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Abstract

Multi-label learning methods assign multiple labels to
one object. In practice, in addition to differentiating
relevant labels from irrelevant ones, it is often desired
to rank the relevant labels for an object, whereas the
rankings of irrelevant labels are not important. Such
a requirement, however, cannot be met because most
existing methods were designed to optimize existing
criteria, yet there is no criterion which encodes the
aforementioned requirement. In this paper, we present
a new criterion, PRO LOSS, concerning the prediction
on all labels as well as the rankings of only relevant
labels. We then propose ProSVM which optimizes PRO
LOSS efficiently using alternating direction method
of multipliers. We further improve its efficiency with
an upper approximation that reduces the number of
constraints from O(T 2) to O(T ), where T is the
number of labels. Experiments show that our proposals
are not only superior on PRO LOSS, but also highly
competitive on existing evaluation criteria.

Introduction
In real applications, one object may be associated with
multiple labels simultaneously, and such problems are
realized by multi-label learning (Tsoumakas, Katakis, and
Vlahavas 2010). During the past decade, many multi-
label methods have been developed and found useful in
diverse applications (Schapire and Singer 2000; Elisseeff
and Weston 2002; Boutell et al. 2004; Kazawa et al.
2005; Yu, Yu, and Tresp 2005; Barutcuoglu, Schapire, and
Troyanskaya 2006; Qi et al. 2007).

For a multi-label task, generally one object is associated
with a subset of labels; we call these labels as relevant ones
whereas the remaining as irrelevant ones. The basic goal of
multi-label learning is usually label prediction, that is, to
predict which label is relevant and which is irrelevant. In
many applications, however, in addition to label prediction,
there is often another requirement, i.e., to get good rankings
of the predicted relevant labels. Consider a simple example.
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Figure 1: Ordered relevant labels of images. Left: {cattle,
mountain, road}, Right: {mountain, road, cattle}.

Both images in Figure 1 have the relevant labels mountain,
cattle and road, whereas their focuses are quite different. To
better describe these images, in addition to predicting which
labels are relevant, it would be better to get their relevant
labels’ rankings as well, that is, {cattle, mountain, road} for
the first one and {mountain, road, cattle} for the second one.
It is noteworthy that although the rankings of relevant labels
are important, the rankings of irrelevant labels, which does
not occur within any image, are not useful.

In practice, the relevant label ordering information can
be obtained, for example in crowdsourcing applications,
by counting the supporters for each label. Such a learning
problem, however, cannot be addressed by typical multi-
label learning methods that focus on label prediction
because they generally ignore the rankings of relevant
labels. For example, the BR approach (Boutell et al. 2004)
simply trains a binary model for each label; RankSVM
(Elisseeff and Weston 2002; Fürnkranz et al. 2008) focuses
on distinguishing the relevant labels from irrelevant ones;
BoosTexter (Schapire and Singer 2000) and ML-kNN
(Zhang and Zhou 2007a) focus on improving generalization
of label predictions by exploiting label correlations. It
is also notable that our concerned problem cannot be
addressed by typical label ranking approaches (Dekel,
Manning, and Singer 2003; Gärtner and Vembu 2010;
Hüllermeier et al. 2008; Shalev-Shwartz and Singer 2006),
which focus on learning a mapping from instances to
rankings over a predefined set of labels. To adapt them to
our concerned problem there needs a non-trivial process to
address the challenging issue of selecting the “cut-point” in
the label ordering for deciding the relevant ones. The PC
(Pairwise Comparison with calibrated label ranking) method
(Fürnkranz et al. 2008) considers a combination of multi-



label learning and label ranking by creating an additional
calibrated label. However, it concerns about either “multi-
label learning” or “label ranking” without recognizing that
only the rankings of relevant labels are crucial. Moreover,
PC treats the label pairs independently and may produce
inconsistent results; for example, given three labels A, B and
C, it may predict A>B, B>C but C>A. Recently, Cheng
et al. 2010 propose a related label ranking method GMLC
which assumes that the labels of an object are categorized
into multiple degrees of relevances; in contrast, we do not
assume the existence of such information.

The infeasibility of these existing methods on our
concerned problem might owe to the fact that they
were designed to optimize the state-of-the-art performance
criteria. For example, BR was tailored for HAMMING
LOSS; RankSVM was designed for RANKING LOSS;
AdaBoost.MH and Adaboost.MR (Schapire and Singer
2000), two implementations of BoosTexter, were designed
to optimize HAMMING LOSS and RANKING LOSS,
respectively. As we will discuss comprehensively in the
next section, however, none of the state-of-the-art criteria
is able to express the requirement of our concerned problem
precisely. Therefore, to address our problem, new criterion
as well as new algorithms are needed.

In this paper, we present the PRO LOSS (Prediction
and Relevance Ordering Loss), a new multi-label criterion
that concerns the label predictions as well as the rankings
of relevant labels. We then propose ProSVM, a large
margin approach that employs alternating direction method
of multipliers to optimize the PRO LOSS efficiently. To
further improve the efficiency, we introduce an upper
approximation that reduces the number of constraints
from O(T 2) to O(T ) where T is the number of labels.
Experiments show that our proposals are not only superior
to state-of-the-art approaches on PRO LOSS, but also highly
competitive on existing evaluation criteria.

The rest of the paper is organized as follows. We first
revisit existing criteria. Then we present PRO LOSS and
ProSVMs, followed by experiments and conclusion.

Existing Criteria Revisited
Suppose that we are given a set of n instances {xi}ni=1 and
a set of T labels L = {l1, . . . , lT }. Each instance xi ∈ Rd

has one ranked relevant label set Ri ⊆ L and corresponding
irrelevant label set Ri = L−Ri, on which the rankings are
not concerned.

Existing multi-label learning algorithms typically learn
a function g(xi) = [g1(xi), · · · , gT (xi)] that will assign
a score gt(xi) to each label lt, t ∈ {1, . . . , T}. The
labels can then be ranked according to these scores. To
further differentiate relevant labels from irrelevant ones,
these algorithms need to further determine a threshold,
denoted by gΘ(xi). Those labels with scores larger than
the threshold will be regarded as relevant ones, otherwise
irrelevant ones. Here gΘ(xi) can be simply set to 0; it can
also be set more accurately by learning from data (Fürnkranz
et al. 2008). We denote all the predicted relevant labels as
R̂i, i.e., R̂i = {lt ∈ L|gt(xi) > gΘ(xi)}.

In the following we will discuss existing multi-label
criteria and their limitations regarding our concerned
problem.
• HAMMING LOSS (Schapire and Singer 2000; Elisseeff

and Weston 2002; Fürnkranz et al. 2008)

1

nT

n∑
i=1

|R̂i4Ri|.

Here 4 stands for the symmetric difference between two
sets. Obviously, the HAMMING LOSS ignores the fact that
different relevant labels may have different priorities.

• RANKING LOSS (Schapire and Singer 2000; Elisseeff and
Weston 2002; Yu, Yu, and Tresp 2005)

1

n

n∑
i=1

( ∑
(lt,ls)∈Ri×Ri

δ[gt(xi) < gs(xi)]
)
/(|Ri| × |Ri|).

Here δ is the indicator function. RANKING LOSS
concerns the relative rankings in each relevant-irrelevant
label pair. However, it does not consider the rankings of
relevant labels.

• ONE-ERROR (Schapire and Singer 2000; Elisseeff and
Weston 2002; Zhang and Zhou 2007a)

1

n

n∑
i=1

δ[larg maxt gt(xi) /∈ Ri].

ONE-ERROR considers the top predicted relevant label
only and thus neglecting all the other relevant labels.

• AVERAGE PRECISION (Schapire and Singer 2000;
Elisseeff and Weston 2002; Zhang and Zhou 2007a)

1

n

n∑
i=1

1

|Ri|

∑
t:lt∈Ri

|{ls ∈ Ri|gs(xi)>gt(xi)}|
|{ls|gs(xi) > gt(xi)}|

.

AVERAGE PRECISION concerns the wrong prediction of
irrelevant labels only if they are ranked above all relevant
labels.

• COVERAGE (Schapire and Singer 2000)

1

n

n∑
i=1

max
t:lt∈Ri

|{s|gs(xi) > gt(xi)}|.

COVERAGE concerns the worst predicted relevant label
only and thus neglecting the other relevant labels.

• SUBSET ACCURACY (Dembczynski et al. 2010)

1

n

n∑
i=1

δ[R̂i = Ri].

SUBSET ACCURACY does not consider label ordering.
• F1 (Godbole and Sarawagi 2004)

1

n

n∑
i=1

2|Ri ∩ R̂i|/(|Ri|+ |R̂i|).

Alternative definitions include MACRO-F1 and MICRO-
F1 (Yang 1999) which are averaged over labels instead of
instances. F1 does not take any rankings of relevant labels
into account.



It is evident that all the above criteria fail to express our
requirement, i.e., attaining an accurate label prediction and
a correct relevance ordering without being affected by the
rankings of irrelevant labels. To the best of our knowledge,
this is the first study on this problem.

PRO LOSS
We first introduce some notations. Given an instance x and
its relevant label set R, we denote by ≺x (a) the set of
indices of labels that are less relevant than la. We separate
the labels into three groups, i.e., relevant, threshold and
irrelevant, and denote by B(a) the set of indices of labels
that are in the same subgroup of la. For example, suppose
l1 and l2 are relevant labels and l1 is more relevant than
l2, while l3 and l4 are the irrelevant labels, then we have
≺x (1) = {2,Θ, 3, 4}, ≺x (2) = {Θ, 3, 4}, ≺x (Θ) =
{3, 4}, ≺x (3) =≺x (4) = ∅, B(1) = B(2) = {1, 2},
B(3) = B(4) = {3, 4} and B(Θ) = {Θ}.

We then define the PRO LOSS for an instance x as:

L(R,≺,g)=
∑

lt∈R∪{Θ}

∑
s∈≺x(t)

1+δ[B(t)=B(s)]

4|B(t)|×|B(s)−{t}|
`t,s. (1)

Here `t,s refers to a modified 0-1 error. Specifically, `t,s = 1
if gt(x) < gs(x), 1

2 if gt(x) = gs(x)1 and 0 otherwise.
As can be seen, besides the relevant-irrelevant label

pairs considered in RANKING LOSS and the label-threshold
pairs considered in HAMMING LOSS, PRO LOSS further
considers the relevant-relevant label pairs. It is noteworthy
that the ordering of any two irrelevant labels is not valued
in Eq. 1. Hence, PRO LOSS considers an accurate label
prediction as well as a correct relevance ordering.

To balance these label pairs to avoid dominated terms, we
normalize four types of label pairs, i.e., (relevant, relevant),
(relevant, irrelevant), (relevant, threshold) and (threshold,
irrelevant), by their respective set sizes. Note that the set
sizes of these four label pairs are |R|(|R| − 1)/2, |R||R|,
|R| and |R|, which can be written in a general form as

hs,t =
|B(t)| × |B(s)− {t}|
1 + δ[B(t) = B(s)]

.

This leads to our PRO LOSS.

ProSVMs
Note that `t,s, a modified 0-1 loss, is non-convex and
difficult to optimize, we consider optimizing a large margin
surrogate convex loss (Vapnik 1998) as follows:

min
g

λ
∑n

i=1
L̂(xi, Ri,≺,g) + Ω(g), (2)

where Ω(g) is a regularizer for g, L̂(xi, Ri,≺,g) =∑
lt∈Ri∪{Θ}

∑
s∈≺xi

(t)
1

4hs,t
(1 + gs(xi) − gt(xi))+ is the

surrogate convex loss of PRO LOSS, (u)+ = max{0, u},
1When gt(x) = gs(x), neither ”lt is more relevant than ls” nor

”ls is more relevant than lt” is judged; thus we assign the error as
1/2 by average.

and λ is a parameter trading off the functional complexity of
g and the surrogate convex loss.

Without loss of generality, suppose g’s are linear models,
i.e., gt(x) = w>t x, t ∈ {1, . . . , T} ∪ {Θ} and Ω(g) =
1
2

∑
t∈{1,...,T}∪{Θ} ‖wt‖2. Let w̄ , [w1; . . . ; wT ; wΘ] and

D be the training set. Note that L̂(xi, Ri,≺,g) is no more
than a sum of hinge losses, Eq. 2 is then cast as an SVM-type
problem in the following general form:

min
w̄,ξ

1

2
‖w̄‖2 + λC>ξ,

s.t. Aw̄ ≥ 1p − ξ, ξ ≥ 0p, (3)

where p = nT +
∑n

i=1 |Ri|(2T − |Ri| − 1)/2 is the total
number of constraints, and 1p(0p) is the p× 1 all one (zero)
vector. The entries in vector C correspond to the weights of
hinge losses, and the matrix A corresponds to the constraints
for instances. Due to space limitation, they will be presented
in a longer version.

Note that in Eq. 3, ξ does not need to be optimized
since it can be easily determined by w̄, hence Eq. 3 can be
reformulated into the following form without ξ, i.e.,

min
w̄

F (w̄, D) ,
1

2
‖w̄‖2 + λC>

(
1p −Aw̄

)
+
. (4)

An Efficient Algorithm
Eq. 4 is a large scale optimization. Specifically, although
matrix A is sparse, it still involves O(dnT 2) non-zero
elements which is beyond the memory capability of
computers even for medium-sized data sets. To address
Eq. 4, we in this section consider an efficient Alternating
Direction Method of Multipliers (ADMM) solution.

ADMM (Bertsekas and Tsitsiklis 1989) is a simple and
efficient approach for large scale optimization. Its basic
idea is to take the decomposition-coordinate procedure such
that the solution of subproblems can be coordinated to find
the solution to the original problem. Since subproblems
can usually be efficiently solved, ADMM is capable
of approximating the solution of large scale problems
via addressing small subproblems sequentially. Moreover,
ADMM is easy to parallelize and therefore, does not suffer
the memory capacity problem. Recently, ADMM has been
found effective on many machine learning problems (Boyd
et al. 2011; Forero, Cano, and Giannakis 2010).

Following the ADMM procedure, we first decompose D
into Z disjoint subsets, i.e., {D1, . . . , DZ}, and then rewrite
Eq. 4 into the following equivalent form,

minw̄0,w̄1,...,w̄Z

∑Z

z=1
F (w̄z, Dz), (5)

s.t. w̄z = w̄0,∀ z = 1, · · · , Z.
By introducing the surrogate augmented lagrangian function
(Forero, Cano, and Giannakis 2010) for Eq.5, we have,

L({w̄0, · · · , w̄Z}, {αz}Zz=1, η) =

Z∑
z=1

F (w̄z, Dz) +

Z∑
z=1

(αz)
>

(w̄z − w̄0)+
η

2

Z∑
z=1

‖w̄z − w̄0‖2,



Algorithm 1 ProSVM
1: Decompose data set D into Z disjoint subsets, i.e.,
D1, . . . , DZ . Set k = 0.

2: Initialize {w̄0
0, w̄

1
0, · · · , w̄Z

0 , α
1
0, · · · , αZ

0 } as zeros.
3: while not converge do
4: Set k = k + 1 and update {w̄0

k, {w̄z
k, α

z
k}Zz=1} as:

{w̄z
k}Zz=1 = arg min

w̄1,··· ,w̄Z

L(w̄0
k−1, {w̄z, αz

k−1}Zz=1, η) (6)

w̄0
k = arg min

w̄0

L(w̄0, {w̄z
k, α

z
k−1}Zz=1, η) (7)

αz
k = αz

k−1 + η(w̄z
k − w̄0

k)>, ∀z = 1, · · · , Z

5: end while
6: Output Final w̄0

where αz’s and η are the lagrange multipliers. L is then
solved in an iterative manner, i.e., updating the solutions
of {w̄1, · · · , w̄Z}, {w̄0} and {αz}Zz=1 separately and
iteratively until convergence. Detailed updating processes
are shown in Algorithm 1. According to the theoretical
finding in (He and Yuan 2012), it is not hard to show that
our algorithm will converge to a global optimal solution in
the convergence rate of O(1/K) where K is the number of
iterations. Note that although theoretically O(1/K) is not a
fast convergence rate, in practice, optimal solution is usually
not necessary (i.e., a good approximate solution is already
sufficient to obtain a satisfactory performance) (Boyd et al.
2011). In our experiment, the maximal iteration is simply set
to 100 and empirical results validate our effectiveness.

Note that the key to have efficient ProSVMs is to
efficiently solve Eqs. 6 and 7. As for Eq. 6, it is equivalent
to solve the following Z independent smaller subproblems.

min
w̄z

F (w̄z, Dz) + (αz
k−1)>w̄z +

η

2
‖w̄z − w̄0

k−1‖2, (8)

which is a convex quadratic programming (QP) problem.
Furthermore, note that A is sparse and Eq. 8 is similar
to standard SVM problem, Eq. 8 can be solved efficiently
by state-of-art SVM solvers like LIBLINEAR (Fan et al.
2008). As for Eq. 7, it has a closed-form solution, i.e.,
w̄0

k =
∑Z

z=1(αz
k−1 + ηw̄z

k)/(ηZ). Therefore, both Eqs. 6
and 7 can be solved efficiently.

Reduce the Number of Comparisons
There are O(T |R|) constraints in total for each instance in
Eq. 2, where |R| typically scales to O(T ). Thus, the number
of constraints then scales to O(T 2) which is too many to
optimize. In the following we consider approximating Eq. 2
by reducing the number of constraints fromO(T 2) toO(T ).

Note that the relevant-irrelevant label pairs cost the
largest number of comparisons. According to the work in
(Kotlowski, Dembczynski, and Huellermeier 2011), we get
the following theorem.
Theorem 1. Let P (l ∈ R) and P (l ∈ R) denote
the probability that a label l is relevant or irrelevant,

respectively. E[A] is event A’s expectation. Then we have:

E[
∑
lt∈R

∑
ls∈R

`t,s
|B(t)| × |B(s)|

] ≤

E[
∑

lt∈R `t,Θ]

P (lt ∈ R)T
+

E[
∑

ls∈R `Θ,s]

P (ls ∈ R)T
.

Theorem 1 shows that the relevant-irrelevant label
pairs can be approximated by the relevant-threshold and
irrelevant-threshold pairs which both scale to O(T ) only.
Next we consider simplifying the number of comparisons
between relevant labels. Our basic idea is to approximate full
pairs of comparisons between relevant labels with a chain
of comparisons between a relevant label and its immediate
follower, which also scales to O(T ).
Theorem 2. Denote ri as the index of the i-th relevant label,
if ωi ≥ i(|R| − i), we have

∑
li∈R

∑
lj∈R,j∈≺x(i)

`i,j ≤
|R|−1∑
i=1

ωi`ri,ri+1
.

According to Theorems 1 and 2, one can approximate the
objective function in Eq. 2 with an upper bound, i.e.,

∑
li∈R

`i,Θ
2|B(i)|

+
∑
lj∈R

`Θ,j

2|B(j)|
+

|R|−1∑
i=1

(i(|R| − i)`ri,ri+1
)

2|R|(|R| − 1)
, (9)

in which the number of constraints only scales to O(T ).
Note that Eq. 9 can be addressed via the same optimization
techniques as Eq. 2. We refer to this new algorithm as
ProSVM-A (ProSVM Approximation).

Experiments
Our proposals are compared with a number of state-of-
the-art multi-label methods, including PC (Fürnkranz et
al. 2008), RankSVM (Elisseeff and Weston 2002), BSVM
(Boutell et al. 2004), ML-kNN (Zhang and Zhou 2007a) and
BoosTexter (Schapire and Singer 2000). For PC, Perceptron
is employed as the base learner following (Fürnkranz et
al. 2008). Two implementations of PC, i.e., PCn and
PC0, are considered. In PCn, Perceptron stops after n
rounds while in PC0, it stops when no error occurs or
reaching 10000 rounds. One simple approach to extend
PC for our concerned problem is to incorporate rankings
of relevant labels. We also compare with these variants of
PC, namely PCnR and PC0R, respectively. Another simple
baseline is to first predict the relevant labels, and then
rank them. Here we use RankSVM (Elisseeff and Weston
2002) for prediction, and then employ Pairwise Comparison
(Hüllermeier et al. 2008) for ranking. We call the resulted
algorithm as RankSVM-R. Moreover, we also compare
with GMLC (Cheng, Dembczyński, and Hüllermeier 2010)
which considers multiple degrees of label relevances. To
run GMLC, the number of relevance levels is fixed to be
maxn

i=1(|Ri| + 1), and the i-th relevant label is assigned
to the i-th level while the irrelevant labels are assigned
to the (maxn

i=1(|Ri|+ 1))-th level. It is noteworthy that



Table 1: Results (mean±std) on MSRA-M with real ordering.
The best result and its comparable ones (pairwise t-test
at 95% confidence) are bolded. RSVM(-R) shorts for
RankSVM(-R). BTX shorts for BoosTexter.

METHOD PRO LOSS METHOD PRO LOSS
PROSVM .2562±.0114 RSVM .2992±.0144
PROSVM-A .2606±.0128 RSVM-R .2609±.0116
PCN .3754±.0406 BSVM .2913±.0070
PCNR .3469±.0420 MLkNN .3228±.0099
PC0 .3149±.0107 BTX .2957±.0112
PC0R .3040±.0090 GMLC .3052±.0130

although most of the compared algorithms are not designed
for relevant label ordering, they are able to perform label
ordering by comparing the predicted scores on labels, from
which we can calculate PRO LOSS for these algorithms.

The setups of our proposals and compared methods are
as follows. For RankSVM, the regularization parameter
is selected from {2−10, 2−8, ..., 28, 210} by ten-fold cross
validation. For BSVM, the SVM is implemented by
LIBSVM (Chang and Lin 2011) package with parameters
selected in the same way as RankSVM. For ML-kNN, we
use the parameter setting recommended by (Zhang and Zhou
2007a). For BoosTexter, we use the version AdaBoost.MH
(Schapire and Singer 2000). For ProSVMs, λ is chosen by
ten-fold cross validation and η is fixed to 0.1. The split
number Z is fixed to (p × d)/107 where p is the number
of constraints in Eq. 3. Hence, the memory requirement of
ProSVM is low and applicable for most personal computers.

Data with Real Label Ordering

It is notable that the problem of relevance ordering is
relatively new, and the required multi-label data sets are
not widely available yet. Here we provide the first real data
MSRA-M with relevance ordering. Specifically, we use a
subset of the widely-used MSRA data set (Li, Wang, and Hua
2009) which contains 1868 images. Each instance/image is
represented by a 899 dimensional feature vector. There are
19 candidate labels. Each image belongs to 1 to 11 relevant
ones. The ordering of relevant labels are manually provided
by image curators. In our experiment, 10-CV is conducted
and the average results are recorded. Results are shown in
Table 1. As can be seen, ProSVMs perform significantly
better than all other compared methods.

Data with Synthetic Label Ordering

Except for MSRA-M, the current public multi-label data sets
do not contain label ordering information. To employ them,
we automatically simulate the relevance ordering by running
3 state-of-the-art multi-label methods (Zhang and Zhou
2006; 2007b; Zhang, Peña, and Robles 2009) each predicts
a real score for each label, and then obtain the ordering of
relevant labels by sorting the aggregated real scores. By this
approach, a broad range of 19 data sets which cover diverse

domains, e.g., music, biology, image and text, are studied2,
The number of samples varies from 590 to 5,000, the number
of dimensionality varies from 72 to 1,449 and the number of
labels varies from 5 to 53. The results are shown in Table 2.
As can be seen, ProSVMs perform superior to compared
methods. In particular, ProSVM achieves the best result on
13 over 19 data sets while ProSVM-A achieves the best
result on the rest 6 data sets.

Data without Label Ordering
Our next experiment is to study the performance of our
proposals on existing criteria. Here our proposals are
evaluated by neglecting the relevance ordering information.
Specifically, a simpler loss function without considering
the pairs of relevant labels is used for ProSVMs, and the
optimization techniques employed in ProSVMs are applied
to solve the new simpler objective. We call our new variants
as ProSVM’ and ProSVM-A’. Note that PCnR, PC0R and
RankSVM-R could not be compared since they require
for relevant label ordering information. For GMLC, two
relevance levels, i.e., relevant and irrelevant, are used.

We plot the robustness of the criteria in Figure 2. The
robustness was designed by (Zhou and Yu 2005); roughly
speaking, given a data set, for a concerned criterion which
is the smaller the better, the worst-performed algorithm is
identified at first, and then the relative performance of all
the algorithms is obtained by dividing their loss value by
the worst one; the results of one algorithm are aggregated
across all data sets, and the final aggregated value provides a
good indication of the robustness of the algorithm. As can be
seen, even without the relevance ordering information, our
proposals still perform highly competitive to state-of-the-art
multi-label methods on existing criteria.

Time Cost and Parallel Computing
Figure 3(a) shows the robustness of time cost of our
proposals and compared methods. As can be seen, the
time efficiencies of ProSVMs are comparable to most
compared methods. The efficiency of using multi-core on
representative eight data sets are illustrated in Figure 3(b).
As can be seen, the time cost of ProSVM can be significantly
reduced by parallel computing.

Conclusion
In this paper, we study a new multi-label problem that in
practice the user usually concerns about the prediction on
labels as well as the ordering among relevant labels. To
address our problem, we present a new multi-label criterion,
i.e., PRO LOSS, and propose the ProSVMs that optimize this
new loss. Experiments exhibit encouraging performance of
our proposals. The theoretical analysis of PRO LOSS will be
studied in future.

2The EMOTIONS, ENRON, GENBASE, MEDICAL, SCENE and
YEAST data sets are publicly available at http://mulan.
sourceforge.net/datasets.html, the IMAGE and eleven
YAHOO data sets are available at http://cse.seu.edu.cn/
people/zhangml/Resources.htm, and the SLASHDOT
data is available at http://meka.sourceforge.net.



Table 2: Comparison results on PRO LOSS for data with synthetic label ordering. Each entry presents the PRO LOSS; the best result on each
data is bolded. RSVM(-R) is short for RankSVM(-R). MLk is short for MLkNN. Btx is short for BoosTexter. For IMAGE and SLASHDOT
that have not provided training/testing splits, 10-CV is conducted and average performances are recorded. For others we use the provided
training/testing splits . The last row presents the sum of ranks; the smaller the R-total, the better the overall performance.

DATA SET PROSVM PROSVM-A PCN PCNR PC0 PC0R RSVM RSVM-R BSVM MLk BTX GMLC
EMOTIONS .1997 .2090 .3557 .3509 .2821 .2641 .2159 .2110 .2164 .2210 .2397 .2255
ENRON .1497 .1547 .3015 .3032 .3143 .3031 .1507 .1587 .2335 .2533 .2121 .3913
GENBASE .0023 .0027 .2544 .2544 .0511 .0489 .0063 .0074 .0269 .0181 .0049 .0109
IMAGE .1645 .1638 .2755 .2738 .2481 .2518 .2079 .2086 .1896 .1914 .1737 .2150
MEDICAL .0591 .0599 .2769 .2769 .2038 .1998 .0940 .0935 .1296 .1647 .0838 .1510
SCENE .1031 .1047 .2829 .2840 .2710 .2713 .1198 .1243 .1313 .1228 .1081 .1405
SLASHDOT .1158 .1173 .2877 .2877 .2781 .2766 .1686 .1689 .2052 .2944 .1793 .3632
YAHOOARTS .1500 .1496 .3176 .3179 .3062 .3060 .2288 .2307 .2276 .3067 .2474 .3887
YAHOOBUSINESS .0605 .0621 .2673 .2673 .1713 .1713 .0837 .0849 .2725 .0921 .0912 .1207
YAHOOCOMPUTERS .0989 .1045 .2861 .2864 .1599 .1599 .1918 .1918 .1185 .2073 .1852 .2776
YAHOOEDUCATION .1113 .1091 .2951 .2939 .1830 .1828 .2123 .2129 .2176 .2479 .2264 .3292
YAHOOENTERTAINMENT .1179 .1178 .2955 .2933 .1677 .1674 .1865 .1875 .2437 .2419 .2064 .3118
YAHOOHEALTH .0899 .0944 .3045 .2961 .1553 .1547 .1474 .1504 .2126 .2044 .1619 .2944
YAHOORECREATION .1531 .1536 .3026 .3018 .2800 .2803 .2249 .2256 .2365 .3045 .2438 .3714
YAHOOREFERENCE .0931 .0919 .2779 .2779 .1480 .1485 .1565 .1566 .2491 .2296 .1783 .3135
YAHOOSCIENCE .1388 .1489 .2985 .2988 .2154 .2157 .2288 .2294 .2021 .2628 .2480 .3448
YAHOOSOCIAL .0863 .0889 .2853 .2856 .1630 .1626 .1356 .1369 .2598 .1648 .1542 .2752
YAHOOSOCIETY .1517 .1506 .3114 .3111 .2654 .2632 .2199 .2199 .1741 .2280 .2308 .2993
YEAST .1854 .1869 .3472 .3406 .4177 .4141 .1933 .2605 .2493 .2338 .2548 .2326
R-TOTAL 25 33 207 203 143 135 76 95 131 146 103 185

HAMMING LOSS RANKING LOSS ONE-ERROR 1−AVERAGE PRECISION

COVERAGE 1−SUBSET ACCURACY 1−F1

Figure 2: Comparison on the original multi-label data sets without label ordering information. Each column corresponds to an algorithm
(from left to right: P: ProSVM’, A: ProSVM-A’, n: PCn, 0: PC0, R: RankSVM, B: BSVM, M: MLkNN, T: BoosTexter, G: GMLC). The
lower the column, the better the performance.

(a) (b)

Figure 3: (a) Comparison on the robustness of time complexity. Each column corresponds to an algorithm (from left to right: P: ProSVM,
A: ProSVM-A, n: PCn, nR: PCnR, 0: PC0, 0R: PC0R, R: RankSVM, RR: RankSVM-R, B: BSVM, M: MLkNN, T: BoosTexter, G: GMLC).
(b) Comparison on the time cost of ProSVM with multiple cores. X-axis is the number of cores. Y-axis is the time spent divided by that using
only 1 core.
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