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Abstract

This file contains proofs of theorems 1-3.

Proofs of Theorem
Theorem 1. ||f — £*||? < |fo — £*||% if the ground truth
f* e Q={f| 30, aifi,a € M}.
The proof can be derived following Pythagorean Theorem
(theorem 2.4.1 in (Censor and Zenios 1997)).

Theorem 2. f has already achieved the maximal worst-case
performance gain against £y, if the ground truth £* € Q.

Proof. The goal is to show f is the optimal solution of the
following functional,

f = argmax min (Hfo — 2 - | - f*|\2) )
fcRu f*eQ
Note that Eq.(1) is equivalent to the follows,

: 2 2 _ T px
max min ([[fo]2 = €2 =2 —£) €)@

Eq.(2) is convex to f and concave to £*, and thus it is convex.
Furthermore, by setting to derivative w.r.t. f to zero, it can
be found that f has a closed-form solution, i.e., f = f*.
Substituting such an equality into Eq.(1), Eq.(1) turns out to
be following functional w.r.t. f* (or equivalently f) only,

f = argmin <||f0 - f\|2> 3)
feQ

Eq.(3) is exactly the same as the projection problem pro-
posed in the paper. Therefore, f is the optimal solution of
Eq.(1) and hence Theorem 2 holds. O

Theorem 3. The increased loss of the proposal against
fo, ie. 5(”? 2 - — f*H2), is ar most
min{2( |1 /v, 2[|€]2//u}.

Proof. Note that Z?:l A f; € Q and thus by employing
Theorem 1, one can have,

b b
(I = SO N2 = lifo = o A£i)2) <0
=1 i=1
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and it is consequently rewritten as
) b
((= ol + IFIZ + 26 — £)7 S° ) ) <0
i=1
Since f* = Z?:1 A, 4 €, we then have,
(U= 712 = 1fo — £°]2) < 2(F — )Te
and consequently we have
1 r * (|2 * (|2 2 T
(=12 = f — £17) < S(f - D)Te @)
u u

where the LHS refers to increased loss against fy. Further
note that

2(fo — £)Te < min{2[|ell1, 2v/ulle]|2} (5)
using the fact that the predictive values in f; and f are from
[0, 1]. With Egs.(4)-(5), Theorem 3 holds. O
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