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Abstract
This file contains proofs of theorems 1-3.

Proofs of Theorem
Theorem 1. ‖f̄ − f∗‖2 ≤ ‖f0 − f∗‖2, if the ground truth
f∗ ∈ Ω = {f |

∑b
i=1 αifi,α ∈M}.

The proof can be derived following Pythagorean Theorem
(theorem 2.4.1 in (Censor and Zenios 1997)).
Theorem 2. f̄ has already achieved the maximal worst-case
performance gain against f0, if the ground truth f∗ ∈ Ω.

Proof. The goal is to show f̄ is the optimal solution of the
following functional,

f̄ = argmax
f∈Ru

min
f∗∈Ω

(
‖f0 − f∗‖2 − ‖f − f∗‖2

)
(1)

Note that Eq.(1) is equivalent to the follows,

max
f

min
f∗∈Ω

(
‖f0‖2 − ‖f‖2 − 2(f − f0)>f̄∗

)
(2)

Eq.(2) is convex to f and concave to f∗, and thus it is convex.
Furthermore, by setting to derivative w.r.t. f to zero, it can
be found that f has a closed-form solution, i.e., f = f∗.
Substituting such an equality into Eq.(1), Eq.(1) turns out to
be following functional w.r.t. f∗ (or equivalently f ) only,

f̄ = argmin
f∈Ω

(
‖f0 − f‖2

)
(3)

Eq.(3) is exactly the same as the projection problem pro-
posed in the paper. Therefore, f̄ is the optimal solution of
Eq.(1) and hence Theorem 2 holds.

Theorem 3. The increased loss of the proposal against
f0, i.e., 1

u

(
‖f̄ − f∗‖2 − ‖f0 − f∗‖2

)
, is at most

min{2‖ε‖1/u, 2‖ε‖2/
√
u}.

Proof. Note that
∑b

i=1 λ
∗
i fi ∈ Ω and thus by employing

Theorem 1, one can have,(
‖f̄ −

b∑
i=1

λ∗i fi‖2 − ‖f0 −
b∑

i=1

λ∗i fi‖2
)
≤ 0
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and it is consequently rewritten as((
− ‖f0‖2 + ‖f̄‖2 + 2(f0 − f̄)>

b∑
i=1

λ∗i fi
))
≤ 0

Since f∗ =
∑b

i=1 λ
∗
i fi + ε, we then have,(

‖f̄ − f∗‖2 − ‖f0 − f∗‖2
)
≤ 2(f0 − f̄)>ε

and consequently we have

1

u

(
‖f̄ − f∗‖2 − ‖f0 − f∗‖2

)
≤ 2

u
(f0 − f̄)>ε (4)

where the LHS refers to increased loss against f0. Further
note that

2(f0 − f̄)>ε ≤ min{2‖ε‖1, 2
√
u‖ε‖2} (5)

using the fact that the predictive values in f0 and f̄ are from
[0, 1]. With Eqs.(4)-(5), Theorem 3 holds.
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