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Abstract

In many real applications, especially those involving data ob-
jects with complicated semantics, it is generally desirable to
discover the relation between patterns in the input space and
labels corresponding to different semantics in the output s-
pace. This task becomes feasible with MIML (Multi-Instance
Multi-Label learning), a recently developed learning frame-
work, where each data object is represented by multiple in-
stances and is allowed to be associated with multiple labels
simultaneously. In this paper, we propose KISAR, an MIM-
L algorithm that is able to discover what instances trigger
what labels. By considering the fact that highly relevant la-
bels usually share some patterns, we develop a convex opti-
mization formulation and provide an alternating optimization
solution. Experiments show that KISAR is able to discover
reasonable relations between input patterns and output label-
s, and achieves performances that are highly competitive with
many state-of-the-art MIML algorithms.

Introduction
In many real applications, especially in applications involv-
ing data objects with complicated semantics, besides achiev-
ing a high performance for prediction, it is usually desirable
to discover the relation between the input patterns and out-
put labels because it is helpful to understand the semantic
formations and may lead to advanced technical designs. For
example, in text applications, the discovery of relations be-
tween words and topics may help improve the performance
of question answering systems (Voorhees 2003); in image
applications, the discovery of relations between segmented
regions and tags may help improve the ability of recognizing
human movements (Gavrila 1999); in audio applications, the
discovery of relations between voices and persons may help
expand applicability of hands-free computing (Omologo et
al. 1998); furthermore, in video applications, the discovery
of relations between flames and annotations may help design
more effective tracking systems (Lipton et al. 1998).

There lacks a general learning framework for this pur-
pose for a long time. For instance, in traditional super-
vised learning, each pattern is related to only one class label
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Figure 1: Illustration of the MIML framework (Zhou et al.
2012; Zhou and Zhang 2006).

which generally corresponds to a singe semantic; in multi-
label learning, although different semantics can be encoded
by multiple class labels, they are always triggered by the i-
dentical single input pattern. Recently, Zhou et al. (2012;
2006) proposed MIML (Multi-Instance Multi-Label learn-
ing), a new learning framework where each data object is
represented by multiple instances and is allowed to be as-
sociated with multiple labels simultaneously. As illustrated
in Figure 1, MIML explicitly considers patterns in the in-
put space and labels corresponding to different semantics in
the output space, and thus, it enables to discover the relation
between input patterns and output labels.

During the past few years, many MIML algorithms have
been developed (Zhou and Zhang 2006; Zha et al. 2008;
Zhang and Zhou 2009; Jin et al. 2009; Yang et al. 2009;
Nguyen 2010; Luo and Orabona 2010; Zhou et al. 2012). To
name a few, Zhou and Zhang (2006) proposed MIMLSVM
by degenerating MIML to single-instance multi-label learn-
ing and MIMLBOOST by degenerating MIML to multi-
instance single-label learning. Zha et al. (2008) proposed
an MIML algorithm based on hidden conditional random
field. Yang et al. (2009) formulated MIML as a probabilis-
tic generative model. MIML nearest neighbor and neural
network algorithms have been presented in (Zhang 2010;
Zhang and Wang 2009), and MIML metric learning has
been studied in (Jin et al. 2009). It is noteworthy that
most previous studies focused on improving generalization,
whereas few considers the potential of MIML in discovering
the pattern-label relations although the possibility has been
pointed out by (Zhou et al. 2012).

In this paper, we propose KISAR (Key Instances Sharing
Among Related labels). We consider that a certain label is



associated to a bag of instances because there are some in-
stances, rather than all the instances in the bag, triggering
this label; we refer to these instances as key instances for the
label. We also consider that highly relevant labels generally
share some key instances. Thus, a two-stage approach is de-
veloped. We first study a mapping from a bag of instances
to a feature vector, where each feature value measures the
degree of the bag being associated to a group of similar in-
stances. Sparse predictors are then employed for labels to se-
lect key groups of instances and consequently key instances.
The task is formulated as a convex optimization problem and
an alternating optimization solution is provided. Experimen-
tal results show that KISAR is able to discover reasonable
relations between input patterns and output labels, as well
as achieve predictive performances highly competitive with
many state-of-the-art MIML algorithms.

In the following we start by presenting KISAR, and then
report experimental results before the conclusion.

The KISAR Approach
In MIML, each example is a bag of instances and associated
with multiple class labels. Formally, we are given a set of
training examples D = {Bi, Yi}ni=1, where Bi = {xi,j}mi

j=1

is a bag containing mi instances, Yi = [yi,1, . . . , yi,T ] ∈
{±1}T is the label vector of bag Bi, yi,t = +1 indicates
that the label t is proper for the bag Bi, n is the number of
training examples and T is the total number of class labels.
The goal is to predict all proper labels for any unseen bag,
noticing that the number of proper labels is unknown. Math-
ematically, letX andY be the space of x and y, then the goal
is to learn a decision function F : 2X → 2Y based on D.

To discover the instance-label relations, we consider a
mapping from a bag of instances to a feature vector :

ϕ(B) = [sim(B, c1), . . . , sim(B, cd)], (1)

where c1, . . . , cd are d prototypes of all the instances, and
sim is a similarity function. The larger the value of
sim(B, cp) (∀p ∈ {1, · · · , d}), the more similar the bags
B and cp. With this mapping, a bag is represented by a
traditional single feature vector and thus, classical super-
vised learning algorithms are readily applicable. In particu-
lar, when supervised learning algorithms are used to select
the key prototypes, they may also be capable of identifying
the key instances since each prototype generally correspond-
s to a group of similar instances. In other words, with such
a mapping, the task of identifying key instances is alleviated
by a simpler task of identifying key prototypes.

To instantiate the mapping, in this paper we set the proto-
types as cluster centers via k-means and the similarity func-
tion as Gaussian distance which is naturally normalized, i.e.,
sim(B, c) = minx∈B exp(−∥x−c∥2

2

δ ) where δ is fixed to be
the average distance between the instances in one cluster.
A similar process has been used in (Zhou and Zhang 2007;
Zhou et al. 2012). Notice that other implementations are al-
so possible. For example, in MILES (Chen et al. 2006), all
the instances are viewed as prototypes and then the similar-
ity is calculated via most-likely-cause estimator (Maron and
Lozano-Pérez 1998); in DD-SVM (Chen and Wang 2004),

non-convex Diversity-Density (DD) algorithm (Maron and
Lozano-Pérez 1998) is executed for multiple times, the mul-
tiple local maximal solutions are recorded as the prototypes,
and finally the minimal Euclidean distance is used for the
similarity function.

A Convex Formulation
One direct approach to identify the key instances is to treat
the labels in an independent manner. Such an approach,
however, ignores the fact that highly relevant labels usually
share common key instances, and thus leading to suboptimal
performances. By contrast, in the following we explicitly
take label correlations into account.

Let G ∈ [0, 1]T×T denote a label relation matrix, i.e.,
Gt,t̂ = 1 means that labels t and t̂ are related and 0 oth-
erwise1. The direct approach can be viewed as a special
case by initializing G as an identity matrix. Consider a
decision function F = [f1, . . . , fT ], where each ft corre-
sponds to a single label. Without loss of generality, suppose
that each ft is a linear model, i.e., ft = w′

tϕ(B) where
wt = [wt,1, . . . , wt,d] ∈ Rd×1 is the linear predictor and
w′

t denotes the transpose of wt. Then our goal is to find
wt’s such that the following functional is minimized,

min
W=[w1,...,wT ]

γ
n∑

i=1

T∑
t=1

ℓ(yi,t,w
′
tϕ(Bi)) + Ω(W, G), (2)

where ℓ is a convex loss function, e.g., the hinge loss
ℓ(yi,t,w

′
tϕ(Bi)) = max{0, 1 − yi,tw

′
tϕ(Bi)} used in this

paper, Ω(W, G) is a regularization term that characterizes
the consistency between the predictors W and label relation
matrix G, and γ is a parameter trading-off the empirical loss
and model regularization.

Let w(t,t̂) denote [wt,wt̂] for any related-label pair (t, t̂).
The assumption of common key instances implies that many
rows of w(t,t̂) are identically equal to zero, i.e., these
corresponding prototypes are not useful for both labels t
and t̂. Notice that the number of non-zero rows in ma-
trix w(t,t̂) is computed by ∥w(t,t̂)∥2,0 where ∥wt,t̂∥2,0 =

|
√
w2

t,1 + w2
t̂,1
, . . . ,

√
w2

t,d + w2
t̂,d
|0. This motivates the

definition of Ω(W, G) as
∑

1≤t,t̂≤T Gt,t̂∥w(t,t̂)∥22,0, and
therefore Eq. 2 can be rewritten as

min
W

γ

n∑
i=1

T∑
t=1

ℓ(yi,t,w
′
tϕ(Bi))+

∑
1≤t,t̂≤T

Gt,t̂∥w
(t,t̂)∥22,0. (3)

Here the entries of G can be viewed as multiple regulariza-
tion parameters controlling the sparsity of each label pair;
the larger the Gt,t̂ value, the sparser the w(t,t̂).

The optimization problem in Eq.3, however, is non-
continuous and non-convex. With the popular and widely-
accepted convex relaxation approach, we can replace the
non-continuous and non-convex term ∥w(t,t̂)∥2,0 with a

1Here G can be extended to a weighted label relation matrix.



tight convex function, e.g., L2,1 norm ∥w(t,t̂)∥2,1, i.e.,

min
W

γ

n∑
i=1

T∑
t=1

ℓ(yi,t,w
′
tϕ(Bi))+

∑
1≤t,t̂≤T

Gt,t̂∥w
(t,t̂)∥22,1. (4)

In (Donoho 2006) and references therein, it has been indicat-
ed that L1 norm is a tight relaxation to L0 norm, i.e., under
some mild conditions of the loss function, the solution of L1

relaxation could be equivalent to that of L0 problem. It is
noteworthy that the form in Eq.4 can be viewed as an exten-
sion to the common feature learning of multi-task learning
(Argyriou et al. 2008) but with a different purpose. Specifi-
cally, different to (Argyriou et al. 2008) which assumes that
all the tasks share the same common features, here we con-
sider a more flexible way that the common features shared
by different related-labels can be different; moreover, they
were in the setting of multi-task learning whereas we are
working on discovering pattern-label relation in MIML.

Alternating Optimization Solution
It appears that state-of-the-art convex optimization tech-
niques can be readily applied to solve the convex problem in
Eq.4. Due to the non-smoothness of the L2,1 term, however,
Eq.4 is challenging to solve in an efficient manner. To tack-
le this difficulty, two efficient approaches have been devel-
oped. One is alternating optimization algorithm (Argyriou
et al. 2008) which first rewrites the L2,1 term as a jointly-
convex function of W with additional variables λ, and then
optimizes W and λ iteratively until convergence. Another
approach is based on accelerated gradient algorithms (Liu et
al. 2009; Ji and Ye 2009) using optimal first-order method
(Nesterov and Nesterov 2004). It can be shown that accel-
erated gradient algorithms achieve the optimal convergence
rate, i.e., O(1/s2) where s is the number of iterations; more-
over, the computational cost of each step is only related to
an Educlidean projection that is also efficient. All these nice
properties, however, only hold for functions containing a s-
ingle L2,1 term, obviously not the case in Eq.4, where there
are usually multiple L2,1 terms in the objective. Alternative-
ly, in the following we show that the alternating optimization
algorithm does not suffer from this issue and can be adapted
to solve Eq.4. We first introduce a theorem.
Theorem 1 (Argyriou et al. 2008) Use the convention that
x
0 = 0 if x = 0 and∞ otherwise. Then we have,

∥w(t,t̂)∥22,1 = min
λ(t,t̂)∈M

(⟨wt, D
+
t,t̂
wt⟩+ ⟨wt̂, D

+
t,t̂
wt̂⟩)

where M = {λ|λi ≥ 0,
∑d

i=1 λi ≤ 1}, Dt,t̂ =

Diag(λ(t,t̂)), D+
t,t̂

denotes the pseudoinverse of Dt,t̂. Here
⟨, ⟩ denotes the inner product.

According to Theorem 1, Eq.4 can be rewritten as:

min
W

min
{λ(t,t̂)}T

t,t̂=1

γ
n∑

i=1

T∑
t=1

ℓ(yi,t,w
′
tϕ(Bi)) +

∑
1≤t,t̂≤T

Gt,t̂(
⟨wt, D

+
t,t̂
wt⟩+ ⟨wt̂, D

+
t,t̂
wt̂⟩+ ϵD+

t,t̂

)
s.t. λ(t,t̂) ∈M. (5)

Algorithm 1 The KISAR algorithm
Input: {Bi, Yi}ni=1, G, d, γ
Output: Predictors W

1: Perform clustering, e.g., k-means, on all the instances
and obtain the mapping Φ(B) according to Eq.1.

2: Set λ(t,t̂)
i = 1/d,∀i = 1, . . . , d, 1 ≤ t, t̂ ≤ T .

3: Repeat until convergence:
a) Fix {λ(t,t̂)}T

t,t̂=1
, W← solving Eq.6;

b) Fix W, {λ(t,t̂)}T
t,t̂=1

← solving Eq.8.

Here, a small constant ϵ (e.g., 10−3 in our experiments) is
introduced to ensure the convergence (Argyriou et al. 2008).

Corollary 1 Eq.5 is jointly-convex for both W and
{λ(t,t̂)}T

t,t̂=1
}.

Proof. The key is to show ⟨wt, D
+
t,t̂
wt⟩ is jointly-convex

for wt and λ(t,t̂), whereas the proof can be found in (Boyd
and Vandenberghe 2004). �

With Corollary 1 and according to (Bezdek and Hath-
away 2003; Argyriou et al. 2008), alternating minimization
algorithm can be applied to achieve a global solution of
Eq.5. Specifically, when {λ(t,t̂)}T

t,t̂=1
is fixed, notice that

all wt’s in Eq.5 are decoupled and thus W can be solved
via multiple independent quadratic programming (QP)
subproblems, i.e.,

min
wt

γ
n∑

i=1

ℓ(yi,t,w
′
tϕ(Bi))+⟨wt,

∑
1≤t̂≤T

Gt,t̂D
+
t,t̂
wt⟩, ∀t. (6)

Let UΛU′ be the singular value decomposition (SVD) of∑
1≤t̂≤T Gt,t̂D

+
t,t̂

. Denote w̄t = UΛ1/2wt and ϕ̄(B) =

UΛ−1/2ϕ(B), and thus Eq.6 can be rewritten as:

min
wt

γ
∑n

i=1
ℓ(yi,t, w̄

′
tϕ̄(Bi)) + ⟨w̄t, w̄t⟩, ∀t, (7)

which is a standard SVM problem and thus Eq.7 can be ad-
dressed by state-of-the-art SVM solvers like LIBSVM (H-
sieh et al. 2008) using SMO algorithm in an efficient man-
ner. When W is fixed, according to (Argyriou et al. 2008),
{λ(t,t̂)}T

t,t̂=1
can be solved via a closed-form solution, i.e.,

λ(t,t̂) = [

√
w2

t,1 + w2
t̂,1

+ ϵ

Z
, . . . ,

√
w2

t,d + w2
t̂,d

+ ϵ

Z
], (8)

where Z = ∥w(t,t̂)∥2,1+ dϵ. The above procedures are exe-
cuted iteratively until convergence. Algorithm 1 summarizes
the KISAR algorithm.

Experiments
In this section, we first compare KISAR with state-of-the-art
MIML algorithms on benchmark data sets. Then we evalu-
ate KISAR on a real-world image annotation task. Finally,
we study the pattern-label relations discovered by KISAR .



Four MIML algorithms are evaluated in the comparison:
MIMLSVM (Zhou and Zhang 2006), MIMLBOOST (Zhou
and Zhang 2006), MIMLKNN (Zhang 2010) and MIML-
RBF (Zhang and Wang 2009). The codes of these algo-
rithms are shared by their authors. In addition, to examine
the label relations, KISAR is further compared with its two
variants: KISARMINUS, a degenerated algorithm of KISAR
which does not consider label relations (i.e., the label rela-
tion matrix G is set to the identity matrix), and KISARALL,
which considers all pairs of label relations (i.e., G is set to
the all-one matrix).

The compared MIML algorithms are set to the best pa-
rameters reported in the papers (Zhou and Zhang 2006;
Zhang 2010; Zhang and Wang 2009). Specifically, for
MIMLSVM, Gaussian kernel with width 0.2 is used and the
number of clusters is set to 20% of the training bags; for
MIMLKNN, the number of nearest neighbors and the num-
ber of citers are set to 10 and 20, respectively; for MIML-
RBF, the fraction and scaling factors are set to 0.1 and 0.6,
respectively. Due to the computational load of MIML-
BOOST, the results of MIMLBOOST reported in (Zhou and
Zhang 2006; Zhang and Wang 2009) are directly listed for
comparison. As for KISAR and its two variants, the number
of cluster d is fixed to 50% of the training bags and the pa-
rameter γ is selected from {10−2, . . . , 103} by 10-fold cross
validation on training sets.

The performances are evaluated with five popular multi-
label measurements, i.e., hamming loss (h.l.), one error
(o.e.), coverage (co.), ranking loss (r.l.) and average preci-
sion (a.p.). Detailed descriptions about these measurements
can be found in (Zhou et al. 2012; Schapire and Singer
2000).

Performance Comparison on MIML Benchmark
Text Categorization The MIML benchmark data set of
text categorization is collected from the Reuters-21578 col-
lection (Sebastiani 2002). In this data set, the seven most
frequent categories are considered. There are 2, 000 docu-
ments in total, where around 15% documents are with mul-
tiple labels and the average number of labels per document
is 1.15 ± 0.37. Each document is represented by a bag of
instances by means of the sliding windows techniques (An-
drews et al. 2003), where each instance corresponds to a text
segment enclosed in a sliding window of size 50 (overlapped
with 25 words). Each instance in the bags is represented as a
243-dimensional feature vector using the Bag-of-Words rep-
resentation according to term frequency (Sebastiani 2002).
The data set is publicly available.2 For KISAR, without fur-
ther domain knowledge, the entries of label relation matrix
G is set to the concurrence of positive bags, i.e.,

Gt,t̂ = I(
∑n

i=1
I(yi,t = 1)I(yi,t̂ = 1) > θ).

Here, I is the identity function and θ is a threshold
picked from {2−3θ0, . . . , 2

3θ0} where θ0 denotes the av-
erage concurrence between all label pairs, i.e., θ0 =∑

1≤t,t̂≤T

∑n
i=1 I(yi,t = 1)I(yi,t̂ = 1)/T 2. Five times ten-

fold cross-validation (i.e., we repeat 10-fold cross validation
2
http://lamda.nju.edu.cn/datacode/miml-text-data.htm

Table 1: Performance comparison (mean±std.) on text da-
ta set. The best performance (paired t-tests at 95% signifi-
cance level) and its comparable results are bolded. The ↓(↑)
implies the smaller (larger), the better.

Algo Evaluation Metric

h.l.↓ o.e.↓ co.↓ r.l.↓ a.p.↑

KISAR 0.032 0.061 0.278 0.019 0.963
±0.005 ±0.018 ±0.045 ±0.006 ±0.010

KISAR 0.038 0.075 0.311 0.024 0.952
MINUS ±0.005 ±0.019 ±0.043 ±0.007 ±0.011
KISAR 0.069 0.123 0.403 0.040 0.924
ALL ±0.000 ±0.003 ±0.006 ±0.001 ±0.02
MIML 0.044 0.105 0.373 0.034 0.934
SVM ±0.006 ±0.024 ±0.054 ±0.008 ±0.014
MIML 0.063 0.124 0.489 0.051 0.917
KNN ±0.008 ±0.024 ±0.071 ±0.010 ±0.014
MIML 0.061 0.123 0.418 0.042 0.924
RBF ±0.008 ±0.024 ±0.071 ±0.010 ±0.017
MIML 0.053 0.107 0.417 0.039 0.930
BOOST ±0.009 ±0.022 ±0.047 ±0.007 ±0.012

for five times with different random data partitions) are con-
ducted and the average performances are recorded.

Table 1 shows that KISAR obtains the best performance
on all the measurements (the results of MIMLBOOST are
from (Zhang and Wang 2009)). Paired t-tests at 95% sig-
nificance level indicate that KISAR is significantly better
than its two variants as well as MIMLSVM, MIMLKNN
and MIMLRBF on all the five measurements.

Scene Classification The MIML benchmark data set of
scene classification contains 2, 000 natural scene images
with each image manually assigned by multiple labels from
all possible class labels: desert, mountains, sea, sunset and
trees. Over 22% of these images belong to more than one
class and the average number of labels for each image is
1.24± 0.44. Each image is represented by a bag of nine 15-
dimensional instances using the SBN image bag generator
(Maron and Ratan 1998), where each instance corresponds
to an image patch. The data set is publicly available.3 With-
out further domain knowledge, the label relation matrix used
in KISAR is set as the same as that in text categorization.
Five times ten-fold cross-validation are conducted and aver-
age performances are recorded for comparison.

Table 2 shows that KISAR achieves the best perfor-
mance on all measurements (the results of MIMLBOOST
are from (Zhou and Zhang 2006)). Paired t-tests at 95%
significance level indicate that KISAR is significantly bet-
ter than its two variants as well as MIMLSVM, MIMLKNN
and MIMLRBF on all the five measurements.

Performance Comparison on Image Annotation
In this experiments, a subset of the MSRA-MM database (Li
et al. 2009a) of Microsoft Research Asia is used. All the la-

3
http://lamda.nju.edu.cn/datacode/miml-image-data.htm



Table 2: Performance comparison (mean±std.) on scene
data set. The best performance (paired t-tests at 95% signifi-
cance level) and its comparable results are bolded. The ↓(↑)
implies the smaller (larger), the better.

Algo Evaluation Metric

h.l.↓ o.e.↓ co.↓ r.l.↓ a.p.↑

KISAR 0.167 0.298 0.928 0.162 0.804
±0.010 ±0.030 ±0.070 ±0.016 ±0.018

KISAR 0.168 0.302 0.942 0.166 0.801
MINUS ±0.011 ±0.028 ±0.064 ±0.015 ±0.017
KISAR 0.190 0.341 0.962 0.172 0.783
ALL ±0.000 ±0.007 ±0.014 ±0.004 ±0.004
MIML 0.184 0.338 1.039 0.190 0.776
SVM ±0.014 ±0.036 ±0.075 ±0.017 ±0.020
MIML 0.172 0.324 0.944 0.169 0.792
KNN ±0.010 ±0.029 ±0.074 ±0.016 ±0.017
MIML 0.169 0.310 0.950 0.169 0.797
RBF ±0.011 ±0.031 ±0.069 ±0.017 ±0.018
MIML 0.189 0.335 0.947 0.172 0.785
BOOST ±0.007 ±0.021 ±0.056 ±0.011 ±0.012

bels are annotated by humans. The data set we used contains
1, 605 examples and thirty-eight class labels, i.e., ’airplane’,
’animal’, ’baby’, ’beach’, ’bike’, ’bird’, ’boat’, ’building’,
’bus’, ’candle’, ’car’, ’cat’, ’cattle’, ’cloud’, ’desert’, ’dog’,
’dolphin’, ’elephant’, ’fire’, ’fireworks’, ’horse’, ’ice’, ’jun-
gle’, ’landscape’, ’leaf’, ’lightning’, ’mountains’, ’pen-
guin’, ’people’, ’rock’, ’sea’, ’ship’, ’sky’, ’sun’, ’swim-
ming’, ’water’, ’waterfall’ and ’woman’. Around 92% of
these images are with more than one labels and there are at
most eleven labels annotated to one example. The average
number of labels for each image is 3.85±1.75. Followed by
(Wang et al. 2001), each image is represented as a bag of 6-
dimensional instances based on image segmentation, where
each instance corresponds to the cluster center of one seg-
ment and the number of segments is set to 16. Highly rel-
evant labels, as shown in Table 3, are manually labeled by
volunteers. For each trial, 1, 400 images are randomly s-
elected for training and the remaining images are used for
testing. Experiments are repeated for 10 times and the aver-
age performances are recorded.

Table 4 summarizes the results, where MIMLBOOST is
not included since it does not return results within a reason-
able time (24 hours in our experiments) in a singe trial. It
can be seen that the performances of KISAR are quite good.
Paired t-tests at 95% significance level show that KISAR is
significantly better than KISARMINUS on all the measure-
ments except that on one error and hamming loss there are
no significant difference, whereas KISAR performs signif-
icantly better than all other compared methods on all the
measurements.

Discovery of Pattern-Label Relation
Now we examine the pattern-label relations discovered by
KISAR via intuitive illustrations (we are unaware of other

Table 3: Related labels in image annotation.

airplane cloud, sky
animal bird, cat, cattle, dog, dolphin, elephant, horse,

penguin
baby people, woman
beach desert, sea
boat ship
building landscape
bus car
candle fire, sun
cloud sky
fire sun
fireworks lightning
jungle leaf, mountains
leaf mountains
people woman
sea sun, swimming, water, waterfall
swimming water, waterfall
water waterfall

Table 4: Performance comparison (mean±std.) on image
annotation. The best performance (paired t-tests at 95% sig-
nificance level) and its comparable results are bolded. The
↓(↑) implies the smaller (larger), the better.

Method Evaluation Metric

h.l.↓ o.e.↓ co.↓ r.l.↓ a.p.↑

KISAR 0.069 0.213 9.413 0.080 0.713
±0.002 ±0.024 ±0.409 ±0.007 ±0.020

KISAR 0.069 0.212 10.030 0.088 0.709
MINUS ±0.003 ±0.024 ±0.433 ±0.007 ±0.019
KISAR 0.070 0.223 10.012 0.086 0.702
ALL ±0.003 ±0.031 ±0.498 ±0.009 ±0.022
MIML 0.077 0.263 14.647 0.145 0.634
SVM ±0.002 ±0.021 ±0.657 ±0.014 ±0.027
MIML 0.083 0.242 12.782 0.122 0.678
KNN ±0.005 ±0.032 ±1.079 ±0.016 ±0.018
MIML 0.073 0.242 12.264 0.110 0.686
RBF ±0.003 ±0.037 ±0.784 ±0.017 ±0.021

effective ways for examining the pattern-label relations at
present). Specifically, all the illustrated images are picked
from the image annotation data. The key instances are iden-
tified as follows: For each label, the most important proto-
types identified based on the rank of weights in linear predic-
tors are recorded. Recall that each prototype corresponds to
a cluster center, and thus, the instances within the clusters of
the most important prototypes are realized as key instances
triggering this label. For the sake of simplicity in display-
ing the relations, one key instance is picked for each label in
each image.



(jungle, leaf, water,

waterfall, sky)

(jungle) (leaf) (water) (waterfall) (sky)

(cloud, sky, people,

woman, leaf)

(cloud) (sky) (people) (woman) (leaf)

Figure 3: Pattern-label relations for images containing multiple pairs of highly relevant labels (above: {‘jungle’, ‘leaf’} and
{‘water’,‘waterfall’}, bottom: {‘cloud’, ‘sky’} and {‘people’,‘women’}). The red contour highlights the identified key in-
stances triggering the labels.

(cloud, sky, building) (cloud) (sky) (building)

(jungle, leaf, sea) (jungle) (leaf) (sea)

Figure 2: Pattern-label relations for images containing a s-
ingle pair of highly relevant labels (above: {‘cloud’, ‘sky’},
bottom: {‘jungle’, ‘leaf’}). The red contour highlights the
identified key instances triggering the labels.

We first study simpler cases where images contain a single
pair of highly relevant labels. Figure 2 shows some original
images and key instances. As can be seen, KISAR identi-
fies reasonable patterns for labels. Specifically, for the first
example, referring to Table 3, sky and cloud are relevant la-
bels that are verified by their key instances; sky and building
are not related, and this is also verified by their different key
instances. Similar observations can be found for the second
example. We further study more complicated cases where
images contain multiple pairs of highly relevant labels si-
multaneously. Figure 3 shows some examples. As can be
seen, KISAR is still capable of identifying reasonable pat-
terns for the labels. These observations validate that MIML
is capable of discovering relations between input patterns
and output labels corresponding to different semantics.

Conclusion
In contrast to previous MIML studies that focused on im-
proving generalization, in this paper, we propose the KISAR
algorithm which is able to discover the relation between pat-

terns in the input space and labels corresponding to different
semantics in the output space. Although it has been pointed
out before that the MIML framework offers the possibili-
ty of disclosing such relations (Zhou et al. 2012), to the
best of our knowledge, none existing MIML algorithm was
developed for this purpose. Our KISAR algorithm works
based on the assumption that highly related labels generally
share some common key instances. We get a convex for-
mulation and provide an alternating optimization solution.
Experimental results show that the predictive performances
of KISAR are highly competitive than state-of-the-art MIM-
L algorithms; more importantly, KISAR is capable of dis-
covering some intuitively reasonable relations between input
patterns and output labels.

There are many interesting further works. For example,
our current proposal adopts a two-stage method where some
useful information may be lost, whereas direct approaches
like (Andrews et al. 2003; Li et al. 2009b) are worth trying
in the future. Moreover, exclusive segmentations are em-
ployed in our work for input patterns, whereas overlapped
segmentations with different scales of granularity might be
more reasonable in many cases. This is an interesting issue
to be studied in the future.
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