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Abstract. Graph-based method is one important paradigm of semi-supervised
learning (SSL). Its learning performance typically relies on excellent graph con-
struction which, however, remains challenging for general cases. What is more
serious, constructing graph improperly may even deteriorate performance, which
means its performance is worse than that of its supervised counterpart with only
labeled data. For this reason, we consider learning a safe graph construction for
graph-based SSL in this work such that its performance will not significantly per-
form worse than its supervised counterpart. Our basic idea is that, given a data
distribution, there often exist some dense areas which are robust to graph con-
struction. We then propose to combine trustable subgraphs in these areas from a
set of candidate graphs to derive a safe graph, which remains to be a convex prob-
lem. Experimental results on a number of datasets show that our proposal is able
to effectively avoid performance degeneration compared with many graph-based
SSL methods.
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1 Introduction

Weakly supervised learning [32] is a core area in machine learning, among which semi-
supervised learning [8l31] is the representative problem. It aims to improve learning
performance via the usage of unlabeled data. During the past decades, extensive SSL
studies have been presented, among which one popular paradigm is known as Graph-
based SSL (GSSL) [5428129]. It is built on smooth assumption [8]], i.e., similar instances
share similar labels. Technically, it constructs a graph to encode the similarities between
labeled and unlabeled data, and then learns a label assignment for unlabeled data in the
goal that the inconsistency with respect to the constructed graph is minimized. GSSL is
an SSL extension of classic supervised nearest neighbor method [11] and now is found
useful for many diverse applications [20].

Nowadays it is widely accepted that the key for the success of GSSL is to construct
an excellent graph for given training data, rather than designing various learning or op-
timization algorithms [3l10/25I31]]. For this reason, many efforts have been devoted to
graph construction during the decades, e.g., [7U10l24]. Generally, excellent graph con-
struction remains challenging or an open problem, especially when domain knowledge
is scarce or insufficient to afford a reliable graph construction.



Beyond constructing excellent graphs, one another or more serious issue is that
constructing graph improperly may even deteriorate performance, which means its per-
formance is worse than that of its supervised counterpart (supervised nearest neighbor
method) with only labeled data [3I10/28l31]]. These phenomena clearly conflicts with
the original intention of GSSL. They will also encumber the deployment of GSSL in
reality, because the GSSL users typically expect that employing GSSL methods should
not be worse than direct supervised nearest neighbor methods. Therefore, it is highly
desirable to derive safe graph constructions, which would not be outperformed by its
supervised counterpart.

In order to tend this goal, in this work, we present a new GSSL method named
SAGRAPH (Safe GRAPH). The basic intuition for our proposal is that, given a data
distribution, there often exist some dense areas which are robust or insensitive to graph
construction. We refer to these areas as safe areas. For the cases where domain knowl-
edge is scarce or insufficient to construct an excellent graph, one may be more reliable
to construct a graph from the data in safe areas, so as to avoid the risk caused by an
improper graph construction.

Based on this intuition, SAGRAPH proposes to exploit a set of candidate graphs
and combines their trustable subgraphs in safe areas to derive a safe graph. To locate
the safe areas, SAGRAPH optimizes the worst nearest neighbor error on each train-
ing instance according to a set of candidate graphs, and then treats the unlabeled data
with the smallest nearest neighbor error (which implies that the prediction on these
unlabeled data is not sensitive to graph construction) as the data in safe areas. The fi-
nal optimization remains to be a convex problem. Experimental results on a number of
datasets demonstrate that our proposal clearly improves the safeness of GSSL compared
to many state-of-the-art methods.

In the following, we first introduce related work and then present our proposal. After
that, we give the experimental justification and finally we conclude this work.

2 Related Work

This work is related to two branches of studies. One is GSSL and the other is safe
SSL. In the aspect of GSSL, considerable attention has been paid since it was proposed,
which can be separated into two categories. The first one works on various optimiza-
tion algorithms, e.g. [45010011128l29] and the second works on graph construction,
e.g. [7010125]). There are also approaches, e.g., [LI30] proposed to optimize graph con-
struction as well as label assignment simultaneously. It is notable that, as the deepening
of research, graph construction is realized to be more important than the concrete opti-
mization algorithms [3I10/25l31]]. Nevertheless, generally, excellent graph construction
remains challenging for GSSL. Particularly, the research on explicitly constructing safe
graph, to our best knowledge, has not been thoroughly studied yet.

In the aspect of safe SSL, this line of research is raised in very recent. [[13}14] is one
early work to build safe semi-supervised SVMs. They optimize the worst-case perfor-
mance gain given a set of candidate low-density separators, showing that the proposed
S4VM (Safe Semi-Supervised SVM) is probably safe given that low-density assump-
tion [8] holds. Later, a modified cluster assumption is proposed by Wang et al. [26] to



safely utilize the unlabeled data. Krijthe and Loog [[12] present to build a safe inductive
semi-supervised classifier, which learns a projection of a supervised least square clas-
sifier from all possible semi-supervised least square ones. Apart from least square loss,
a safe method for complex performance measures such as Top-k precision, Fg score or
AUC is studied in [[16]]. Recently, Balsubramani and Freund [2]] propose to learn a robust
and high accurate prediction given that the ground-truth label assignment is restricted
to one specific candidate set. Li et al. [15] study the quality of graph via a large margin
principle and empirically achieve promising performance, while safe graph construc-
tion remains an open problem for GSSL. Besides, Wei et al. [27] study safe multi-label
learning with weakly labeled data. Niu et al., [22]] give a theoretical study about when
positive unlabeled learning outperforms positive negative learning. Li et al. [17] cast
the safe semi-supervised regression problem as a geometric projection issue with an
efficient algorithm. Most recently, a general formulation for safe weakly supervised
learning is proposed [9]. In this work, we consider a new scenario of safe SSL, i.e., safe
graph construction that has not been studied.

3 The Proposed Method

In this section, we first briefly introduce a background for GSSL, and then present our
idea and problem formulation, finally we derive its connection to safe graph construc-
tion and the learning algorithm.

3.1 Brief Background of GSSL

I+
j=l+1
(I <uw.y=1...,y°] € {0,1}¢is the output label vector for input instance x.
¢ denotes the total number of classes, where each instance belongs to one class, i.e.,
Sy =1

For GSSL, a graph G = (V, £, W) is constructed for both the labeled and unlabeled
data. Specifically, V is a set of [ + u nodes each corresponds to one instance. £ is a
set of undirected edges between node pairs. W € RUF#)x(+4) jg a nonnegative and
symmetric adjacency weighted matrix associating with £ in G, i.e., the weight w;; on
the edge e;; € & reflects the similarity between x; and x;. The larger the value w;;
is, the more similar x; and x; are. The goal of GSSL is to learn a label assignment
{y; }éj{ for training data such that the label inconsistency w.r.t. graph G is minimized.
It is cast as the following optimization.

In SSL, we have [ labeled instances {x;,y;}._; and u unlabeled instances {x;}
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It is worth noting that as stated in [[L1]], the objective of GSSL (i.e., Eq.(I)) is a
tight convex relaxation of supervised nearest neighbor error on training data. In other



words, GSSL is no more than an SSL extension of classic supervised nearest neighbor
algorithms for unlabeled data.
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Fig. 1. Illustration for safe areas. (a) Labeled data (empty and filled circles) and unlabeled data
(gray points). Given a data distribution, there exist some safe areas (b) that are robust to graph
construction, and some unsafe areas (c) that are highly sensitive to graph construction.

3.2 Problem Formulation

Conventional GSSL methods typically aim to derive a good performance through a
good graph construction. However, as mentioned previously, an inappropriate graph
construction will cause GSSL to degenerate performance. To alleviate such a challeng-
ing problem, in this work we propose to learn a safe graph construction and present
SAGRAPH. Unlike many GSSL methods which are developed on a certain graph, SA-
GRAPH considers to use a set of candidate graphs and exploits their trustable subgraphs
to avoid performance decrease caused by improper graphs.

Figure[T]illustrates the intuition of SAGRAPH. Given several labeled data and a large
amount of unlabeled data, there often exist some dense areas of data distribution which
are robust or insensitive to graph construction. We refer to these areas as safe areas and
the other areas as unsafe ones. Without sufficient domain knowledge to construct an
excellent graph, one should only exploit the data as well as their subgraphs in safe areas
to help improve the performance, and do not use the high risky data in unsafe areas.

The key is to locate safe areas. Remind that, according to the properties of safe ar-
eas, the data within safe areas should have small nearest neighbor errors with respect to
multiple graphs. This motivates us the formulation of safe graph construction. Specif-
ically, let {G; = (V,&, W)}, denote a set of candidate graphs, where 7 is the



number of graphs. Let er(y,)“* denote the nearest neighbor error of training data x;
on graph G, where it is defined as follows [L1]],

er(3) = 0057 # pugman )

0 is an indicator function. pft = argmaXpcy, . o} ]3?, where p; = [pjl, ..., p§] is the
prediction of x; via classic nearest neighbor algorithm, i.e.,

Zk:e‘jke& YEWjk

Zk:e]-k €&y Wik

p; =

_ We then aim to locate data in safe areas. Specifically, given a label assignment
Y = [¥1,¥2,.-.,Yi+u] for training data, the worst or equivalently maximal nearest
neighbor error of training data x; is,

max;—1, . r{er(y )G‘}

We then have our formulation for SAGRAPH as follows,

. I+u ~
min Zj:l+1 maxi=1,.., T{QT(Yj)Gt}
st yi =y, Vi=1,...,1,
e0,1]°Vj=1+1,....1 +u.
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The last equality is balance constraint [11] in order to avoid trivial solutions which
predict all training data to one class. However, the optimization in Eq.(2) is non-trivial,
as the form of er(y,)“* is non-continuous and non-convex. Inspired by the way in many
GSSL studies [11], a tight convex upper bound of er (yj)Gf is optimized alternatively,
and we have the following convex form for SAGRAPH,

I+u

min Z max {Zle et ||Yz 5’3‘”2)} €)

YEQ l+1

where (2 refers to the feasible set of Y ie.,
= {YN'\SIJ =yj,i=1,...,1
el0,1%i=1+1,...., 0+
Z;Zlfgﬁz Li=1,....0+u
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As Eq.@ shows, SAGRAPH considers the worst nearest neighbor error, rather than
direct nearest neighbor error in typical GSSL methods, tending to derive robust predic-
tions.



Algorithm 1 The SAGRAPH Method

Input: Few label instances {x;, y; }.—1, a large amount of unlabeled instances {x7}
of candidate graphs {G+ = (V, &, Wt)}tzl, a parameter ¢;
Output: A label assignment for labeled and unlabeled data Y =
[5’17 se- ,yl+u}'

1: Address the convex optimization problem in Eq.(3))

2: Denote Y* = [¥1,..., ¥/ as the optimal solution;

3: yj Vi 22:1 yi/l, uj = argmaxp=1,. g;h Ul = argmaXpso, g]*h Vi =1+

U+
4: For X B = {xp|gy" — 90" > €Vj = 1+ 1,...,1 + u}, predict x; to class u;;
Otherwise, predict x; with a direct supervised counterpart;
5: Return Y = V1, Vituls

s aset

3.3 Connection to Safe Graph Construction and Learning Algorithm

In this section we first present that Eq.(3) leads to a safe graph construction and then
present the algorithm for Eq.(3). Specifically, by introducing additional variables 8 =

[0141, - -, B14+4] for each unlabeled data, Eq. can be written in an equivalent way as

Eq.(),
I+u
min 0; 4
Yen.0 Zj:m ! @
< 2 _
s.t Zw e GUlyi —y507),ve=1,...,T.
By further introducing dual variables o = [y 1, - - - , LT, 091, ..., amT] each corre-

sponds to one constraint in Eq.(4)), and setting the derivatives with respect to 6 to zero,
Eq.(@) can be further rewritten as Eq.(5),

min f(Y) (5)
Yen
where
I4+u T
~t ~ = 12
f 7516% Z Zoé] It Z wij(”}’i*YjH)
j=l+1t=1 Zerijegt

T
M:{a|azo;zt71aj_l,t=1,Vj=l+1,...,l+u}.

We now show that Eq.(3)) can be regarded as conventional GSSL methods on a “safe”
graph. Specifically, let o* denote the optimal solution to Eq.(5). We define a new graph
G* = {V,&*, W*} as follows,

- eijeﬁ*ifandonlyifﬂt o1 >0&e; €86

- wy; Za7 1+ W;; if and only if e;; € £*



Table 1. Statistics of data sets.

Data # Dim. # Inst. # Clas.| Data # Dim. # Inst. # Clas. Data # Dim. # Inst. # Clas.

austra 15 690 2 coill 241 1,500 2 house 16 232 2
bci 117 400 2 |digitl 241 1,500 house-votes 16 435
usps 256 7,291 10 | dna 180 2,000 ionosphere 33 351

breastw 9 683 glass 9 214 liverDisorders 6 345

cleanl 166 476 heart 9 270 isolet 51 600
iris 4 150 wine 13 178 vehicle 18 846
wdbc 14 569 text 11,960 1,500 - - - -
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Refer to the definition of f (YN') and according to the property for optimal solution [21]],
we can rewrite Eq.(5) in a equivalent way as Eq.(6),
: * || = 12
min Y wilyi -l (©)

By comparing Eq.(6) with Eq.(I), it is not hard to find that Eq.(6) (or equivalently
Eq.(5)) is no more than a GSSL method based on a “safe” graph G* = {V,£*, W*}.

As for solving Eq.(5), it is easy to find that Eq.(5) is a convex optimization, and can
be addressed via state-of-the-art efficient optimization technique. Further note that the
objective of Eq[5]is a convex yet non-smooth, and thus gradient-based method is not
applicable. In this paper we adopt the projected subgradient optimal method [21]] for
the solving of Eq.(5), which was shown as the fastest first-order method with optimal
convergence rate. After solving Eq.(3)), the nearest neighbor errors within the safe areas
are small to various graphs and in contrast, the nearest neighbor errors within unsafe
areas are diverse. Therefore, the unlabeled data with high confident label assignment
are realized as the data in safe areas, while the rest ones are the data in unsafe areas.
Algorithm [[|summarizes the pseudo codes of SAGRAPH.

3.4 Efficient SGD Optimization

To optimize Eq.(3)), it is a saddle-point convex-concave optimization problem. Direct
subgradient approaches are generally slow due to a poor convergence rate [21]. We
adopt efficient stochastic gradient descent (SGD) proposed in [18] to solve Eq.(3).
Specifically, the key for SGD is to derive an unbiased estimator of full gradient. Let

T
g;(Y) =max > a;py Y al ([l — 9,1°)-
t=1

aeM X
z:eije&
Therefore, g;(Y) is the value of worst-case nearest neighbor error at the (j — I)-th

unlabeled instance, and f(Y) = Zé:f 1 g;(Y) is the total error. In SGD, the full
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gradient of f (?) is approximated by a gradient at a singe instance as it is unbiased to
full gradient:

Yr+1 = P?“Oj()(?r - anQj(?r)% V] =l+1,...,l+u (7

Y, is the solution in r-th iteration, 7 is the step size and Projo(Y) refers to the
projection of Y onto (2. Through SGD, one can update Y without calculating the
full gradient. Further note that the calculation of Vg;(Y) is cheap as it is only re-
lated to a small piece of nodes/instances (i.e., the set of nearest neighbors for each
unlabeled instance) and can be computed in a very efficient manner. Specifically, let
hia(Y) = Zs w!; (i — ¥51?) and mt = a:rglmaxhj’t(Yr). According to the
e EE t=1,...,

rule of subgradient [21], Vg;(Y,) = Vh;mt(Y,) is cheap to compute. It is not hard
to have the following convergence results by adopting the proof from [6]].

Theorem 1 Let B be the norm of Y (i.e., |[Y||a < B), and G be the upper bound of

Vg;(Y,) (ie, |[Vgj(Y,)|2 < G). By setting , = BIS  one can have

\/,'7 >

E[f(Y,)] - f(Y") < o@f)

Further more, it is easy to show that
Proposition 1 B = O((I 4+ u)c) and G is a small constant.

In practice the convergence rate is much better than the theoretical bound. The algorithm
often obtains a quite good approximate solution by passing the unlabeled instances in
less than five times. In other words, linear running time O(|E|) is usually sufficient
to obtain a good empirical result, where |E| is the maximal number of edges among
candidate graphs.

After solving Eq.(3)), the nearest neighbor errors within the safe areas are small to
various graphs and in contrast, the nearest neighbor errors within unsafe areas are di-
verse. Therefore, the unlabeled data with high confident label assignment are realized as
the data in safe areas, while the rest are the data in unsafe ones. Algorithmﬂ]summarizes
the pseudo codes of SAGRAPH.

4 Experiments

We evaluate our SAGRAPH method on a broad range of data sets in this section. The
size of dataset ranges from 150 to over 7,000, the dimension of instance ranges from
4 to more than 10,000, and the tasks cover both binary and multi-class classification.
Table [l summarizes the detail statistics of data sets.

4.1 Experimental Setup

The proposed method is compared with the following methods including one baseline
supervised method and four classic GSSL methods.



— k-NN: supervised k nearest neighbor method, which serves as the baseline method.
The key of this work is to show whether GSSL methods could always outperform
such a baseline method or not.

— GFHF: Gaussian Field Harmonic Function [29]. This method formulates GSSL
as gaussian field and uses belief propagation technique for inference, and finally a
closed-form solution is derived.

— CMN: Class Mass Normalization [29]. This method is a variant of GFHF. CMN
further enforces that its prediction on unlabeled data fits a balance constraint, avoid-
ing the cases that all predictions are categorized into one class.

— LGC: Local and Global Consistency [28]]. This method is motived by the spirit of
random walk. It adopts label propagation idea and formulates GSSL as a convex
problem with a simple iterative algorithm.

— SGT: Spectral Graph Transduction [11]. This method revisits GSSL as an exten-
sion form of the nearest neighbor algorithm. It then formulates GSSL as regularized
normalized cut form and provides an efficient algorithm via the spectral of Lapla-
cian matrix.

We adopt the code shared in the websiteﬂﬂ for the implementations of GFHF, CMN
and SGT. LGC is implemented by ourselves. For LGC and SGT, the parameters are set
to the ones recommended in the paper; For SAGRAPH, the parameter e is fixed to 0.3
on all cases.

It is notable that for all GSSL methods, graph construction may exist the cases that
some connected components do not contain any labeled data. In this case, inferring the
label for the unlabeled instances in these connected components is infeasible. In this
paper, we assign such unlabeled instances with the predictive results of supervised k-
nearest neighbor method. Note that such a strategy have already improved the safeness
of classic GSSL methods. For all the experiments, 10 instances are randomly selected as
labeled data for binary classification and 20 instances are randomly selected as labeled
data for multi-class classification. The rest are employed as unlabeled data. Experiments
repeat for 20 times and average accuracies with standard deviations are reported.

4.2 Comparison Results

We first compare with supervised 1 nearest neighbor (INN) algorithm. Compared GSSL
methods employ 1NN graph as the graph construction. For SAGRAPH method, 1NN,
3NN and 5NN graphs are adopted as candidate graphs. Since SGT focuses on binary
classification, it does not have results on multi-class data sets.

Table E] shows the compared results. As can be seen, in terms of win counts, i.e.,
the times where GSSL method significantly outperforms supervised 1NN method, SA-
GRAPH obtains the highest times compared with classic GSSL methods. More impor-
tantly, as Table [2] shows, compared GSSL methods did will significantly decrease per-
formance in some cases, while SAGRAPH does not suffer from such a deficiency on
these data sets. CMN does not work well, mainly because the class mass normalization

3http://pages.cs.wisc.edu/@jerryzhu/pub/harmonic_function.m
“lhttp://sgt.joachims.org./
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Table 2. The accuracies (with standard derivations) of supervised 1 nearest neighbor (1NN)
method and multiple GSSL methods. The number in bold (resp. underline) means that the per-
formance is significantly better (resp. worse) than supervised 1NN method (paired ¢-test at 95%
confidence level). The results of Win/Tie/Loss are also listed in the last row, and the methods with
the fewest losses are highlighted.

| Data_| INN GFHF CMN LLGC SGT SAGRAPH
aust | 634+£65 |635+£66 588460 63.6+£65 63.5+6.6| 634+£66
bei 513428 |513£29 452425 513+28 513+£28 | 512428

brea 933+39 933+41 783+45 933+41 933+41| 93.0+73
clea 58.6 £5.1 587+52 521+£57 587+£52 587+£52| 58456
coil 58.1 £6.3 582+63 563+64 582+63 582+63| 582+6.5
digi 77557 7715+57 752+£57 775+£57 T71.5+£57| 785+£92
hear 71.1 £5.6 712+£57 600+£55 71.1£57 712+£57| 71.6+£5.6
hous 89.0£23 879+3.0 702441 879+£3.0 83.0428|850+£12.7
houv 86.6 £ 3.1 863 £3.0 727+45 863+£3.0 863+29 | 87.3+3.0
iono 733 +6.2 758+6.7 511+£61 75767 75767 | 73.4+64
isol 913+ 4.1 913+40 844+39 913+40 913+40| 941+44
live 529 +32 52632 46.1+£39 526+£32 526+33| 528+33
text 59.8 £3.5 59.7+£35 572+£35 597+£35 597+35| 598+34
wdbc 81.2£5.6 813+53 651+52 813+£53 81.3+£53| 81.2+5.6

dna 548 £33 574+42 575+34 571+45 548 £3.6
glas 559+43 559+£39 559+£40 56.1£39 - 56242
iris 94.7+29 943+32 943+32 942+32 - 948 +£23
usps 644 +45 645+45 645+45 645+45 - 68.2 +54
vehi 48.1 £43 482 +£43 482+43 482+43 - 48.6 = 4.3
wine 920+ 1.8 90.54+2.0 90.5+2.0 90.5+2.0 - 925+15
GSSL methods against
INN:
win/tie/loss 3/15/2 2/3/15 3/15/2 1/12/1 4/16/0

is particularly suitable for one or very few connected components, which may be not
that cases when using 1NN graph.

Table |2 shows that compared GSSL methods only obtain comparative performance
with 1NN method. One reason is that INN graph is not so powerful for GSSL methods.
We then evaluate our method in comparison to supervised 5 nearest neighbor (1NN)
algorithm. Compared GSSL methods all employ SNN graph as the graph construction.
Following the same setup as before, INN, 3NN and SNN graphs are adopted as can-
didate graphs for SAGRAPH. SGT works on binary classification and does not have
results on multi-class data.

The comparison results are shown in Table E} As can be seen, in the case of SNN
graph, compared GSSL methods obtain more aggressive results, e.g., CMN works much
better because SNN graph leads to much less connected component. Even in this sit-
uation, SAGRAPH still achieves the highest times in terms of win counts. More worth



11

Table 3. The accuracies (with standard derivations) of SNN method and multiple GSSL methods.

|Data | 5NN | GFHF CMN LLGC SGT | SAGRAPH |
aust | 625452 |598443 59.6+45 59.6+43 56.1+6.1 | 628455
bi 503+£28 [498£21 500+£22 497+1.9 497421 | 503+£24

brea 902+34 [96.0£09 960+06 959+0.7 96.6+0.2 | 944+3.1
clea 534+34 |57.6t48 578+£48 S575+51 551£47 | 544+44
coil 476 £55 665+ 6.0 503+99 649+72 655+75 | 53.3+L8.2
digi 69.2 + 8.3 882+53 874+32 908+32 950+18 | 71.8£9.2
hear 70.2 £5.6 672+73 694+67 613£55 57.8+58 | 71.6+44
hous 89.7£1.8 840£8.6 883+23 784+114 895+14 |842+£13.0
houv 85.9+49 84.1+6.6 87717 827+75 883+04 | 846+74
iono 66.6 26 |752+91 77.2+£6.6 732+73 683£89 | 70.1+4.2
isol 91.7+40 |97.6+£13 98306 975+13 983+04 | 93.9+4.6
live 52.0 £ 4.5 5144+47 5214+34 524£37 515+£33 | 520+44
text 572+34 51.84+£2.0 642+53 564=£61 61.0+£11.0| 574+34
wdbc 77.6 £5.1 769+82 798+48 707+51 943+0.5 | 782+5.2

dna 564 +45 |525+£55 533+£04 533+04 - 56.6 + 4.6
glas 495+53 |54.6+38 545+41 52.0+538 - 52.7+ 4.9
iris 925+£26 |940+£35 950+18 92.6+3.0 - 93.5£2.6
usps 46.6 45 |675+74 797+75 86.8+4.9 - 493 +5.1
vehi 385+ 4.1 504 £56 51.9+50 499+55 - 41.9 £5.2
wine 937+£19 |942+£18 945+£1.0 93.7£30 - 939+1.8
GSSL methods against
5NN:
win/tie/loss 10/6/4 10/7/3 8/7/5 6/6/2 13/7/0

mentioning is that, all compared GSSL methods suffer much more serious issue on per-
formance degeneration than that in Table[3] While the proposal SAGRAPH still does not
decrease performance significantly in this situation.

We now summarize the results in Tables 2]and Bl

— Direct GSSL methods did decrease performance significantly in considerable cases,
no matter for sparse (INN) or denser (SNN) graphs. Our proposal SAGRAPH does
not suffer from this issue in all the cases reported in Tables[2]and 3]

— SAGRAPH achieves the highest times in terms of win counts in both Table [2] and
Table 3] showing that SAGRAPH owns a good ability in performance gain.

— In the aspect for the comparison between 1NN and SNN graphs, GSSL methods
with 5NN graph obtain more aggressive results (especially for CMN method), how-
ever, they also suffer from a more serious issue on performance degeneration.

4.3 Influence on Candidate Graphs

The situation of candidate graphs is one factor of our proposal. We further study the
influence on the candidate graphs for SAGRAPH. Specifically, we generate the candi-
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Table 4. Influence on the number of candidate graphs for the SAGRAPH method

l Win Counts ‘
‘ GFHF CMN LLGC SGT ‘ Number of candidate graphs in SAGRAPH ‘
| |23 ]4]s]6]7[8]9]10]
| 6 6 6 6 |7 7 71 7 7 1 7 1 7|

| Loss Counts ‘

GFHF CMN LLGC SGT Number of candidate graphs in SAGRAPH
2|3 |4|5]6]7]8]9]10
| 3 2 1 4 o 0o 0o 0 0 O 0 0 O |

date graphs as follows. For each training instance, the number of nearest neighbors is
randomly picked up from 1 to 9 with uniform distribution. In this case, INN, 3NN
and 5NN graphs are special cases of these candidate graphs. The number of candidate
graphs are set from 2 to 10. The experiments are conducted for 20 times and the win/loss
counts against supervised SNN method on binary classifications are shown in Table ]
The win/loss counts of compared GSSL methods are also listed for comparison. Table[d]
shows that, SAGRAPH consistently works quite well on the number of candidate graphs,
i.e., competitive win counts and much fewer loss counts. One reason is that the proposal
only exploits some reliable subgraphs of candidate ones, rather than full graphs.

5 Conclusion and Future Work

In this paper we propose to learn a safe graph for graph-based SSL (GSSL), which could
always outperform its supervised counterpart, i.e., classic nearest neighbor method.
This is motivated by a crucial issue of GSSL that GSSL with the use of inappropriate
graph construction may cause serious performance degeneration which could be even
worse than its supervised counterpart. To overcome this issue, in this work we present
an SAGRAPH method. The basic idea is that given a data distribution, there often exist
some dense areas (or safe areas) which are quite robust or less sensitive to graph con-
struction. One should exploits the data and the subgraphs in safe areas to learn a safe
graph. We then consequently formulate the above consideration as a convex optimiza-
tion and connect it to safe graph construction. Empirical studies on a number of data
sets verify that our proposal achieves promising performance on the safeness of GSSL.
In our work achieving safe graph construction requires additional costs, e.g., more
running time or smaller performance gain in some cases. One reason in that safe SSL
needs to always take the safeness of SSL into account, whereas previous SSL studies do
not have to take such kind of consideration and behave to be more aggressive. In future,
we will study scalable safe GSSL as well as some other effective safe SSL approaches
such as incorporating specific domain knowledge, e.g., known laws of physics [23]].
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