MIBoosting [60]:
775 This method is essentially the same as the gradient boosting
776 except that the loss function is based on bag classification
777 error. The instance is classified individually and their labels
778 are combined to obtain bag labels. f) mi-Graph [41]: This
779 method represents each bag by a graph in which instances
780 correspond to nodes. Cliques are identified in the graph to
781 adjust the instances weight. Instances belonging to larger cli-
782 ques have lower weight so that every concept present in the
783 bag is equally represented when instances are averaged. A
784 graph kernel captures the similarity between bags and is
785 used in an SVM. g) We also compare with the Voting
786 method, which uniformlyweightmultiple base learners.
787 For Birds and SIVAL, we adopt the Brown Creeper and
788 Apple as the target class, respectively. For C-kNN, we set refs
789 = 1 and citers = 5. For SI-SVM andmi-SVM,we adopt Libsvm
790 as the implementation and use the RBF kernel. For CCE,
791 MIBoosting, and miGraph, we set all the parameters as the
792 recommended one. For the Voting method and SAFEW, we
793 adopt SI-SVM, mi-SVM, C-kNN and mi-Graph as the base
794 learners. The parameter d is set by 5-fold cross validation
795 from the range [0.3u, 0.8u]. Experiment for each dataset is
796 repeated for 10 times and the average accuracy is reported.
797 Table 5 shows the accuracy of compared methods and the
798 proposal on 7 datasets. From the results, we can see that,
799 CCE, C-kNN, and MIBoosting degenerate the performance
800 inmany cases, while SAFEWdoes not suffer such a deficiency.
801 miGraph achieves the best average performance, but the pro-
802 posed SAFEW achieves the smallest number of losses against
803 the baseline method. Besides, compared with the naive
804 ensemble methods, SAFEW also achieves better performance.
805 This validates the effectiveness of SAFEW.

8066.4 Label Noise Learning

807We conduct experimental comparison for label noise learn-
808ing on a number of frequently-used classification datasets,6

809i.e., Australian, Breast-Cancer, Diabetes, Digit1, Heart, Iono-
810sphere, Splice and USPS. For each data set, 80 percent of
811instances are used for training and the rest are used for test-
812ing. In the training set, 70 percent of instances are randomly
813selected as the noisy or weakly labeled data and the rest
814ones are high-quality labeled data. For the noisy labeled
815data, their labels are randomly reversed with a probability
816p% where p ranges from 10 percent to 40 percent with an
817interval 10 percent.
818We compare the performance of the proposed SAFEW
819with the following methods. a) Baseline Sup-SVM method,
820which is a supervised SVM trained on only high-quality
821labeled data. b) Bagging, which is regarded as to be robust
822with label noisy [7]. c) rLR (Robust Logistic Regression) [61],
823that enhances the logistic regression model to handle label
824noise. d) 3 classic classification methods: SVM, LR (Logistic
825Regression), k-NN with regardless of label noise. For LR,
826the glmfit function in Matlab is used. For k-NN method, k is
827set to 3. For Sup-SVM and SVM method, Libsvm pack-
828age [62] is adopted and the kernel is set to RBF kernel. For
829Bagging method, we adopt the decision tree as the base
830learner. For rLR method, the parameter is set to the recom-
831mended one. For SAFEW, LR, SVM, and k-NN are invoked
832as base learners and parameter d is set by 5-fold cross vali-
833dation from the range ½0:5u; 0:7u�. Experiments are repeated
834for 30 times, and the average classification accuracy is
835reported.
836Fig. 3 shows how the performance varies with the
837increase of noisy data. From Fig. 3 we can have the follow-
838ing observations. i) As the noise ratio increases, the accura-
839cies of compared methods generally decrease; ii) Compared
840with the baseline method, all the compared methods

TABLE 4
Classification Accuracy (mean 
 std) of Domain Adaptation Task for the Compared Methods

and SAFEW on 20newsgroup and Landmine Datasets

20newsgroup

Dataset LR Original MIDA TCA TrAdaBoost Voting OpW SAFEW

Comp vs Rec .703 
 .009 .749 
 .014 .796 
 .020 .794 
 .016 .808 
 .016 .796 
 .014 .889 
 .010 .796 
 .017
Comp vs Sci .823 
 .066 :799
 :019 .895 
 .019 .826 
 .017 .858 
 .020 .855 
 .024 .924 
 .019 .893 
 .021
Comp vs Talk .842 
 .069 :802
 :018 :823
 :016 .843 
 .011 :825
 :014 :823
 :017 .893 
 .015 .845 
 .016
Sci vs Talk .729 
 .105 .710 
 .012 .746 
 .016 :702
 :009 .717 
 .021 .729 
 .043 .824 
 .010 .747 
 .015
Rec vs Sci .801 
 .076 :775
 :016 .803 
 .015 .844 
 .012 .802 
 .015 .814 
 .024 .901 
 .015 .844 
 .016
Rec vs Talk .828 
 .045 .828 
 .012 .857 
 .011 .858 
 .013 .842 
 .011 .857 
 .012 .913 
 .012 .858 
 .011

Average .787 .777 .820 .811 .808 .807 .891 .831

Win/Tie/Loss against LR 1/2/3 4/1/1 3/2/1 3/2/1 3/2/1 6/0/0 5/1/0

Landmine

Domain-20 .922 
 .017 .924 
 .003 .927 
 .004 .926 
 .005 .918 
 .003 .924 
 .004 .963 
 .003 .927 
 .004
Domain-21 .936 
 .010 :931
 :005 .938 
 .005 :930
 :005 :926
 :003 .935 
 .006 .977 
 .004 .940 
 .004
Domain-22 .959 
 .005 .956 
 .004 :951
 :007 .965 
 .002 :910
 :003 .960 
 .004 .994 
 .002 .965 
 .002
Domain-23 .936 
 .010 :931
 :004 .942 
 .005 :931
 :005 .963 
 .004 .947 
 .003 .981 
 .003 .943 
 .004
Domain-24 .954 
 .005 .952 
 .003 :945
 :003 :943
 :003 .954 
 .003 .953 
 .002 .989 
 .003 .955 
 .002

Average .941 .939 .941 .939 .934 .943 .981 .946

Win/Tie/Loss against LR 0/3/2 2/1/2 1/1/3 1/2/2 1/4/0 5/0/0 3/2/0

6. https://www.csie.ntu.edu.tw/�cjlin/libsvmtools/datasets/
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841 perform worse than Sup-SVM in many cases, especially
842 when the noise ratio becomes larger, while our proposed
843 SAFEW does not suffer from such deficiency. iii) The pro-
844 posed SAFEW achieves best average performance.
845 Overall, our proposal achieves highly competitive per-
846 formance compared with state-of-the-art label noise learn-
847 ing methods and never performs worse than the baseline
848 Sup-SVM method. These demonstrate the effectiveness of
849 the SAFEWmethod.

850 7 CONCLUSION

851 In this paper, we study safe weakly supervised learning
852 that will not hurt performance with the use of weakly
853 supervised data. This problem is crucial whereas has not
854 been extensively studied. Based on our preliminary
855 work [20], [63], in this paper we present a scheme to
856 derive a safe prediction by integrating multiple weakly
857 supervised learners. The resultant formulation has a
858 safeness guarantee for many commonly used convex loss
859 functions in classification and regression. Besides, it is
860 capable of involving prior knowledge about the weight
861 of base learners. Further, it can be globally solved effi-
862 ciently and extensive experiments validate the effective-
863 ness of our proposed algorithms. In future, it is
864 necessary to study safe weakly supervised learning with
865 adversarial examples.
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