
Semi-Supervised Streaming Learning with Emerging New Labels

Yong-Nan Zhu and Yu-Feng Li∗
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

{zhuyn, liyf}@lamda.nju.edu.cn

Abstract

In many real-world applications, the modeling environment is
usually dynamic and evolutionary, especially in a data stream
where emerging new class often happens. Great efforts have
been devoted to learning with novel concepts recently, which
are typically in a supervised setting with completely super-
vised initialization. However, the data collected in the stream
are often in a semi-supervised manner actually, which means
only a few of them are labeled while the great majority miss
ground-truth labels. Besides, new classes hidden in unlabeled
instances bring more challenges for the learning task. In this
paper, we tackle these issues by a new approach called SEEN
which consists of three major components: an effective novel
class detector based on clustering random trees, a robust clas-
sifier for predictions on the known classes, and an efficient
updating process that ensures the whole framework adapts to
the changing environment automatically. The classifier pro-
duces known labels via label propagation that utilizes all la-
beled and part unlabeled data in the past which naturally de-
scribe the entire stream seen so far. Empirical studies on sev-
eral datasets validate that the algorithm can accurately clas-
sify points on a dynamic stream with a small number of la-
beled examples and emerging new classes.

Introduction
In traditional machine learning, many advanced approaches
have been proposed based on the assumption that the learn-
ing environment is stationary. However, the learning envi-
ronment is often dynamic in practical applications (Zhou
2016), especially when learning with a data stream. In
particular, during the data stream, novel classes may of-
ten emerge. For example, while mining news webpages, a
new hot topic often arises with time. Such new setting at-
tracts much attention in recent years (Masud et al. 2011;
Haque, Khan, and Baron 2016; Mu et al. 2017).

Previous efforts on novel class typically work on a su-
pervised setting which assumes that all the training data are
completely labeled except for the novel class. However, in

∗This research was supported by the National Key R&D Pro-
gram of China (2018YFB1004300) and the NSFC (61772262). Yu-
Feng Li is the corresponding author of this work.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

reality, the data collected in the stream are often in a semi-
supervised manner (Chapelle, Schölkopf, and Zien 2006;
Zhu, Goldberg, and Khot 2009), since it is often unavailable
to access the true labels for all instances in a data stream due
to realistic constraints such as the time, the labeling cost, etc.

To cope with this new yet realistic setting, in this pa-
per we propose SEEN (SEmi-supervised streaming learning
with Emerging New labels) to address the dynamic semi-
supervised learning problems. The proposed method con-
tains three main components: (1) a specific designed detec-
tor based on the features of instances to determine whether
an unlabeled instance belongs to the new class or known
classes; (2) a robust graph-based semi-supervised classifier
that takes advantage of both labeled and unlabeled data to
make predictions on a new sample if it is likely to be part of
known classes; (3) a novel updating process which utilizes
the detected new class data to remodel both the detector and
the classifier. The three parts collaborate to adapt the learned
model to the changing environment, and achieve satisfactory
outcomes.

Our main contributions are concluded as follows:
• The presented semi-supervised learning framework is ca-

pable of handling emerging new class in a dynamic data
stream where a few labeled instances are collected to-
gether with a large number of unlabeled instances.

• The model is learned without an initial large labeled train-
ing set and works naturally and reliably in streaming set-
tings, even if there are only a few labeled data.

• Comprehensive experiments conducted on a number of
benchmark datasets validate the effectiveness and effi-
ciency of the proposed method.
The rest of this paper starts with an introduction to re-

lated work. Then our proposal is presented, which is fol-
lowed by extensive empirical justification. The paper ends
with the section of the conclusion.

Related Work
Incremental learning requires the flexible and efficient adap-
tation of models to an open and dynamic environment, and
class-incremental learning (C-IL) (Zhou and Chen 2002;
Fink et al. 2006; Scheirer et al. 2012; Kuzborskij, Orabona,

and Caputo 2013; Sun et al. 2016) is a particularly signif-
icant branch that focuses on the emerging classes. Classi-
fication under data stream with emerging new classes is a
streaming C-IL problem and some efforts have been put in
this field in recent years. These existing methods include
clustering-based methods (Masud et al. 2011; Haque, Khan,
and Baron 2016), tree-based methods (Mu, Ting, and Zhou
2017; Zhu, Ting, and Zhou 2018), matrix sketch (Mu et al.
2017).

The ECSMiner (Masud et al. 2011) firstly studies three
major problems of streaming classification: infinite length,
concept drift, and concept evolution. It also maintains an
ensemble of classification models to make delayed predic-
tion under a maximum allowable wait time. But the ba-
sic assumption of ECSMiner is that true labels of sam-
ples can be obtained after some time delay, which may
be impractical in many cases. SAND (Haque, Khan, and
Baron 2016) estimates classifier confidence in predicting in-
stances from evolving data stream and dynamically deter-
mines chunk boundaries. Instead of requiring true labels of
all instances, SAND intelligently selects a few instances us-
ing the estimated classifier confidence scores. This kind of
active selection (Settles 2009) is not naturally in general
semi-supervised settings. SENCForest (Mu, Ting, and Zhou
2017) uses the isolation-based anomaly detection method
(Liu, Ting, and Zhou 2008) to construct the classifier and
detector. It builds completely-random trees for anomaly de-
tection, and an effective model retiring and growing mecha-
nism is proposed to meet limited memory constraints.

Besides, in (Mu et al. 2017), a matrix sketch method based
on the technique Frequent-Directions (Liberty 2013) is used
to approximate original information. The global sketching
is produced on the whole dataset for new class detection,
whereas the local sketching is built on each class as lo-
cal information for classification. These approaches have
achieved good performance as most of them rely on a large
labeled initial training set. In addition, they don’t make the
greatest use of unlabeled data.

Our work also relates to novel class detection (Abdallah
et al. 2016; Spinosa and de Leon Ferreira 2004; Ma and
Perkins 2003) and anomaly detection (Liu, Ting, and Zhou
2008; Breunig et al. 2000; Na, Kim, and Yu 2018) which fo-
cus on the identification of data which have not been seen
during the training process. However, they only study sub-
problems of our setting, ignoring the problem of classifi-
cation and model update, thus their approaches fail in the
streaming context.

Semi-Supervised Learning (SSL) (Chapelle, Schölkopf,
and Zien 2006; Zhou and Li 2010; Wei et al. 2018; Li,
Guo, and Zhou 2019) aims to make use of unlabeled data
for training - typically a small set of labeled data together
with a large collection of unlabeled data. Graph-based SSL
algorithms (Zhu, Ghahramani, and Lafferty 2003; Zhou et
al. 2003; Li, Wang, and Zhou 2016) have a long history
of work and propagate limited label information to unla-
beled examples following clustering or manifold assump-
tions. Online graph-based SSL is a relative new research
field that has generated considerable interest (Zhu, Gold-
berg, and Khot 2009; Valko et al. 2010; Ravi and Diao 2016;

Figure 1: Illustration for our proposed SEEN framework.

Wagner et al. 2018). Even though they are applied to points
arriving on a stream, they assume unlabeled data have no
previously unseen labels and are limited in the stationary en-
vironments. Therefore, these solutions cannot handle novel
classes in evolving streams.

The SEEN Method
In this section, we propose an efficient algorithm called SEEN

to deal with the dynamic semi-supervised evolutionary data
streams. SEEN consists of three main parts: an effective novel
class detector, a robust classifier for prediction and an effi-
cient updating process. We first present the problem formu-
lation and then provide an overview of the overall training
procedure. The concrete details in the procedure are pro-
vided in the following contents.

Problem Formulation
In open dynamic semi-supervised learning problems, the in-
stances are collected successively from a data stream. Due
to practical issues, such as time and resource constraints,
only a little data are labeled while a large amount of them
miss label information. At the beginning time, all samples
belong to known classes. Let S denote streaming data and
define S = {(xt, yt)}T0

t=1 as the data in the first T0 time pe-
riod. Let Y = {1, 2, · · · ,K} be the known labels set. The
arriving data stream has a instance xt observed at time t and
yt ∈ Y ′ = {−1, 1, 2, · · · ,K}. If yt = −1, xt is an unla-
beled instance, but the true label of xt is in set Y . By the
way, these relatively pure data can be used to initialize the
classifier and detector.

As time goes by, evolution happens in the following
data stream S′ = {(xt, yt)}∞t=T0+1 which contains novel
class instances. Specifically, there exists unlabeled instance
(xt′ , yt′) ∈ S′ where yt′ = −1, but the true label of xt′ is
not in set Y . Note that if yt′ 6= −1, yt′ ∈ Y holds forever.

The above problem can have many different variations.
For example, after the first period, there follow several pe-

riods each of which includes different novel classes. Fur-
ther to say, after receiving unlabeled novel class instances in
previous periods, novel class labels are available along with
subsequent streaming data. As a result, the known labels set
Y may be enlarged along with the evolutionary data stream.
In empirical studies, the presented method performs well in
those variations.

SEEN: An Overview
A schematic description of the overall training procedure of
our method is given in Figure 1. As shown in Figure 1, if
a newly arrived instance xt is labeled in the data stream, it
is then used to update classifier C directly. Otherwise, it is
identified by an effective detector D built with known class
data. The detector outputs 1 if xt is likely to hold a new
label, and xt is then added into a temporal potential novel
class data buffer B whose maximum buffer size is s. On the
contrary, the detector outputs−1 and xt is then classified by
classifier C. The classifier is also updated by xt simultane-
ously while making predictions. For novel class instances,
the update process of the classifier and detector begins when
the number of examples in buffer B reaches the preset max-
imum buffer size. We build an initial classifier and detector
by the data in the beginning period of the stream. Algorithm
1 summarizes the approach.

Algorithm 1 SEEN

Input: detectorD, classifier C, bufferB, collectorO, max-
imum buffer size s

Output: y - class label for each unlabeled x in a data stream
1: while not end of data stream do
2: for each (x, y) do
3: O ← O ∪ {x}
4: if y 6= −1 then
5: Update classifier C by x
6: else
7: Identify x by detector D
8: if x is likely to have novel label then
9: Output novel label for x

10: B ← B ∪ {x}
11: if |B| ≥ s then
12: Update classifier C by buffer B
13: Update detector D by collector O
14: B ← empty set
15: O ← select a subset of O randomly
16: end if
17: else
18: Output the prediction on x by classifier C
19: end if
20: end if
21: end for
22: end while

As shown in lines 3 and 13 of Algorithm 1, to build and
update detector D, a data collector O stores a subset of
previously observed data. To meet the demand for storage
and computational complexity, only a subset of all historical
data is randomly sampled. When |B| = s, the detected new

class data are sufficient to train and update a good perform-
ing classifier. In this situation, the instances in D are all la-
beled with the new label. When the unlabeled data of known
classes are classified as presented in line 18 of Algorithm 1,
it then follows the workflow in Algorithm 3 (detailed in the
following parts). That is to say, the classifier learns from all
data with different levels of label information.

In the following sections, we detail the construction of the
detector, the classifier, and their updates.

New Class Detection: SEENForest
Inspired by the fact that the appearances of a new class may
be attributed to previously unseen set of feature values, we
take feature space into account and build SEENForest which
is similar to the early work iForest (Liu, Ting, and Zhou
2008) for unsupervised anomaly detection. SEENForest con-
sists of many SEENTrees, and each SEENTree is built using a
random subset of input training set O of size φ. Algorithm 2
summarizes the construction of SEENTree.

Algorithm 2 SEENTree

Input: input dataset S, current tree height h, maximum tree
height hm, number of randomly selected attributes k

Output: SEENTree
1: Construct a ball whose r = maxx∈S‖x − c‖ where

c = meanx∈S(x)
2: if |S| = 1 or h ≥ hm then
3: return LeafNode{Center← c, Radius← r }
4: else
5: Select k attributes q from the input feature set in S

randomly
6: Get two cluster centers {c1, c2} based on the selected

k attributes of S
7: Sl = {x ∈ S | ‖xq − c1‖ ≤ ‖xq − c2‖}
8: Sr = {x ∈ S | ‖xq − c1‖ > ‖xq − c2‖}
9: return InNode{Center← c, Radius← r,

SelectedAtt← q,
SplitCenters← {c1, c2},
Left← SEENTree(Sl, h+ 1, hm, k),

Right← SEENTree(Sr, h+1, hm, k) }
10: end if

While building trees for detection, compared with iForest
which randomly selects an attribute and its cutpoint between
the minimum and maximum values, SEENForest selects an
attribute set with fixed size and then the split is an outcome
of a clustering process based on the selected attributes. Pro-
jected on a set of randomly selected attributes, each internal
node in SEENTree is split based on a cluster center on either
branch. This strategy ensures instances within the same leaf
node must be similar in some attributes of features.

Another main difference shows in the evaluation pro-
cedure. iForest employs the average path length, that the
test instance traverses over all trees, as the anomaly score.
Shorter path length indicates that the instance is more likely
to be an anomaly. To detect emerging new classes, we con-
sider more about the specific character of each SEENTree.
Specifically, we first calculate the average path length be-

tween each node and the root which characterizes structural
information of the tree. Let Li,t be the i-th node’s distance
from root node in t-th SEENTree which has mt nodes in to-
tal, including leaf nodes. Then the threshold for identifying
a new class is defined as:

τt =
1

mt

mt∑
i=1

Li,t (1)

Recall that a ball is constructed in each node based on all
training instances which fall into the node as shown in the
first line of Algorithm 2. A testing instance is likely to be a
novel class instance if it falls outside the ball; otherwise, it
has a known class label. The radius of the ball is defined as:

r = maxx∈S‖x− c‖ (2)
where S is the set of all training instances falling into the
node, and c = meanx∈S(x) is the center of the ball. Here
the ball-shaped constraint is for local regions, rather than
global data distribution. It is very common to adopt ball-
shaped constraint for a local area. For the local distribution
of non-ball-shaped class, it is often a good approximation to
adopt ball-shaped constraint under the case of smoothness.

We then obtain the path length lt when a testing instance
firstly falls outside one node in the t-th SEENTree. If lt <
τt, it is classified as novel class instance; otherwise, it owns
known label. The final output of SEENForest is decided via
majority voting. Note that the travel of testing instances is
based on the distance to the centers of nodes and it selects
the closest node of two son nodes to travel.

Known Classes Classification: SEENLP
In order to make accurate predictions on a large amount of
newly arrived unlabeled points based on a few labeled in-
stances, we introduce SEENLP to solve this issue. SEENLP is
an online variant of label propagation algorithm (Zhou et al.
2003; Ravi and Diao 2016; Wagner et al. 2018) and capable
of handling with novel class instances in the semi-supervised
dynamic data stream.

We suppose that there are l labeled points {(xi, yi)
l
i=1},

and u unlabeled points {(xi)
l+u
i=l+1}; typically l � u. Let

n = l + u be the total number of data points. Consider a
connected graph G = (V,E) with nodes V corresponding to
the data points, with nodes L = {1, · · · , l} corresponding to
the labeled points with labels, and nodes U = {l+1, · · · , l+
u} corresponding to the unlabeled points.

For vanilla label propagation, the task is to learn a real-
valued function f : V → R on G to assign labels for un-
labeled points. Then the energy function (Zhu, Ghahramani,
and Lafferty 2003) is defined as:

E(f) =
1

2

∑
xi,xj

Wxi,xj
(f(xi)− f(xj))

2 (3)

where W is an n× n symmetric weight matrix.
By the harmonic solution, we get the closed-form formula

of the above optimization problem:

fu = −G−1uuGulfl (4)

Algorithm 3 SEENLP

Input: label set Y = {1, 2, · · · ,K}, super nodes set V =
{v1,v2, · · · ,vK}, labeled nodes set Vl = {L1, L2,
· · · , LK}, unlabeled nodes set Vu, weight matrix W , τ

Output: y - class label for each unlabeled x in a data stream
1: initialize V, Vl, Vu as empty sets and W as zero matrix
2: while not end of data stream do
3: for each (x, y) do
4: if y 6= −1 then
5: if y not in Y then
6: Y ← Y ∪ {y}; // add new class
7: V ← V ∪ {vy}; Vl ← Vl ∪ {Ly}
8: end if
9: Ly ← Ly ∪ {x} // add labeled node

10: for each xu in Vu do
11: Wxu,vy ←Wxu,vy + dist(xu,x)
12: end for
13: else
14: for each vi in Vl do
15: Wx,vi

←
∑

x′∈Li
dist(x,x′)

16: end for
17: for each x′ in Vu do
18: Wx,x′ ← dist(x,x′)
19: end for
20: Vu ← Vu ∪ {x} // add unlabeled node
21: if |Vu| > τ then
22: xo ← oldest point in Vu
23: Remove xo from Vu
24: for each pair p, q ∈ Vu do
25: Wpq ←Wpq +Wpxo

Wqxo
/
∑

x′ Wx′xo

26: end for
27: end if
28: Output the harmonic solution of x based on W
29: end if
30: end for
31: end while

where fl = (f(x1); · · · ; f(xl)) = (y1; · · · ; yl), fu =
(f(xl+1); · · · ; f(xl+u)) are the predictions on labeled and
unlabeled data, respectively. G ∈ Rn×n is the Laplacian
matrix of the graph G.

Despite the simpleness and effectivity of label propaga-
tion, computing the inverse matrix takes O(n3) time and
O(n2) memory complexity in general, which makes it in-
feasible on large-scale datasets (Liang and Li 2018), such as
data streams.

Inspired by recent advances in electric networks (Dörfler
and Bullo 2013) and online graph-based algorithms (Ravi
and Diao 2016; Wagner et al. 2018), SEENLP is presented in
Algorithm 3. We introduce star-mesh transform on a node
v in a graph G = (V,E). The star operation means remov-
ing node v from G with its incident edges while the mesh
operation indicates updating weight matrix W .

Specifically, if v is removed from the graph, for each pair
p, q ∈ V such that (p,v) ∈ E and (q,v) ∈ E, we add Wpq

by WpvWqv/
∑

v′ Wv′v .
Consider a data stream {(xt, yt)}∞t=1 in which some

Figure 2: Accuracy results on the data streams of four datasets.

points are labeled and most points are unlabeled, and yt ∈
{−1, 1, 2, · · · ,K}. SEENLP maintains a graph H that con-
tains the most recent τ unlabeled points and K super nodes
V = {v1,v2, · · · ,vK} that each super node vi represents
one kind labeled points Li. We categorize the update and
classification of SEENLP into two parts according to the la-
bel information of the input data. Note that since the points
sent for classification have been identified by SEENForest,
they can be regarded as known class data.

When a labeled sample arrives, we update the weight ma-
trix of the corresponding super node directly without any
update with other nodes. When an unlabeled point arrives,
we add it to H firstly and then remove the oldest unlabeled
point by a star-mesh transform if there already exists τ un-
labeled samples. In a nutshell, for each new unlabeled point,
there are at most τ +K nodes for computing the harmonic
solution on the graphH.

Even though the star operation removes the unlabeled
data and their edges, the mesh operation reserves the struc-
tural information of these points which helps for label prop-
agation as if they still stay in the original graph. Through
star-mesh transform, the time and space consumption for
each newly arrived unlabeled point in the data stream are
independent of the length of the data stream which indi-
cates the efficiency of SEENLP. Considering the complexity
in solving the harmonic solution, the time and space cost are
O((τ +K)3) and O(τ2), respectively.

Model Update
As shown in Figure 1 and Algorithm 1, when the number
of samples in novel class data buffer B reaches maximum
buffer size, the model update procedure starts. To update the
classifier with these potential novel class examples, the in-
stances in B are marked as the same new label. To make a
more robust classification, we select the data which are clos-
est to the center of these candidates for update. Furthermore,
a new super node and new class node set will be added in V
and Vl as shown in lines 5 to 8 in Algorithm 3. The new class
data can then be viewed as labeled data with known label.

To update the detector, we sample instances randomly in
data collectorO which is a subset of previous data to rebuild
SEENTrees. This kind of update considers all detected novel
class instances as known class instances and is beneficial to
detect prospective new classes.

Experiments
In this section, we conduct experiments on four common-
used datasets to evaluate the effectiveness of our proposed
algorithm.

Experimental Setup
Datasets. To evaluate the predictive performance of the pro-
posed SEEN approach, we use four multi-class benchmark
datasets (”segment”, ”satimage”, ”usps”, ”pendigits”, de-

Table 1: Accuracy and F1 (mean ± std) for SEEN and the compared methods. The best results are in bold.
Dataset Metric iForest RRCF ECSMiner SENC-Mas SEEN

segment Accuracy 0.520 ± 0.028 0.642 ± 0.025 0.731 ± 0.019 0.641 ± 0.035 0.760 ± 0.019
F1 0.567 ± 0.020 0.690 ± 0.020 0.661 ± 0.013 0.695 ± 0.028 0.790 ± 0.013

satimage Accuracy 0.735 ± 0.007 0.672 ± 0.036 0.841 ± 0.021 0.767 ± 0.024 0.842 ± 0.008
F1 0.698 ± 0.006 0.685 ± 0.031 0.705 ± 0.017 0.761 ± 0.028 0.806 ± 0.008

usps Accuracy 0.678 ± 0.007 0.733 ± 0.021 0.695 ± 0.023 0.778 ± 0.006 0.798 ± 0.008
F1 0.656 ± 0.011 0.743 ± 0.024 0.628 ± 0.021 0.785 ± 0.006 0.784 ± 0.010

pendigits Accuracy 0.806 ± 0.020 0.779 ± 0.021 0.765 ± 0.014 0.705 ± 0.008 0.849 ± 0.014
F1 0.819 ± 0.018 0.792 ± 0.019 0.704 ± 0.013 0.744 ± 0.006 0.856 ± 0.013

tailed information is shown in Table 2)1. The instances in
segment dataset are drawn randomly from a database of 7
outdoor images. The satimage database consists of the multi-
spectral values of pixels in 3 × 3 neighborhoods in a satel-
lite image. The aim is to predict the classification associated
with the central pixel in each neighborhood. The usps and
pendigit datasets are both digit samples. The usps dataset
refers to numeric data obtained from the scanning of hand-
written digits from envelopes by the U.S. Postal Service.
The images here have been normalized, resulting in 16× 16
grayscale images.

Table 2: A summary of datasets used in the experiments.
Dataset # classes # attributes # instances
segment 7 19 2310
satimage 6 32 4435

usps 10 256 9298
pendigits 10 16 10992

Data streams. For a given dataset, the data stream is sim-
ulated as follows. In the first period, the semi-supervised
data stream only contains known class instances, such as the
ground-truth label set of unlabeled points is the same as that
of labeled points. In the following each period, a new class
appears and the labeled data have labels that have shown in
previous periods. The new class labels in different periods
except the first period are different. Let Cl

i and Cu
i be the

label sets of the labeled and unlabeled data in the i-th pe-
riod, respectively. For example, we have Cl

1 = Cu
1 = Cl

2 =
{1, 2}, Cu

2 = Cl
3 = {1, 2, 3}, Cu

3 = {1, 2, 3, 4}, and so on.
The experiments on each dataset are repeated 10 times

with different simulated data streams and both the mean and
standard variance of the performance are reported.

Competing algorithms. We compared with: iForest
(Liu, Ting, and Zhou 2008): it is an unsupervised anomaly
detector which can be treated as a new class detector. RRCF
(Guha et al. 2016): this method investigates a random cut
data structure that can be used as a sketch of the input
dynamic stream. ECSMiner (Masud et al. 2011): it main-
tains an ensemble framework for classifying data streams
and addresses both of concept drift and evolution problems.
SNEC-Mas (Mu et al. 2017): it uses two low-dimensional
matrix sketches for detecting new class and classifying

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/ multi-
class.html

known classes. Since iForest and RRCF do not make classi-
fications, we combine them with SVM as a classifier.

Algorithm settings. Number of trees in iForest is set to
50 and ψ = 200. For RRCF, the shingle size is 4. The SVM
classifiers in iForest and RRCF are both set to RBF kernel.
ECSMiner employs K-means and K is set to 5. In SENC-
Mas, L = N × 0.8, li = ni× 0.8, as suggested in the paper.
For all the above methods, the initialization is realized by the
data in the first period. For SEENForest, hm = 7, s = 50, φ =
128, and k is half the number of features. For SEENLP, τ =
50 and we use the standard RBF similarity to inialize the
weight matrix, Wxi,xj = exp(−‖xi − xj‖2/σ2), where σ
can be obtained by cross-validation from the first period. The
number of labeled instances in each class in the four datasets
as ordered in Table 2 is 20, 50, 80, and 50.

Performance metrics. To evaluate the performance of
these approaches, two measures are used in this paper. One
is Accuracy,Accuracy = Nnew+Nknown

N , whereN is the to-
tal number of examples, Nnew and Nknown are the number
of emerging and known class instances identified correctly.
Another measure is macro-averaged F1 performances which
produces a combined effect of precision (P) and recall (R) of
the detection performance in each class, F1 = 2×P×R

P+R .

Results
Simulated Streams. We have run 10 independent runs with
different simulated streams on the four datasets and both
the mean and the standard variance of the performance are
reported in Table 1. As can be seen, SEEN outperforms all
the other compared approaches and maintains good perfor-
mance in the whole data streams with different emerging
new classes. Besides, compared with the best performance
of other methods, our method improves accuracy and F1 by
an average of 0.023 and 0.044 respectively.

Figure 2 further shows the change of average accuracy in
the whole data stream of the four datasets. The accuracy rate
of each point represents the average performance of 10 runs
from the very beginning to the present time point. The main
reason that RRCF performs badly at the beginning time is
the lack of enough training data for novel class detection,
and it works better when it is trained with more data. The
comparison between SEEN and iForest validates the effec-
tiveness of SEENForest and the necessity of utilizing unla-
beled data. The outcome of SENC-Mas is not very robust.
Even though ECSMiner is provided with ground-truth labels
of unlabeled data for an update, it still performs worse than

Figure 3: Results of known, novel and all classes, respectively. The yellow segment represents the corresponding variance.

SEEN in most cases.
Figure 3 validates the effectiveness of our systematic so-

lution. The competing approaches either perform badly on
one kind of the data or both, or achieve unstable predictions
with high variances. On the one hand, for most cases except
usps dataset, our framework shows similar performance on
known and novel class data, which indicates the adaptivity
of SEEN method. On the other hand, the small accuracy rate
variance of of our proposal verifies the robustness.

Figure 4: The influence of the number of labeled data in each
class on segment dataset.

Parameter analysis. The most significant parameter that
impacts the predictions on unlabeled instances is the num-

ber of labeled instances. We study its influence on segment
dataset and the results are reported in Figure 4. Even with a
few labeled examples, SEEN still works well without sacrific-
ing much performance. The performance trends to increase
with more labeled instances in general as expectation. Simi-
lar results can be obtained from other datasets.

Conclusion
Learning with emerging new classes in a semi-supervised
data stream is a very practical yet challenging problem. This
is a new kind of learning scenario that to the best of our
knowledge, has not been thoroughly studied in literature. In
this paper, we propose the SEEN method to tackle the prob-
lem. The proposed method consists of a detector for detect-
ing new classes, a classifier based on label propagation that
classifies known classes, and their update procedure. Empir-
ical studies on a number of real-world datasets validate the
effectiveness of SEEN in handling emerging new classes un-
der semi-supervised streaming data environment. In future,
we will consider extending this work to multi-class scenar-
ios with multiple new classes.

References
Abdallah, Z. S.; Gaber, M. M.; Srinivasan, B.; and Krish-
naswamy, S. 2016. Anynovel: detection of novel concepts
in evolving data streams. Evolving Systems 7(2):73–93.
Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; and Sander, J.
2000. Lof: identifying density-based local outliers. ACM
SIGMOD Record 29(2):93–104.

Chapelle, O.; Schölkopf, B.; and Zien, A., eds. 2006. Semi-
Supervised Learning. The MIT Press.
Dörfler, F., and Bullo, F. 2013. Kron reduction of graphs
with applications to electrical networks. IEEE Transactions
on Circuits and Systems 60-I(1):150–163.
Fink, M.; Shalev-Shwartz, S.; Singer, Y.; and Ullman, S.
2006. Online multiclass learning by interclass hypothesis
sharing. In Proceedings of the 23rd International Confer-
ence on Machine Learning, 313–320.
Guha, S.; Mishra, N.; Roy, G.; and Schrijvers, O. 2016. Ro-
bust random cut forest based anomaly detection on streams.
In Proceedings of the 33rd International Conference on Ma-
chine Learning, 2712–2721.
Haque, A.; Khan, L.; and Baron, M. 2016. SAND: semi-
supervised adaptive novel class detection and classification
over data stream. In Proceedings of the 30th AAAI Confer-
ence on Artificial Intelligence, 1652–1658.
Kuzborskij, I.; Orabona, F.; and Caputo, B. 2013. From N
to N+1: Multiclass Transfer Incremental Learning. In Pro-
ceedings of the 26th IEEE Conference on Computer Vision
and Pattern Recognition, 3358–3365.
Li, Y.; Guo, L.; and Zhou, Z. 2019. Towards safe weakly
supervised learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence.
Li, Y.; Wang, S.; and Zhou, Z. 2016. Graph quality
judgement: A large margin expedition. In Proceedings of
the 25th International Joint Conference on Artificial Intelli-
gence, 1725–1731.
Liang, D., and Li, Y. 2018. Lightweight label propaga-
tion for large-scale network data. In Proceedings of the
27th International Joint Conference on Artificial Intelli-
gence, 3421–3427.
Liberty, E. 2013. Simple and deterministic matrix sketch-
ing. In Proceedings of the 19th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, 581–588.
Liu, F. T.; Ting, K. M.; and Zhou, Z. 2008. Isolation forest.
In Proceedings of the 8th IEEE International Conference on
Data Mining, 413–422.
Ma, J., and Perkins, S. 2003. Time-series novelty detection
using one-class support vector machines. In Proceedings
of the International Joint Conference on Neural Networks,
1741–1745.
Masud, M. M.; Gao, J.; Khan, L.; Han, J.; and Thuraising-
ham, B. M. 2011. Classification and novel class detec-
tion in concept-drifting data streams under time constraints.
IEEE Transactions on Knowledge and Data Engineering
23(6):859–874.
Mu, X.; Zhu, F.; Du, J.; Lim, E.; and Zhou, Z. 2017. Stream-
ing classification with emerging new class by class matrix
sketching. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence, 2373–2379.
Mu, X.; Ting, K. M.; and Zhou, Z. 2017. Classification
under streaming emerging new classes: A solution using
completely-random trees. IEEE Transactions on Knowledge
and Data Engineering 29(8):1605–1618.

Na, G. S.; Kim, D. H.; and Yu, H. 2018. DILOF: ef-
fective and memory efficient local outlier detection in data
streams. In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, 1993–2002.
Ravi, S., and Diao, Q. 2016. Large scale distributed semi-
supervised learning using streaming approximation. In Pro-
ceedings of the 19th International Conference on Artificial
Intelligence and Statistics, 519–528.
Scheirer, W. J.; de Rezende Rocha, A.; Sapkota, A.; and
Boult, T. E. 2012. Toward open set recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence
35(7):1757–1772.
Settles, B. 2009. Active learning literature survey. Technical
Report 1648, University of Wisconsin–Madison.
Spinosa, E. J., and de Leon Ferreira, A. C. P. 2004. Svms
for novel class detection in bioinformatics. In III Brazilian
Workshop on Bioinformatics, 81–88.
Sun, Y.; Tang, K.; Minku, L. L.; Wang, S.; and Yao, X.
2016. Online ensemble learning of data streams with gradu-
ally evolved classes. IEEE Transactions on Knowledge and
Data Engineering 28(6):1532–1545.
Valko, M.; Kveton, B.; Huang, L.; and Ting, D. 2010. On-
line semi-supervised learning on quantized graphs. In Pro-
ceedings of the 26th Conference on Uncertainty in Artificial
Intelligence, 606–614.
Wagner, T.; Guha, S.; Kasiviswanathan, S.; and Mishra, N.
2018. Semi-supervised learning on data streams via tempo-
ral label propagation. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, 5095–5104.
Wei, T.; Guo, L.; Li, Y.; and Gao, W. 2018. Learning
safe multi-label prediction for weakly labeled data. Machine
Learning 107(4):703–725.
Zhou, Z., and Chen, Z. 2002. Hybrid decision tree. Knowl-
edge Based Systems 15(8):515–528.
Zhou, Z., and Li, M. 2010. Semi-supervised learning by dis-
agreement. Knowledge and Information Systems 24(3):415–
439.
Zhou, D.; Bousquet, O.; Lal, T. N.; Weston, J.; and
Schölkopf, B. 2003. Learning with local and global consis-
tency. In Advances in Neural Information Processing Sys-
tems 16 (NIPS 2003), 321–328.
Zhou, Z. 2016. Learnware: on the future of machine learn-
ing. Frontiers of Computer Science 10(4):589–590.
Zhu, X.; Ghahramani, Z.; and Lafferty, J. D. 2003. Semi-
supervised learning using gaussian fields and harmonic
functions. In Proceedings of the 20th International Con-
ference, 912–919.
Zhu, X.; Goldberg, A. B.; and Khot, T. 2009. Some
new directions in graph-based semi-supervised learning. In
Proceedings of the 2009 IEEE International Conference on
Multimedia and Expo, 1504–1507.
Zhu, Y.; Ting, K. M.; and Zhou, Z. 2018. Multi-label learn-
ing with emerging new labels. IEEE Transactions on Knowl-
edge and Data Engineering 30(10):1901–1914.

