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Abstract. Graph-based method is one important paradigm of semi-supervised
learning (SSL). Its learning performance typically relies on excellent graph con-
struction which, however, remains challenging for general cases. What is more
serious, constructing graph improperly may even deteriorate performance, which
means its performance is worse than that of its supervised counterpart with only
labeled data. For this reason, we consider learning a safe graph construction for
graph-based SSL in this work such that its performance will not significantly per-
form worse than its supervised counterpart. Our basic idea is that, given a data
distribution, there often exist some dense areas which are robust to graph con-
struction. We then propose to combine trustable subgraphs in these areas from a
set of candidate graphs to derive a safe graph, which remains to be a convex prob-
lem. Experimental results on a number of datasets show that our proposal is able
to effectively avoid performance degeneration compared with many graph-based
SSL methods.
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1 Introduction

Weakly supervised learning [32] is a core area in machine learning, among which semi-
supervised learning [8,31] is the representative problem. It aims to improve learning
performance via the usage of unlabeled data. During the past decades, extensive SSL
studies have been presented, among which one popular paradigm is known as Graph-
based SSL (GSSL) [5,28,29]. It is built on smooth assumption [8], i.e., similar instances
share similar labels. Technically, it constructs a graph to encode the similarities between
labeled and unlabeled data, and then learns a label assignment for unlabeled data in the
goal that the inconsistency with respect to the constructed graph is minimized. GSSL is
an SSL extension of classic supervised nearest neighbor method [11] and now is found
useful for many diverse applications [20].

Nowadays it is widely accepted that the key for the success of GSSL is to construct
an excellent graph for given training data, rather than designing various learning or op-
timization algorithms [3,10,25,31]. For this reason, many efforts have been devoted to
graph construction during the decades, e.g., [7,10,24]. Generally, excellent graph con-
struction remains challenging or an open problem, especially when domain knowledge
is scarce or insufficient to afford a reliable graph construction.
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Beyond constructing excellent graphs, one another or more serious issue is that
constructing graph improperly may even deteriorate performance, which means its per-
formance is worse than that of its supervised counterpart (supervised nearest neighbor
method) with only labeled data [3,10,28,31]. These phenomena clearly conflicts with
the original intention of GSSL. They will also encumber the deployment of GSSL in
reality, because the GSSL users typically expect that employing GSSL methods should
not be worse than direct supervised nearest neighbor methods. Therefore, it is highly
desirable to derive safe graph constructions, which would not be outperformed by its
supervised counterpart.

In order to tend this goal, in this work, we present a new GSSL method named
SAGRAPH (Safe GRAPH). The basic intuition for our proposal is that, given a data
distribution, there often exist some dense areas which are robust or insensitive to graph
construction. We refer to these areas as safe areas. For the cases where domain knowl-
edge is scarce or insufficient to construct an excellent graph, one may be more reliable
to construct a graph from the data in safe areas, so as to avoid the risk caused by an
improper graph construction.

Based on this intuition, SAGRAPH proposes to exploit a set of candidate graphs
and combines their trustable subgraphs in safe areas to derive a safe graph. To locate
the safe areas, SAGRAPH optimizes the worst nearest neighbor error on each train-
ing instance according to a set of candidate graphs, and then treats the unlabeled data
with the smallest nearest neighbor error (which implies that the prediction on these
unlabeled data is not sensitive to graph construction) as the data in safe areas. The fi-
nal optimization remains to be a convex problem. Experimental results on a number of
datasets demonstrate that our proposal clearly improves the safeness of GSSL compared
to many state-of-the-art methods.

In the following, we first introduce related work and then present our proposal. After
that, we give the experimental justification and finally we conclude this work.

2 Related Work

This work is related to two branches of studies. One is GSSL and the other is safe
SSL. In the aspect of GSSL, considerable attention has been paid since it was proposed,
which can be separated into two categories. The first one works on various optimiza-
tion algorithms, e.g. [4,5,10,11,28,29] and the second works on graph construction,
e.g. [7,10,25]. There are also approaches, e.g., [1,30] proposed to optimize graph con-
struction as well as label assignment simultaneously. It is notable that, as the deepening
of research, graph construction is realized to be more important than the concrete opti-
mization algorithms [3,10,25,31]. Nevertheless, generally, excellent graph construction
remains challenging for GSSL. Particularly, the research on explicitly constructing safe
graph, to our best knowledge, has not been thoroughly studied yet.

In the aspect of safe SSL, this line of research is raised in very recent. [13,14] is one
early work to build safe semi-supervised SVMs. They optimize the worst-case perfor-
mance gain given a set of candidate low-density separators, showing that the proposed
S4VM (Safe Semi-Supervised SVM) is probably safe given that low-density assump-
tion [8] holds. Later, a modified cluster assumption is proposed by Wang et al. [26] to
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safely utilize the unlabeled data. Krijthe and Loog [12] present to build a safe inductive
semi-supervised classifier, which learns a projection of a supervised least square clas-
sifier from all possible semi-supervised least square ones. Apart from least square loss,
a safe method for complex performance measures such as Top-k precision, Fβ score or
AUC is studied in [16]. Recently, Balsubramani and Freund [2] propose to learn a robust
and high accurate prediction given that the ground-truth label assignment is restricted
to one specific candidate set. Li et al. [15] study the quality of graph via a large margin
principle and empirically achieve promising performance, while safe graph construc-
tion remains an open problem for GSSL. Besides, Wei et al. [27] study safe multi-label
learning with weakly labeled data. Niu et al., [22] give a theoretical study about when
positive unlabeled learning outperforms positive negative learning. Li et al. [17] cast
the safe semi-supervised regression problem as a geometric projection issue with an
efficient algorithm. Most recently, a general formulation for safe weakly supervised
learning is proposed [9]. In this work, we consider a new scenario of safe SSL, i.e., safe
graph construction that has not been studied.

3 The Proposed Method

In this section, we first briefly introduce a background for GSSL, and then present our
idea and problem formulation, finally we derive its connection to safe graph construc-
tion and the learning algorithm.

3.1 Brief Background of GSSL

In SSL, we have l labeled instances {xi,yi}li=1 and u unlabeled instances {xj}l+uj=l+1

(l � u). y = [y1, . . . , yc] ∈ {0, 1}c is the output label vector for input instance x.
c denotes the total number of classes, where each instance belongs to one class, i.e.,∑c
h=1 y

h = 1.
For GSSL, a graphG = (V, E ,W) is constructed for both the labeled and unlabeled

data. Specifically, V is a set of l + u nodes each corresponds to one instance. E is a
set of undirected edges between node pairs. W ∈ R(l+u)×(l+u) is a nonnegative and
symmetric adjacency weighted matrix associating with E in G, i.e., the weight wij on
the edge eij ∈ E reflects the similarity between xi and xj . The larger the value wij
is, the more similar xi and xj are. The goal of GSSL is to learn a label assignment
{ỹj}l+uj=1 for training data such that the label inconsistency w.r.t. graph G is minimized.
It is cast as the following optimization.

min
{ỹj}l+u

j=1

∑
eij∈E

wij‖ỹi − ỹj‖2

s.t. ỹj ∈ [0, 1]c,

c∑
h=1

ỹhj = 1,∀j = l + 1, . . . , l + u.

ỹi = yi,∀i = 1, . . . , l. (1)

It is worth noting that as stated in [11], the objective of GSSL (i.e., Eq.(1)) is a
tight convex relaxation of supervised nearest neighbor error on training data. In other
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words, GSSL is no more than an SSL extension of classic supervised nearest neighbor
algorithms for unlabeled data.

(a)
(b)

(c)

Fig. 1. Illustration for safe areas. (a) Labeled data (empty and filled circles) and unlabeled data
(gray points). Given a data distribution, there exist some safe areas (b) that are robust to graph
construction, and some unsafe areas (c) that are highly sensitive to graph construction.

3.2 Problem Formulation

Conventional GSSL methods typically aim to derive a good performance through a
good graph construction. However, as mentioned previously, an inappropriate graph
construction will cause GSSL to degenerate performance. To alleviate such a challeng-
ing problem, in this work we propose to learn a safe graph construction and present
SAGRAPH. Unlike many GSSL methods which are developed on a certain graph, SA-
GRAPH considers to use a set of candidate graphs and exploits their trustable subgraphs
to avoid performance decrease caused by improper graphs.

Figure 1 illustrates the intuition of SAGRAPH. Given several labeled data and a large
amount of unlabeled data, there often exist some dense areas of data distribution which
are robust or insensitive to graph construction. We refer to these areas as safe areas and
the other areas as unsafe ones. Without sufficient domain knowledge to construct an
excellent graph, one should only exploit the data as well as their subgraphs in safe areas
to help improve the performance, and do not use the high risky data in unsafe areas.

The key is to locate safe areas. Remind that, according to the properties of safe ar-
eas, the data within safe areas should have small nearest neighbor errors with respect to
multiple graphs. This motivates us the formulation of safe graph construction. Specif-
ically, let {Gt = (V, Et,Wt)}Tt=1 denote a set of candidate graphs, where T is the
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number of graphs. Let er(ỹj)Gt denote the nearest neighbor error of training data xj
on graph Gt, where it is defined as follows [11],

er(ỹj)
Gt = δ(pGt

j 6= arg max
h∈{1,...,c}

ỹhj )

δ is an indicator function. pGt
j = arg maxh∈{1,...,c} p̄

h
j , where p̄j = [p1j , . . . , p

c
j ] is the

prediction of xj via classic nearest neighbor algorithm, i.e.,

p̄j =

∑
k:ejk∈Et ỹkwj,k∑
k:ejk∈Et wjk

We then aim to locate data in safe areas. Specifically, given a label assignment
Ỹ = [ỹ1, ỹ2, . . . , ỹl+u] for training data, the worst or equivalently maximal nearest
neighbor error of training data xj is,

maxt=1,...,T {er(ỹj)Gt}.

We then have our formulation for SAGRAPH as follows,

min
Ỹ

∑l+u

j=l+1
maxt=1,...,T {er(ỹj)Gt}

s.t. ỹi = yi,∀i = 1, . . . , l,

ỹj ∈ [0, 1]c,∀j = l + 1, . . . , l + u.∑c

h=1
ỹhi = 1,∀i = 1, . . . , l + u.∑l+u

j=l+1
ỹj/u =

∑l

i=1
ỹi/l. (2)

The last equality is balance constraint [11] in order to avoid trivial solutions which
predict all training data to one class. However, the optimization in Eq.(2) is non-trivial,
as the form of er(ỹj)Gt is non-continuous and non-convex. Inspired by the way in many
GSSL studies [11], a tight convex upper bound of er(ỹj)Gt is optimized alternatively,
and we have the following convex form for SAGRAPH,

min
Ỹ∈Ω

l+u∑
j=l+1

max
t=1,...,T

{
∑

i:eij∈Et
w̃tij
(
‖ỹi − ỹj‖2

)
} (3)

where Ω refers to the feasible set of Ỹ, i.e.,

Ω = {Ỹ|ỹj = yj , j = 1, . . . , l;

ỹj ∈ [0, 1]c, j = l + 1, . . . , l + u;∑c

h=1
ỹhi = 1, i = 1, . . . , l + u;∑l+u

j=l+1
ỹj/u =

∑l

i=1
ỹi/l}.

As Eq.(3) shows, SAGRAPH considers the worst nearest neighbor error, rather than
direct nearest neighbor error in typical GSSL methods, tending to derive robust predic-
tions.
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Algorithm 1 The SAGRAPH Method
Input: Few label instances {xi,yi}li=1, a large amount of unlabeled instances {xj}l+u

j=l+1, a set
of candidate graphs {Gt = (V, Et,Wt)}Tt=1, a parameter ε;
Output: A label assignment for labeled and unlabeled data Ŷ =
[ŷ1, . . . , ŷl+u];
1: Address the convex optimization problem in Eq.(5)
2: Denote Ỹ∗ = [ỹ∗1 , . . . , ỹ

∗
l+u] as the optimal solution;

3: ỹ∗j = ỹ∗j −
∑l

i=1 ỹi/l, uj = arg maxh=1,...,c ỹ
∗,h
j , ūj = arg maxh 6=uj ỹ

∗,h
j , ∀j = l +

1, . . . , l + u;
4: For xj ∈ B = {xk|ỹ∗,uk

k − ỹ∗,ūk
k ≥ ε,∀j = l + 1, . . . , l + u}, predict xj to class uj ;

Otherwise, predict xj with a direct supervised counterpart;
5: Return Ŷ = [ŷ1, . . . , ŷl+u];

3.3 Connection to Safe Graph Construction and Learning Algorithm

In this section we first present that Eq.(3) leads to a safe graph construction and then
present the algorithm for Eq.(3). Specifically, by introducing additional variables θ =
[θl+1, . . . , θl+u] for each unlabeled data, Eq.(3) can be written in an equivalent way as
Eq.(4),

min
Ỹ∈Ω,θ

∑l+u

j=l+1
θj (4)

s.t θj ≥
∑

i:eij∈Et
w̃tij
(
‖ỹi − ỹj‖2

)
,∀t = 1, . . . , T.

By further introducing dual variables α = [α1,1, . . . , α1,T , α2,1, . . . , αu,T ] each corre-
sponds to one constraint in Eq.(4), and setting the derivatives with respect to θ to zero,
Eq.(4) can be further rewritten as Eq.(5),

min
Ỹ∈Ω

f(Ỹ) (5)

where

f(Ỹ) , max
α∈M

l+u∑
j=l+1

T∑
t=1

αj−l,t
∑

i:eij∈Et

w̃tij
(
‖ỹi − ỹj‖2

)

M = {α|α ≥ 0;
∑T

t=1
αj−l,t = 1,∀j = l + 1, . . . , l + u}.

We now show that Eq.(5) can be regarded as conventional GSSL methods on a “safe”
graph. Specifically, let α∗ denote the optimal solution to Eq.(5). We define a new graph
G∗ = {V, E∗,W∗} as follows,

– eij ∈ E∗ if and only if ∃t, α∗j−l,t > 0 & eij ∈ Et

– w∗ij =
T∑
t=1

α∗j−l,tw̃
t
ij if and only if eij ∈ E∗
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Table 1. Statistics of data sets.

Data # Dim. # Inst. # Clas. Data # Dim. # Inst. # Clas. Data # Dim. # Inst. # Clas.

austra 15 690 2 coil 241 1,500 2 house 16 232 2
bci 117 400 2 digit1 241 1,500 2 house-votes 16 435 2

usps 256 7,291 10 dna 180 2,000 3 ionosphere 33 351 2
breastw 9 683 2 glass 9 214 6 liverDisorders 6 345 2
clean1 166 476 2 heart 9 270 2 isolet 51 600 2

iris 4 150 3 wine 13 178 3 vehicle 18 846 4
wdbc 14 569 2 text 11,960 1,500 2 - - - -

Refer to the definition of f(Ỹ) and according to the property for optimal solution [21],
we can rewrite Eq.(5) in a equivalent way as Eq.(6),

min
Ỹ∈Ω

∑
eij∈E∗

w∗ij‖ỹi − ỹj‖2. (6)

By comparing Eq.(6) with Eq.(1), it is not hard to find that Eq.(6) (or equivalently
Eq.(5)) is no more than a GSSL method based on a “safe” graph G∗ = {V, E∗,W∗}.

As for solving Eq.(5), it is easy to find that Eq.(5) is a convex optimization, and can
be addressed via state-of-the-art efficient optimization technique. Further note that the
objective of Eq.5 is a convex yet non-smooth, and thus gradient-based method is not
applicable. In this paper we adopt the projected subgradient optimal method [21] for
the solving of Eq.(5), which was shown as the fastest first-order method with optimal
convergence rate. After solving Eq.(5), the nearest neighbor errors within the safe areas
are small to various graphs and in contrast, the nearest neighbor errors within unsafe
areas are diverse. Therefore, the unlabeled data with high confident label assignment
are realized as the data in safe areas, while the rest ones are the data in unsafe areas.
Algorithm 1 summarizes the pseudo codes of SAGRAPH.

3.4 Efficient SGD Optimization

To optimize Eq.(5), it is a saddle-point convex-concave optimization problem. Direct
subgradient approaches are generally slow due to a poor convergence rate [21]. We
adopt efficient stochastic gradient descent (SGD) proposed in [18] to solve Eq.(5).
Specifically, the key for SGD is to derive an unbiased estimator of full gradient. Let

gj(Ỹ) = max
α∈M

T∑
t=1

αj−l,t
∑

i:eij∈Et

w̃tij
(
‖ỹi − ỹj‖2

)
.

Therefore, gj(Ỹ) is the value of worst-case nearest neighbor error at the (j − l)-th
unlabeled instance, and f(Ỹ) =

∑l+u
j=l+1 gj(Ỹ) is the total error. In SGD, the full
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gradient of f(Ỹ) is approximated by a gradient at a singe instance as it is unbiased to
full gradient:

Ỹr+1 := ProjΩ(Ỹr − ηr∇gj(Ỹr)), ∀j = l + 1, . . . , l + u (7)

Ỹr is the solution in r-th iteration, ηr is the step size and ProjΩ(Y) refers to the
projection of Y onto Ω. Through SGD, one can update Ỹ without calculating the
full gradient. Further note that the calculation of ∇gj(Ỹ) is cheap as it is only re-
lated to a small piece of nodes/instances (i.e., the set of nearest neighbors for each
unlabeled instance) and can be computed in a very efficient manner. Specifically, let
hj,t(Ỹ) =

∑
i:eij∈Et

w̃tij
(
‖ỹi − ỹj‖2

)
and mt = arg max

t=1,...,T
hj,t(Ỹr). According to the

rule of subgradient [21], ∇gj(Ỹr) = ∇hj,mt(Ỹr) is cheap to compute. It is not hard
to have the following convergence results by adopting the proof from [6].

Theorem 1 Let B be the norm of Ỹ (i.e., ‖Ỹ‖2 ≤ B), and G be the upper bound of
∇gj(Ỹr) (i.e., ‖∇gj(Ỹr)‖2 ≤ G). By setting ηr = B/G√

r
, one can have

E[f(Ỹr)]− f(Ỹ∗) ≤ O(
GB√
r

)

Further more, it is easy to show that

Proposition 1 B = O((l + u)c) and G is a small constant.

In practice the convergence rate is much better than the theoretical bound. The algorithm
often obtains a quite good approximate solution by passing the unlabeled instances in
less than five times. In other words, linear running time O(|E|) is usually sufficient
to obtain a good empirical result, where |E| is the maximal number of edges among
candidate graphs.

After solving Eq.(5), the nearest neighbor errors within the safe areas are small to
various graphs and in contrast, the nearest neighbor errors within unsafe areas are di-
verse. Therefore, the unlabeled data with high confident label assignment are realized as
the data in safe areas, while the rest are the data in unsafe ones. Algorithm 1 summarizes
the pseudo codes of SAGRAPH.

4 Experiments

We evaluate our SAGRAPH method on a broad range of data sets in this section. The
size of dataset ranges from 150 to over 7,000, the dimension of instance ranges from
4 to more than 10,000, and the tasks cover both binary and multi-class classification.
Table 1 summarizes the detail statistics of data sets.

4.1 Experimental Setup

The proposed method is compared with the following methods including one baseline
supervised method and four classic GSSL methods.
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– k-NN: supervised k nearest neighbor method, which serves as the baseline method.
The key of this work is to show whether GSSL methods could always outperform
such a baseline method or not.

– GFHF: Gaussian Field Harmonic Function [29]. This method formulates GSSL
as gaussian field and uses belief propagation technique for inference, and finally a
closed-form solution is derived.

– CMN: Class Mass Normalization [29]. This method is a variant of GFHF. CMN
further enforces that its prediction on unlabeled data fits a balance constraint, avoid-
ing the cases that all predictions are categorized into one class.

– LGC: Local and Global Consistency [28]. This method is motived by the spirit of
random walk. It adopts label propagation idea and formulates GSSL as a convex
problem with a simple iterative algorithm.

– SGT: Spectral Graph Transduction [11]. This method revisits GSSL as an exten-
sion form of the nearest neighbor algorithm. It then formulates GSSL as regularized
normalized cut form and provides an efficient algorithm via the spectral of Lapla-
cian matrix.

We adopt the code shared in the websites34 for the implementations of GFHF, CMN
and SGT. LGC is implemented by ourselves. For LGC and SGT, the parameters are set
to the ones recommended in the paper; For SAGRAPH, the parameter ε is fixed to 0.3
on all cases.

It is notable that for all GSSL methods, graph construction may exist the cases that
some connected components do not contain any labeled data. In this case, inferring the
label for the unlabeled instances in these connected components is infeasible. In this
paper, we assign such unlabeled instances with the predictive results of supervised k-
nearest neighbor method. Note that such a strategy have already improved the safeness
of classic GSSL methods. For all the experiments, 10 instances are randomly selected as
labeled data for binary classification and 20 instances are randomly selected as labeled
data for multi-class classification. The rest are employed as unlabeled data. Experiments
repeat for 20 times and average accuracies with standard deviations are reported.

4.2 Comparison Results

We first compare with supervised 1 nearest neighbor (1NN) algorithm. Compared GSSL
methods employ 1NN graph as the graph construction. For SAGRAPH method, 1NN,
3NN and 5NN graphs are adopted as candidate graphs. Since SGT focuses on binary
classification, it does not have results on multi-class data sets.

Table 2 shows the compared results. As can be seen, in terms of win counts, i.e.,
the times where GSSL method significantly outperforms supervised 1NN method, SA-
GRAPH obtains the highest times compared with classic GSSL methods. More impor-
tantly, as Table 2 shows, compared GSSL methods did will significantly decrease per-
formance in some cases, while SAGRAPH does not suffer from such a deficiency on
these data sets. CMN does not work well, mainly because the class mass normalization

3 http://pages.cs.wisc.edu/œjerryzhu/pub/harmonic_function.m
4 http://sgt.joachims.org./

http://pages.cs.wisc.edu/˜jerryzhu/pub/harmonic_function.m
http://sgt.joachims.org./
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Table 2. The accuracies (with standard derivations) of supervised 1 nearest neighbor (1NN)
method and multiple GSSL methods. The number in bold (resp. underline) means that the per-
formance is significantly better (resp. worse) than supervised 1NN method (paired t-test at 95%
confidence level). The results of Win/Tie/Loss are also listed in the last row, and the methods with
the fewest losses are highlighted.

Data 1NN GFHF CMN LLGC SGT SAGRAPH

aust 63.4 ± 6.5 63.5 ± 6.6 58.8 ± 6.0 63.6 ± 6.5 63.5 ± 6.6 63.4 ± 6.6
bci 51.3 ± 2.8 51.3 ± 2.9 45.2 ± 2.5 51.3 ± 2.8 51.3 ± 2.8 51.2 ± 2.8
brea 93.3 ± 3.9 93.3 ± 4.1 78.3 ± 4.5 93.3 ± 4.1 93.3 ± 4.1 93.0 ± 7.3
clea 58.6 ± 5.1 58.7 ± 5.2 52.1 ± 5.7 58.7 ± 5.2 58.7 ± 5.2 58.4 ± 5.6
coil 58.1 ± 6.3 58.2 ± 6.3 56.3 ± 6.4 58.2 ± 6.3 58.2 ± 6.3 58.2 ± 6.5
digi 77.5 ± 5.7 77.5 ± 5.7 75.2 ± 5.7 77.5 ± 5.7 77.5 ± 5.7 78.5 ± 9.2
hear 71.1 ± 5.6 71.2 ± 5.7 60.0 ± 5.5 71.1 ± 5.7 71.2 ± 5.7 71.6 ± 5.6
hous 89.0 ± 2.3 87.9 ± 3.0 70.2 ± 4.1 87.9 ± 3.0 88.0 ± 2.8 85.0 ± 12.7
houv 86.6 ± 3.1 86.3 ± 3.0 72.7 ± 4.5 86.3 ± 3.0 86.3 ± 2.9 87.3 ± 3.0
iono 73.3 ± 6.2 75.8 ± 6.7 51.1 ± 6.1 75.7 ± 6.7 75.7 ± 6.7 73.4 ± 6.4
isol 91.3 ± 4.1 91.3 ± 4.0 84.4 ± 3.9 91.3 ± 4.0 91.3 ± 4.0 94.1 ± 4.4
live 52.9 ± 3.2 52.6 ± 3.2 46.1 ± 3.9 52.6 ± 3.2 52.6 ± 3.3 52.8 ± 3.3
text 59.8 ± 3.5 59.7 ± 3.5 57.2 ± 3.5 59.7 ± 3.5 59.7 ± 3.5 59.8 ± 3.4
wdbc 81.2 ± 5.6 81.3 ± 5.3 65.1 ± 5.2 81.3 ± 5.3 81.3 ± 5.3 81.2 ± 5.6
dna 54.8 ± 3.3 57.4 ± 4.2 57.5 ± 3.4 57.1 ± 4.5 - 54.8 ± 3.6
glas 55.9 ± 4.3 55.9 ± 3.9 55.9 ± 4.0 56.1 ± 3.9 - 56.2 ± 4.2
iris 94.7 ± 2.9 94.3 ± 3.2 94.3 ± 3.2 94.2 ± 3.2 - 94.8 ± 2.3
usps 64.4 ± 4.5 64.5 ± 4.5 64.5 ± 4.5 64.5 ± 4.5 - 68.2 ± 5.4
vehi 48.1 ± 4.3 48.2 ± 4.3 48.2 ± 4.3 48.2 ± 4.3 - 48.6 ± 4.3
wine 92.0 ± 1.8 90.5 ± 2.0 90.5 ± 2.0 90.5 ± 2.0 - 92.5 ± 1.5

GSSL methods against
1NN:

win/tie/loss 3/15/2 2/3/15 3/15/2 1/12/1 4/16/0

is particularly suitable for one or very few connected components, which may be not
that cases when using 1NN graph.

Table 2 shows that compared GSSL methods only obtain comparative performance
with 1NN method. One reason is that 1NN graph is not so powerful for GSSL methods.
We then evaluate our method in comparison to supervised 5 nearest neighbor (1NN)
algorithm. Compared GSSL methods all employ 5NN graph as the graph construction.
Following the same setup as before, 1NN, 3NN and 5NN graphs are adopted as can-
didate graphs for SAGRAPH. SGT works on binary classification and does not have
results on multi-class data.

The comparison results are shown in Table 3. As can be seen, in the case of 5NN
graph, compared GSSL methods obtain more aggressive results, e.g., CMN works much
better because 5NN graph leads to much less connected component. Even in this sit-
uation, SAGRAPH still achieves the highest times in terms of win counts. More worth



11

Table 3. The accuracies (with standard derivations) of 5NN method and multiple GSSL methods.

Data 5NN GFHF CMN LLGC SGT SAGRAPH

aust 62.5 ± 5.2 59.8 ± 4.3 59.6 ± 4.5 59.6 ± 4.3 56.1 ± 6.1 62.8 ± 5.5
bci 50.3 ± 2.8 49.8 ± 2.1 50.0 ± 2.2 49.7 ± 1.9 49.7 ± 2.1 50.3 ± 2.4
brea 90.2 ± 3.4 96.0 ± 0.9 96.0 ± 0.6 95.9 ± 0.7 96.6 ± 0.2 94.4 ± 3.1
clea 53.4 ± 3.4 57.6 ± 4.8 57.8 ± 4.8 57.5 ± 5.1 55.1 ± 4.7 54.4 ± 4.4
coil 47.6 ± 5.5 66.5 ± 6.0 50.3 ± 9.9 64.9 ± 7.2 65.5 ± 7.5 53.3 ± 8.2
digi 69.2 ± 8.3 88.2 ± 5.3 87.4 ± 3.2 90.8 ± 3.2 95.0 ± 1.8 71.8 ± 9.2
hear 70.2 ± 5.6 67.2 ± 7.3 69.4 ± 6.7 61.3 ± 5.5 57.8 ± 5.8 71.6 ± 4.4
hous 89.7 ± 1.8 84.0 ± 8.6 88.3 ± 2.3 78.4 ± 11.4 89.5 ± 1.4 84.2 ± 13.0
houv 85.9 ± 4.9 84.1 ± 6.6 87.7 ± 1.7 82.7 ± 7.5 88.3 ± 0.4 84.6 ± 7.4
iono 66.6 ± 2.6 75.2 ± 9.1 77.2 ± 6.6 73.2 ± 7.3 68.3 ± 8.9 70.1 ± 4.2
isol 91.7 ± 4.0 97.6 ± 1.3 98.3 ± 0.6 97.5 ± 1.3 98.3 ± 0.4 93.9 ± 4.6
live 52.0 ± 4.5 51.4 ± 4.7 52.1 ± 3.4 52.4 ± 3.7 51.5 ± 3.3 52.0 ± 4.4
text 57.2 ± 3.4 51.8 ± 2.0 64.2 ± 5.3 56.4 ± 6.1 61.0 ± 11.0 57.4 ± 3.4
wdbc 77.6 ± 5.1 76.9 ± 8.2 79.8 ± 4.8 70.7 ± 5.1 94.3 ± 0.5 78.2 ± 5.2
dna 56.4 ± 4.5 52.5 ± 5.5 53.3 ± 0.4 53.3 ± 0.4 - 56.6 ± 4.6
glas 49.5 ± 5.3 54.6 ± 3.8 54.5 ± 4.1 52.0 ± 5.8 - 52.7 ± 4.9
iris 92.5 ± 2.6 94.0 ± 3.5 95.0 ± 1.8 92.6 ± 3.0 - 93.5 ± 2.6
usps 46.6 ± 4.5 67.5 ± 7.4 79.7 ± 7.5 86.8 ± 4.9 - 49.3 ± 5.1
vehi 38.5 ± 4.1 50.4 ± 5.6 51.9 ± 5.0 49.9 ± 5.5 - 41.9 ± 5.2
wine 93.7 ± 1.9 94.2 ± 1.8 94.5 ± 1.0 93.7 ± 3.0 - 93.9 ± 1.8

GSSL methods against
5NN:

win/tie/loss 10/6/4 10/7/3 8/7/5 6/6/2 13/7/0

mentioning is that, all compared GSSL methods suffer much more serious issue on per-
formance degeneration than that in Table 3. While the proposal SAGRAPH still does not
decrease performance significantly in this situation.

We now summarize the results in Tables 2 and 3.

– Direct GSSL methods did decrease performance significantly in considerable cases,
no matter for sparse (1NN) or denser (5NN) graphs. Our proposal SAGRAPH does
not suffer from this issue in all the cases reported in Tables 2 and 3.

– SAGRAPH achieves the highest times in terms of win counts in both Table 2 and
Table 3, showing that SAGRAPH owns a good ability in performance gain.

– In the aspect for the comparison between 1NN and 5NN graphs, GSSL methods
with 5NN graph obtain more aggressive results (especially for CMN method), how-
ever, they also suffer from a more serious issue on performance degeneration.

4.3 Influence on Candidate Graphs

The situation of candidate graphs is one factor of our proposal. We further study the
influence on the candidate graphs for SAGRAPH. Specifically, we generate the candi-
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Table 4. Influence on the number of candidate graphs for the SAGRAPH method

Win Counts

GFHF CMN LLGC SGT Number of candidate graphs in SAGRAPH

2 3 4 5 6 7 8 9 10

6 6 6 6 7 7 7 7 7 7 7 7 7

Loss Counts

GFHF CMN LLGC SGT Number of candidate graphs in SAGRAPH

2 3 4 5 6 7 8 9 10

3 2 1 4 0 0 0 0 0 0 0 0 0

date graphs as follows. For each training instance, the number of nearest neighbors is
randomly picked up from 1 to 9 with uniform distribution. In this case, 1NN, 3NN
and 5NN graphs are special cases of these candidate graphs. The number of candidate
graphs are set from 2 to 10. The experiments are conducted for 20 times and the win/loss
counts against supervised 5NN method on binary classifications are shown in Table 4.
The win/loss counts of compared GSSL methods are also listed for comparison. Table 4
shows that, SAGRAPH consistently works quite well on the number of candidate graphs,
i.e., competitive win counts and much fewer loss counts. One reason is that the proposal
only exploits some reliable subgraphs of candidate ones, rather than full graphs.

5 Conclusion and Future Work

In this paper we propose to learn a safe graph for graph-based SSL (GSSL), which could
always outperform its supervised counterpart, i.e., classic nearest neighbor method.
This is motivated by a crucial issue of GSSL that GSSL with the use of inappropriate
graph construction may cause serious performance degeneration which could be even
worse than its supervised counterpart. To overcome this issue, in this work we present
an SAGRAPH method. The basic idea is that given a data distribution, there often exist
some dense areas (or safe areas) which are quite robust or less sensitive to graph con-
struction. One should exploits the data and the subgraphs in safe areas to learn a safe
graph. We then consequently formulate the above consideration as a convex optimiza-
tion and connect it to safe graph construction. Empirical studies on a number of data
sets verify that our proposal achieves promising performance on the safeness of GSSL.

In our work achieving safe graph construction requires additional costs, e.g., more
running time or smaller performance gain in some cases. One reason in that safe SSL
needs to always take the safeness of SSL into account, whereas previous SSL studies do
not have to take such kind of consideration and behave to be more aggressive. In future,
we will study scalable safe GSSL as well as some other effective safe SSL approaches
such as incorporating specific domain knowledge, e.g., known laws of physics [23].



13

Acknowledgement

The authors want to thank the reviewers for their helpful comments. This research was
supported by the National Natural Science Foundation of China (61772262) and the
Fundamental Research Funds for the Central Universities (020214380044).

References

1. A. Argyriou, M. Herbster and M. Pontil: Combining Graph Laplacians for Semi-Supervised
Learning. Advances in Neural Information Processing Systems, pages 67-74, Cambridge, MA,
2005.

2. A. Balsubramani and Y. Freund: Optimally Combining Classifiers Using Unlabeled Data.
Proceedings of International Conference on Learning Theory, pages 211-225, Paris, France,
2015.

3. M. Belkin and P. Niyogi: Towards a theoretical foundation for laplacian-based manifold meth-
ods. Journal of Computer and System Sciences, 74(8):1289-1308, 2008.

4. M. Belkin, P. Niyogi, and V. Sindhwani: Manifold regularization: a geometric framework for
learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-
2434, 2006.

5. A. Blum and S. Chawla: Learning from labeled and unlabeled data using graph min-
cuts. In Proceedings of the 8th International Conference on Machine Learning, pages 19-26,
Williamstown, MA, 2001.

6. L. Bottou, FE. Curtis and J. Nocedal: Optimization methods for large-scale machine learning.
arXiv preprint arXiv:1606.04838, 2016

7. M. A . CarreiraPerpinan and R. S. Zemel: Proximity graphs for clustering and manifold learn-
ing. Advances in Neural Information Processing Systems, pages 225-232, Cambridge, MA,
2005.

8. O. Chapelle, B. Scholkopf, and A. Zien, editors: Semi-Supervised Learning. MIT Press, 2006.
9. L.-Z. Guo, Y.-F. Li: A general formulation for safely exploiting weakly supervised data. In

Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, LA, 2018.
10. T. Jebara, J. Wang, and S. F. Chang: Graph construction and b-matching for semi-supervised

learning. In Proceedings of the 26th International Conference on Machine Learning, pages
441-448, Montreal, Canada, 2009.

11. T. Joachims: Transductive learning via spectral graph partitioning. In Proceedings of the 20th
International Conference on Machine Learning, pages 290-297, Washington, DC, 2003.

12. J. H. Krijthe and M. Loog: Implicitly constrained semi-supervised least squares classifica-
tion. In Advances in 14th International Symposium on Intelligent Data Analysis, pages 158-
169, Saint Etienne, France, 2015.

13. Y.-F. Li and Z.-H. Zhou: Towards making unlabeled data never hurt. In Proceedings of the
28th International Conference on Machine learning, pages 1081-1088, Bellevue, WA, 2011.

14. Y.-F. Li and Z.-H. Zhou: Towards making unlabeled data never hurt. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 37(1):175-188, 2015.

15. Y.-F. Li, S.-B. Wang and Z.-H. Zhou: Graph Quality Judgement: A Large Margin Expedi-
tion. In: Proceedings of the 25th International Joint Confernece on Artificial Intelligence, pages
1725-1731, New York, NY, 2016.

16. Y.-F. Li, J. Kwok and Z.-H. Zhou: Towards safe semi-supervised learning for multivariate
performance measures. In: Proceedings of the 30th AAAI conference on Artificial Intelligence,
Phoenix, AZ, 2016, pp. 1816-1822.



14

17. Y.-F. Li, H.-W. Zha and Z.-H. Zhou: Learning safe prediction for semi-supervised regression.
In: Proceedings of the 31st AAAI conference on Artificial Intelligence, San Francisco, CA,
2017, pp.2217-2223.

18. D.-M. Liang and Y.-F. Li: Lightweight label propagation for large-scale network data. In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm,
Sweden, 2018.

19. L.-Z. Guo and Y.-F. Li: A general formulation for safely exploiting weakly supervised data.
In: Proceedings of the 32nd AAAI conference on Artificial Intelligence, New Orleans, LA,
2018.

20. W. Liu, J. Wang, and S.F. Chang: Robust and scalable graph-based semisupervised learning.
Proceedings of the IEEE, 100(9):2624-2638, 2012.

21. Y. Nesterov: Introductory Lectures on Convex Optimization. A Basic Course. Springer, 2003.
22. Niu, G., du Plessis, M. C., Sakai, T., Ma, Y. and Sugiyama, M: Theoretical Comparisons of

Positive-Unlabeled Learning against Positive-Negative Learning. Advances in Neural Informa-
tion Processing Systems, pages 1199-1207, Barcelona, Spain, 2016.

23. R. Stewart and S. Ermon: Label-free supervision of neural networks with physics and domain
knowledge. In Proceedings of 31th AAAI Conference on Artificial Intelligence, San Francisco,
CA, 2017.

24. F.Wang and C. Zhang: Label propagation through linear neighborhoods. In Proceedings of
the 23rd International Conference on Machine Learning, pages 985-992, Pittsburgh, PA, 2006.

25. F. Wang and C. Zhang: Label propagation through linear neighborhoods. IEEE Transactions
on Knowledge and Data Engineering, 20(1):55-67, 2008.

26. Y.-Y. Wang, S.-C. Chen, Z.-H. Zhou: New Semi-Supervised Classification Method Based on
Modified Cluster Assumption: IEEE Transactions on Neural Network and Learning System,
23(5):689-702, 2012

27. T. Wei, L.-Z. Guo, Y.-F. Li, W. G.: Learning safe multi-label prediction for weakly labeled
data. Machine Learning. 107(4): 703-725, 2018.

28. D. Zhou, O. Bousquet, T. Navin Lal, J. Weston, and B. Scholkopf: Learning with local and
global consistency. Advances in Neural Information Processing Systems, pages 595-602. MIT
Press, Cambridge, MA, 2004.

29. X. Zhu, Z. Ghahramani, and J. Lafferty: Semi-supervised learning using Gaussian fields and
harmonic functions. In Proceedings of the 20th International Conference on Machine learning,
pages 912-919, Washington, DC, 2003.

30. X. Zhu, J. Kandola, Z. Ghahramani, and J. Lafferty: Nonparametric transforms of graph
kernels for semi-supervised learning. Advances in Neural Information Processing Systems,
pages 1641-1648. MIT Press, Cambridge, MA, 2005.

31. X. Zhu: Semi-supervised learning literature survey. Technical report, University of
Wisconsin-Madison, 2007.

32. Z.-H. Zhou: A brief introduction to weakly supervised learning. National Science Review,
5(1):44-53, 2018.


	Learning Safe Graph Construction from  Multiple Graphs

