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Abstract

Semi-supervised learning (SSL) concerns how to improve
performance via the usage of unlabeled data. Recent studies
indicate that the usage of unlabeled data might even deteri-
orate performance. Although some proposals have been de-
veloped to alleviate such a fundamental challenge for semi-
supervised classification, the efforts on semi-supervised re-
gression (SSR) remain to be limited. In this work we con-
sider the learning of a safe prediction from multiple semi-
supervised regressors, which is not worse than a direct super-
vised learner with only labeled data. We cast it as a geomet-
ric projection issue with an efficient algorithm. Furthermore,
we show that the proposal is provably safe and has already
achieved the maximal performance gain, if the ground-truth
label assignment is realized by a convex linear combination
of base regressors. This provides insight to help understand
safe SSR. Experimental results on a broad range of datasets
validate the effectiveness of our proposal.

Introduction
Semi-supervised learning (SSL) concerns the problem on
how to improve learning performance via the usage of ad-
ditional unlabeled data. Such a learning framework has re-
ceived a great deal of attention owing to immense demands
in real-world applications from medical diagnosis to intru-
sion detection (Zhu and Goldberg 2009). Many SSL meth-
ods have been developed, e.g., generative model (Miller and
Uyar 1997; Nigam et al. 2000), graph-based method (Blum
and Chawla 2001; Zhu, Ghahramani, and Lafferty 2003;
Zhou et al. 2004), disagreement-based method (Blum and
Mitchell 1998; Zhou and Li 2010) and semi-supervised
SVMs (Bennett and Demiriz 1999; Joachims 1999).

Despite the success of SSL, however, a considerable
amount of empirical studies reveal that SSL with the ex-
ploitation of unlabeled data might even deteriorate learn-
ing performance (Cozman, Cohen, and Cirelo 2002; Chawla
and Karakoulas 2005; Chapelle, Schölkopf, and Zien 2006;
Zhu and Goldberg 2009; Balcan and Blum 2010; Yang and
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Priebe 2011; Li et al. 2013). It is highly desirable to s-
tudy safe SSL scheme that on one side could often improve
performance, on the other side will not hurt performance,
since the users of SSL wont expect that SSL with the us-
age of more data performs worse than certain direct super-
vised learning with only labeled data. Recently several pro-
posals (Li and Zhou 2005; 2015; Balsubramani and Freund
2015; Krijthe and Loog 2015; Li, Kwok, and Zhou 2016;
Li, Wang, and Zhou 2016) have been developed to alleviate
such a fundamental challenge for semi-supervised classifica-
tion (SSC), while the efforts on semi-supervised regression
(SSR) remain to be limited.

In this work we consider the question of how to learn
a safe prediction from multiple semi-supervised regressors.
To our knowledge, such a question has not been thoroughly
studied. Specifically, let {f1, . . . , fb} be multiple SSR pre-
dictions and f0 be the prediction of certain direct supervised
learner, where fi ∈ Ru, i = 0, . . . , b; b and u refer to the
number of regressors and unlabeled instances. How to de-
rive a final prediction g(f1, . . . , fb, f0), such that for regres-
sion measurement g(f1, . . . , fb, f0) could often be better than
f0, meanwhile it would not be worse than f0.

We present a SAFER (SAFE semi-supervised Regression)
method. Without domain knowledge about the reliabilities
of learners, SAFER proposes to maximize the performance
gain of g(f1, . . . , fb, f0) against f0 assuming that the weights
of SSR learners are from a convex set. This is formulat-
ed as a saddle-point convex-concave optimization (Nesterov
2013). In order to alleviate the computational overhead and
to understand how the proposal works, we represent safe SS-
R problem as a geometric projection issue, which brings t-
wo prominent advantages. i) The resultant new formulation
is a simple convex quadratic program and much easier to
solve. ii) One can show that SAFER is provably safe and
have already achieved the maximal performance gain, if the
ground-truth label assignment is realized by a convex linear
combination of base SSR learners, which provides insight to
help understand safe SSR. Experimental results on a broad
range of datasets validate that SAFER clearly improves safe-
ness of SSR, in addition obtains highly comparable perfor-
mance with state-of-the-art approaches.

In the following, we first review several related works and
then present the SAFER method. Next we show the experi-
ment. Finally we conclude this paper.



Related Work
This work is related to two branches of studies. One is
safe SSC. This line of research is raised in very recen-
t. (Li and Zhou 2011; 2015) is one early work to build
safe semi-supervised SVMs. They optimize the worst-
case performance gain given a set of candidate low-density
separators, showing that the proposed S4VM (Safe Semi-
Supervised SVM) is provably safe given that low-density as-
sumption (Chapelle, Schölkopf, and Zien 2006) holds. (Kri-
jthe and Loog 2015) presents to build a safe semi-supervised
classifier, which learns a projection of a supervised least
square classifier from all possible semi-supervised least
square classifiers. (Balsubramani and Freund 2015) pro-
poses to learn a robust prediction with the highest accura-
cy given that the ground-truth label assignment is restrict-
ed to specific candidate set. Most recently, (Li, Kwok, and
Zhou 2016) concerns to build a generic safe SSC frame-
work for variants of performance measures, e.g., AUC, F1

score, Topk precision. (Li, Wang, and Zhou 2016) is one
early work studying the quality of graph in graph-based
SSC. They propose a large margin principle to help judge
the graph quality and empirically achieve promising perfor-
mance via excluding poor quality graphs.

The other one is SSR. Two representative SSR studies
were developed by (Zhou and Li 2005) and (Brefeld et al.
2006), which are both based on the employment of mul-
tiple regressors. (Zhou and Li 2005) proposes to use the
co-training (Blum and Mitchell 1998) style algorithm for
the learning of two semi-supervised regressors, so as to
improve the final regression performance. (Brefeld et al.
2006) considers multi-view training data, proposing a co-
regularization framework that enforces the predictive results
of unlabeled data from multiple views to be consistent.

In comparison to safe SSC, in this paper we consider safe
SSR. Furthermore, our proposal yields a better condition of
safeness than that of (Li and Zhou 2015). Moreover, un-
like (Li and Zhou 2015) whose formulation is non-convex
and hard to achieve the global optima, our proposal is convex
and easy to derive the optimal solution. Different from (Kri-
jthe and Loog 2015), our proposal does not restrict the learn-
er to be least square classifier and is applicable to various
learners. We explicitly consider to maximize the perfor-
mance gain, which is not taken into account in (Balsubra-
mani and Freund 2015). In comparison to previous SSR
studies, which typically work on improving performance,
the deficiency on performance degradation when using un-
labeled data, has not been studied in literatures.

The Proposed Method
In this section we first present problem setting and formula-
tion, and then give its representation to geometric projection,
finally study how the proposal works.

Problem Setting and Formulation

Remind that in SSR, particularly for the scenario of mul-
tiple semi-supervised regressors, we obtain b SSR predic-
tions {f1, . . . , fb} for unlabeled instances where fi ∈ Ru,

i = 1, . . . , b and u refers to the number of unlabeled in-
stances. On the other hand, one can train a direct super-
vised regression model (e.g., k nearest neighbor) using on-
ly labeled data and consequently yield another prediction
f0 ∈ Ru for unlabeled instances. The underlying challenge
is the learning of safe prediction g({f1, . . . , fb}, f0), which
often outperforms f0, meanwhile could not be worse than f0.

We start with a simple scenario to alleviate this challenge,
where the weights of SSR regressors are known. Specifical-
ly, let α = [α1;α2; . . . ;αb] ≥ 0 be the weights of individual
regressors fi’s, reflecting how close fi’s are to the ground-
truth. The larger the weight, the closer the regressor is to
the ground-truth. We employ the difference of Mean Square
Error (a popular criterion in regression task) to measure the
performance gain against f0, i.e.,

(
‖f0− f∗‖2−‖f − f∗‖2

)
where f∗ refers to the ground-truth label assignment. Ob-
viously f∗ is unknown, otherwise, trivial optimal solution
can be easily derived. Observed that the weights of indi-
vidual regressors are known, alternatively one optimizes the
following functional instead:

max
f∈Ru

b∑
i=1

αi

(
‖f0 − fi‖2 − ‖f − fi‖2

)
(1)

Eq.(1) maximizes a combined performance gain as shown.
In reality, however, the explicit weights of individual re-

gressors (i.e., α) is difficult to know and to make the pro-
posal more practical, we assume that α is from a candidate
set. For the sake of simplicity, one assumes that α is from
a convex linear setM = {α|A>α ≤ b;α ≥ 0}, which is
a general form that reflects the relation of individual learn-
ers in ensemble learning (Zhou 2012), where A and b are
task-dependent coefficients. For example,M = {α|1>α =
1;α ≥ 0} by assuming that the weights of individual learn-
ers are from a simplex; furthermore, suppose individual
leaner fi is more reliable than fj and the set of all such in-
dexes (i, j) is denoted as S,M could be set to {α|αj−αi ≤
0, (i, j) ∈ S;α ≥ 0}. Without further knowledge to deter-
mine the weights of individual regressors, one aim to opti-
mize the worst-case performance gain (Li and Zhou 2015;
Balsubramani and Freund 2015) as follows.

max
f∈Ru

min
α∈M

b∑
i=1

αi

(
‖f0 − fi‖2 − ‖f − fi‖2

)
(2)

Representation to Geometric Projection

Note that Eq.(2) is concave to f and convex to α, and thus
it is recognized as saddle-point convex-concave optimiza-
tion (Nesterov 2013). The optimization of Eq.(2), never-
theless, meets some difficulties, since it is non-trivial to be
solved efficiently because of poor convergence rate induced
by typical gradient descent algorithms (Nesterov 2013).

In order to alleviate the computational overload and un-
derstand how Eq.(2) works, we in the following show that
Eq.(2) can be formulated as a geometric projection issue that
help address the above concerns.



Algorithm 1 The SAFER Method
Input: multiple SSR predictions {fi}bi=1 and certain direct
supervised regression prediction f0
Output: the learned prediction f̄

1: Construct a linear kernel matrix F where Fij = f>i fj ,
∀1 ≤ i, j ≤ b

2: Derive a vector v = [2f>1 f0; . . . ; 2f>b f0]
3: Solve the convex quadratic optimization Eq.(5) and ob-

tain the optimal solution α∗ = [α∗1, . . . , α
∗
b ]

4: Return f̄ =
∑b

i=1 α
∗
i fi

Specifically, by setting the derivative of Eq.(2) w.r.t. f to
zero, Eq.(2) has a closed-form solution w.r.t. f as

f =

b∑
i=1

αifi, (3)

Through this property, by substituting Eq.(3) into Eq.(2), we
then get the following equivalent form that only relates to α.

min
α∈M

‖
b∑

i=1

αifi − f0‖2 (4)

It is evident that Eq.(4) turns out to be simple convex
quadratic program. More specifically, by expanding the
quadratic form in Eq.(4), it can be rewritten as

min
α∈M

α>Fα− v>α (5)

where F ∈ Rb×b is a linear kernel matrix of fi’s, i.e.,
Fij = f>i fj , ∀1 ≤ i, j ≤ b and v = [2f>1 f0; . . . ; 2f>b f0]. S-
ince F is positive semi-definite, Eq.(5) is convex. It is often
much more efficient to solve convex quadratic program than
saddle-point convex-concave optimization (Nesterov 2013).
For example, one can employ state-of-the-art optimization
solvers, such as the MOSEK package1, efficiently. After
solving the optimal solution α∗, the optimal f̄ =

∑b
i=1 α

∗
i fi

according to Eq.(3) is obtained. Algorithm 1 summarizes
the pseudocode of the proposed method.

It is not hard to find that Eq.(4) is a geometric projection
problem. Specifically, let Ω = {f |

∑b
i=1 αifi,α ∈ M},

Eq.(4) can be rewritten as,

f̄ = arg min
f∈Ω

‖f − f0‖2, (6)

which learns a projection of f0 onto the convex set Ω. Fig-
ure 1 illustrates the intuition of our proposed method via the
viewpoint of geometric projection. In the sequel we show
that with the help of such a novel representation, one could
study how the proposal works.

How the Proposal Works
Before going into the detail analysis, as can be observed
from Figure 1, the distance between ‖f̄ − f∗‖ should be s-
maller than ‖f0 − f∗‖ if f∗ ∈ Ω. Such an observation moti-
vates us to derive the following results.

1https://www.mosek.com/resources/downloads

Figure 1: Illustration of the intuition of our proposal via the
projection viewpoint. Intuitively, the proposal learns a pro-
jection of f0 onto a convex feasible set Ω.

Theorem 1. ‖f̄ − f∗‖2 ≤ ‖f0 − f∗‖2, if the ground truth
label assignment f∗ ∈ Ω = {f |

∑b
i=1 αifi,α ∈M}.

Proofs of the theorems in this paper are in supplemental
material. Theorem 1 reveals that the proposal is provably
safe, when ground-truth label assignment is realized by a
convex linear combination of base regressors. Such a safe-
ness condition improves the one proposed in (Li and Zhou
2015), which requires that ground-truth f∗ is form one of
base learners. Another advantage is that unlike (Li and Zhou
2015) which is theoretically hard to achieve optimality be-
cause of non-convexity, our proposed solution is naturally
optimal as the formulation is convex.

In addition to safeness, it is also important to study the a-
bility in performance improvement. The following Theorem
indicates that our proposal has already achieved the maximal
performance gain, with the same condition.
Theorem 2. f̄ has already achieved the maximal worst-case
performance gain against f0, if the ground truth f∗ ∈ Ω.
Specifically, f̄ is the optimal solution of the following func-
tional,

f̄ = argmax
f∈Ru

min
f∗∈Ω

(
‖f0 − f∗‖2 − ‖f − f∗‖2

)
With Theorems 1-2, it is now clear that the proposed

method is provably safe and achieves the maximal worst-
case performance gain, if the ground-truth label assignment
is realized by a convex linear combination of base regres-
sors. To understand our proposal more comprehensively, in
the following we investigate how the performance of our
proposal is affected when the condition previously men-
tioned is violated. Specifically, let λ∗ = [λ∗1, . . . , λ

∗
b ] ∈ M

be the optimal solution of the following functional,

λ∗ = argmin
λ∈M

‖
b∑

i=1

λifi − f∗‖2

and ε be the residual, i.e., ε = f∗−
∑b

i=1 λ
∗
i fi, reflecting the

degree of violation. Suppose fi’s are normalized into [0, 1],
we then have the following result for the proposed method.



Theorem 3. The increased loss of the proposed method
against f0, i.e.,

(
‖f̄ − f∗‖2 − ‖f0 − f∗‖2

)
, is at most

min{2‖ε‖1/u, 2‖ε‖2/
√
u}.

Theorem 3 discloses that when the required safeness con-
dition is violated, the worst-case increased loss of our pro-
posed method is only related to the norm of the residual (in
other words, the quality of regressors), and has nothing to
do with other factors, e.g., the quantity of regressors.

Experiments
In order to validate the effectiveness of the proposed method,
extensive experiments are conducted on a broad range of da-
ta sets2 (Table 1) that cover diverse domains including phys-
ical measurements (abalone), health (bodyfat), economics
(cadata), activity recognition (mpg), etc. The sample size
ranges from around 100 (pyrim) to more than 20,000 (cad-
ta). All the features and labels are normalized into [0, 1].

Experimental Setup

SAFER3 is compared with the following methods.

• 1NN: Direct supervised nearest neighbor algorithm with
only labeled data.

• COREG (Zhou and Li 2005): Representative semi-
supervised regression method. Two kNN regressors based
on two different distance metrics are employed.

• Self-kNN: Semi-supervised extension of the supervised
kNN method based on self-training (Yarowsky 1995). It
first trains a supervised kNN method based on only la-
beled instances, and then predict the label of unlabeled
instances. After that, by adding the predicted labels on
the unlabeled data as “ground-truth”, another supervised
kNN method is trained. This process is repeated until pre-
dictions on the unlabeled data no longer change or a max-
imum number of iterations achieves.

• Self-LS: Semi-supervised extension of the supervised
least square method (Hastie, Tibshirani, and Friedman
2001) based on self-training. The algorithm is similar
to Self-kNN except that supervised method is adapted to
least square regression.

• Voting: We also compare with the voting method, which
uniformly weights multiple regressors. This approach is
found promising in practice (Zhou 2012).

The co-regularization method (Brefeld et al. 2006) is not
compared because it requires multiple views of data, which
is not the case in our experimental data sets. For the baseline
1NN method, the Euclidean distance is used to locate the n-
earest neighbor. For the Self-kNN method, the Euclidean
distance is used and k is set to 3. The maximum number of
iterations is set to 5 and further increasing it does not im-
prove performance. For the Self-LS method, the parameters

2https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/

3http://lamda.nju.edu.cn/code_SAFER.ashx

related to the importance for the labeled and unlabeled in-
stances are set to 1 and 0.1, respectively. For the COREG
method, the parameters are set to the recommended one in
the package and the two distance metrics are employed by
the Euclidean and Mahalanobis distances. For the Voting
and the proposed SAFER method, 3 semi-supervised regres-
sors are used where one is from the Self-LS method and the
other two are from the Self-kNN methods employing the
Euclidean and the Cosine distance, respectively. Without
sufficient domain knowledge,M = {α|1>α = 1;α ≥ 0}.

For each data set, 5 and 10 labeled instances are randomly
selected and the rest ones are unlabeled data. Experiment
for each dataset is repeated for 30 times, and the average
performance (mean±std) on the unlabeled data is reported.

Comparison Results
Table 1 shows the Mean Square Error of compared methods
and the proposal on 5 and 10 labeled instances, respectively.
We have the following observations from Table 1.
• Self-kNN generally improves the performance, however

it causes serious performance degradation in 2 cases.
• Self-LS is not effective. One possible reason is the per-

formance of supervised LS is not as good as that of kNN
in our experimental data sets.

• COREG achieves good performance, whereas it also will
significantly decrease the performance in some cases.

• The Voting method improves both the average perfor-
mance of Self-kNN and Self-LS, but in 6 cases it signifi-
cantly decreases the performance.

• The proposed method achieves significant improvement
in 6 and 8 cases, which are the most among all the com-
pared methods on 5 and 10 labeled instances, respective-
ly. It also obtains the best average performance. What is
more importantly, it does not seriously reduce the perfor-
mance.

Overall the proposed method effectively improves safeness
of SSR, in addition obtains highly comparable performance
with state-of-the-art approaches.

Study Robustness to Safeness Condition
Figure 2 studies the robustness of our proposal w.r.t. safe-
ness condition presented in Theorem 1. Figure 2 shows a
comparison between the reduced Mean Square Error of the
proposal against 1NN (the higher the better) and the lower
bound of increased loss (i.e., −min{2‖ε‖1/u, 2‖ε‖2/

√
u})

shown in Theorem 3 based on 30 random splits of data us-
ing 10 labeled instances. Each subfigure corresponds to one
data set. It appears that even that the optimal convex com-
bination of individual regressors is usually not equal to the
ground truth, the proposal still works well. This reflects that
our proposal works quite robust to safeness condition.

Study Robustness to Performance Measures
It is interesting to study whether the proposal SAFER is
effective in other regression performance measures. Ta-
ble 2 studies the experimental comparison on Mean Abso-



Table 1: Mean Square Error (mean±std) for the compared methods and SAFER using 5 and 10 labeled instances. For all
methods, if the performance is significantly better/worse than the baseline 1NN method, the corresponding entries are bold-
ed/boxed (paired t-tests at 95% significance level). The average mean square error on all the experimental data sets is listed for
comparison. The win/tie/loss counts are summarized and the method with the smallest number of losses against 1NN is bolded.

5 labeled instances

Dataset 1NN Self-kNN Self-LS COREG Voting SAFER

abalone .017 ± .007 .014 ± .003 .013 ± .004 .013 ± .003 .012 ± .003 .013 ± .003
bodyfat .024 ± .008 .025 ± .009 .054 ± .016 .026 ± .008 .031 ± .011 .025 ± .009
cadata .090 ± .031 .073 ± .023 .067 ± .022 .069 ± .028 .069 ± .022 .070 ± .023
cpusmall .027 ± .012 .031 ± .008 .050 ± .021 .031 ± .009 .024 ± .006 .028 ± .009
eunite2001 .052 ± .017 .037 ± .015 .024 ± .012 .037 ± .011 .031 ± .013 .032 ± .010
housing .042 ± .007 .043 ± .009 .048 ± .012 .041 ± .008 .042 ± .009 .041 ± .009
mg .071 ± .035 .057 ± .015 .053 ± .011 .054 ± .019 .054 ± .013 .053 ± .013
mpg .029 ± .012 .030 ± .012 .040 ± .014 .031 ± .012 .031 ± .012 .030 ± .012

pyrim .032 ± .009 .027 ± .005 .063 ± .012 .029 ± .011 .025 ± .007 .025 ± .005
space ga .005 ± .002 .005 ± .003 .030 ± .005 .004 ± .002 .008 ± .002 .004 ± .002

Ave. Mse. .039 .034 .044 .033 .033 .032

win/tie/loss against 1NN 5/4/1 4/0/6 5/4/1 5/3/2 6/4/0

10 labeled instances

Dataset 1NN Self-kNN Self-LS COREG Voting SAFER

abalone .020 ± .010 .014 ± .005 .013 ± .004 .012 ± .003 .012 ± .003 .013 ± .005
bodyfat .019 ± .005 .019 ± .007 .041 ± .013 .020 ± .006 .023 ± .009 .018 ± .007
cadata .083 ± .029 .063 ± .012 .056 ± .007 .054 ± .010 .057 ± .009 .060 ± .013
cpusmall .024 ± .012 .027 ± .008 .042 ± .004 .028 ± .008 .020 ± .005 .025 ± .008
eunite2001 .044 ± .014 .037 ± .013 .020 ± .006 .031 ± .009 .029 ± .009 .029 ± .007
housing .039 ± .010 .036 ± .009 .036 ± .009 .035 ± .005 .034 ± .008 .035 ± .009
mg .062 ± .019 .046 ± .015 .048 ± .011 .045 ± .015 .043 ± .014 .045 ± .014
mpg .022 ± .007 .020 ± .006 .030 ± .014 .021 ± .007 .021 ± .008 .020 ± .006

pyrim .023 ± .006 .021 ± .005 .052 ± .014 .022 ± .006 .020 ± .007 .020 ± .006
space ga .004 ± .001 .003 ± .001 .028 ± .002 .003 ± .001 .006 ± .001 .003 ± .001

Ave. Mse. .034 .029 .037 .027 .026 .027

win/tie/loss against 1NN 6/3/1 4/1/5 6/3/1 7/1/2 7/3/0

lute Error (MAE) (Willmott and Matsuura 2005) and Mean
ε-insensitive Error (MEE) (Smola and Schölkopf 2004). As
Table 2 shows, the proposal achieves competitive perfor-
mance in a variety of performance measures. This result re-
veals that although SAFER is designed through Mean Square
Error, it has a certain degree of robustness to the change of
performance measures.

Conclusion

Despite remarkable progress of SSL, however, it is plagued
with the problem of performance degeneration when using
unlabeled data. In this paper we present an efficient and ef-
fective projection algorithm to learn a safe prediction from
multiple semi-supervised regressors. We show that the pro-

posal is provably safe and achieves the worst-case perfor-
mance gain, when the ground-truth is realized as a convex
linear combination of individual regressors. Extensive ex-
periments validate encouraging performance. In our ongo-
ing work, as stated in Theorem 3, generating high quality
regressors is crucial. Accuracy estimation from unlabeled
data (Platanios, Blum, and Mitchell 2014) might be a possi-
ble solution.
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