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Abstract

In many real-world applications, such as im-
age retrieval, it would be natural to mea-
sure the distances from one instance to oth-
ers using instance specific distance which cap-
tures the distinctions from the perspective of
the concerned instance. However, there is
no complete framework for learning instance
specific distances since existing methods are
incapable of learning such distances for test
instance and unlabeled data. In this paper,
we propose the Isd method to address this
issue. The key of Isd is metric propagation,
that is, propagating and adapting metrics of
individual labeled examples to individual un-
labeled instances. We formulate the problem
into a convex optimization framework and
derive efficient solutions. Experiments show
that Isd can effectively learn instance specific
distances for labeled as well as unlabeled in-
stances. The metric propagation scheme can
also be used in other scenarios.

1. Introduction

In many real-world applications, instances may be sim-
ilar or dissimilar to others for different reasons based
on their own characteristics. For example, in image
retrieval, a “sky” image may be close to other “sky”
images according to distances computed with color fea-
tures, while a “fishing net” image may be close to other
images containing “nets” according to distances com-
puted with texture features. Likewise, in collaborative
filtering, even if three users X, Y and Z have similar
historical profiles over all items, X would regard Y
closer to itself than Z when X and Y are fans of cer-
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tain types of items. Therefore, instead of applying a
uniform distance metric for every instance, it is more
natural to enable each instance to have its own in-
stance specific distance for measuring its closeness to
other instances from its own perspective.

Actually, in content-based image retrieval there has
been a study which tries to compute query-sensitive
similarities (Zhou & Dai, 2006). In that method, the
similarities among different images are decided after
receiving the query image, and the similarities between
the same pair of images may be different given different
queries. It has been shown that the query-sensitive
similarity is effective in image retrieval; that method,
however, is based on pure heuristics.

An effective way to obtain the desired distance is to
learn a distance function that satisfies some pairwise
constraints defined over pairs of instances; this is the
main purpose of metric learning (Yang, 2006). The
constraints generally convey “side information” which
specifies whether a pair of instances should be close to
(or far from) each other. Such side information can be
obtained by consulting the user or comparing labels
of instances. Besides pairwise constraints, other kinds
of constraints, such as the ones which encode the re-
lationship among triplets, can also be used. Previous
studies on metric learning generally focused on learn-
ing a uniform Mahalanobis distance for all instances,
while only a few studies were devoted to learning dif-
ferent distance functions for different instances.

Frome et al. (2006) proposed a method for learning
distinctive distance functions for different instances,
by enforcing the distances from the concerned instance
to instances with the same label be smaller than that
to instances with other labels. Later, Frome et al.
(2007) extended this work to enable the comparison
between distances computed based on different indi-
vidual instances. It is noteworthy that both meth-
ods can only deal with labeled instances since the la-
bel of the concerned instance is involved in the learn-



Learning Instance Specific Distances Using Metric Propagation

ing process. There are two important issues unsolved.
First, given a test instance, since its label is unknown,
there is no instance specific distance to use. Second,
when there are abundant unlabeled data, e.g., in semi-
supervised or transductive settings, it is not known
how to derive instance specific distances for unlabeled
instances. Thus, there is no complete framework for
learning instance specific distances, and the usefulness
of existing methods is limited in real tasks.

In this paper, we address these two issues by propos-
ing the Isd (Instance Specific Distance) method which
works in transductive setting. The key of Isd is met-
ric propagation, that is, propagating and adapting the
distances learned for individual labeled examples to in-
dividual unlabeled instances. To the best of our knowl-
edge, this is the first study on metric propagation,
and our idea can also be applied to other scenarios.
We formulate the problem into a convex optimization
framework and derive efficient solutions. Experiments
show that Isd can effectively learn instance specific
distances for labeled as well as unlabeled instances.

The rest of this paper is organized as follows. Section 2
briefly reviews some related work. Section 3 proposes
the Isd method. Section 4 reports on our experimental
results. Finally, Section 5 concludes.

2. Related Work

Metric learning attempts to learn an appropriate dis-
tance metric that reflects the underlying relationship
between instances. Generally, some pairwise con-
straints defined over pairs of instances are given by
user or induced from labeled data. These constraints,
or called “side information”, are then used to guide the
learning process. Such information can be exploited ei-
ther globally (Xing et al., 2002; Kwok & Tsang, 2003)
or locally (Goldberger et al., 2005; Weinberger et al.,
2005). Note that in addition to pairwise constraints,
other kinds of constraints can also be used.

Most of previous metric learning studies focused on
generating a uniform distance function for all in-
stances, neglecting the fact that different instances
may hold different properties. Recently there are sev-
eral works try to learn different distance functions for
different instances. Frome et al. (2006) constructs, for
each labeled instance xj , a distance function Dj(xi)
which outputs the distance from the concerned in-
stance xj to another instance xi. Such distance func-
tions are then optimized separately under a set of con-
straints requiring that distances from the concerned
instance to other instances with different labels must
be larger than distances from the concerned instance to

other instances with the same label. Considering that
the constraints do not contain information shared by
other distance functions, the output values of different
distance functions are not directly comparable. Hence,
a meta learning, which aggregates these distance func-
tions, is further required for the final prediction. Later,
Frome et al. (2007) extended the method by enforcing
the consistency among the set of distance functions. In
addition to the constraints used in (Frome et al., 2006),
some “inversed” constraints were specified; that is, the
distance from an instance to the concerned instance
with the same label should be smaller than that from
an instance with some other label to the concerned in-
stance. Thus, by incorporating the interactions among
the constraints, they enabled the outputs of the result-
ing distance functions to be comparable.

It is noteworthy that Frome et al. (2006; 2007) can
only generate instance specific distances for labeled
examples since the label of the concerned instance is
needed for identifying the instances with either the
same label or different labels for constraints construc-
tion. Given a test instance, instead of learning its
instance specific distance, Frome et al. (2006; 2007)
used the distance function of each labeled training ex-
ample to derive a probability for the test instance to
have a class label as same as the training example, and
then aggregated the probabilities derived from all la-
beled examples and picked the class with the largest
probability for the final prediction. To the best of
our knowledge, there is no existing method which is
capable of learning an instance specific distance for
instances without label information, although this is
very needed for establishing a complete framework.

Label propagation is a popular technique. In many
graph-based semi-supervised learning approaches
(Belkin et al., 2006; Zhu et al., 2003; Zhou et al.,
2003), a graph defined over both labeled and unlabeled
instances is provided, and the labels are then propa-
gated from labeled instances to unlabeled ones across
the graph. In fact, given a graph reflecting the un-
derlying structure of the data, other properties of the
data can also be propagated. Recently, Li et al. (2008)
tried to propagate pairwise constraints over a prede-
fined graph. In this paper, given such a graph, we
propose metric propagation for propagating distance
metrics from individual labeled examples to individual
unlabeled instances. It is possible that metric propa-
gation can also be used in other scenarios.

3. The Proposed Method

We restrict our discussion in a transductive setting,
where n labeled examples denoted as {xi, yi}n

i=1, xi ∈
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Rd, yi ∈ Z as well as u unlabeled instances denoted as
{xi}n+u

i=n+1 are given. Besides, a weight matrix G de-
scribing the relationship between all pairs of instances,
no matter labeled or unlabeled, is also provided. Ac-
cording to Zhu et al. (2003), the relationship defined
via G reflects the underlying structure of the data.

Our goal is to learn globally consistent instance specific
distance functions Di(x) = w�

i δxi,x for each instance
xi (i = 1, · · · , n+u), where δxi,xj

= (xi−xj)�(xi−xj),
� is the element-wise product on two vectors. As
mentioned before, while one can easily learn instance
specific distance for a labeled example based on the
information induced from its label, learning instance
specific distance function for an unlabeled instance is
not straightforward since there is no direct side infor-
mation available.

By assuming that similar instances share similar prop-
erties, the distribution of the instance specific distance
functions should be smooth within a local area. Given
the weight matrix G which essentially represents the
underlying structure of the instances, we can propa-
gate the learned instance specific distance metric from
the labeled examples to unlabeled ones by enforcing
the smoothness of instance specific distances over the
graph during the propagation. Here, we refer to this
approach as metric propagation, in analogy with la-
bel propagation in graph-based semi-supervised learn-
ing (Belkin et al., 2006; Zhu et al., 2003; Zhou et al.,
2003). Note that since the distances are able to inter-
act with each other during the metric propagation, the
learned distances are intrinsically consistent.

Instead of explicitly conducting metric propagation
while learning the distances for labeled examples, we
formulate the metric propagation within a regularized
framework which conducts the propagation implicitly
by optimizing the regularized objective function

min
W

λ
∑n

i=1

∑
j∈Si

� (ŷij , Di(xj)) + Ω(W,G)

s.t. wi ≥ 0, i = 1, · · · , n + u, (1)

where W = [w1, · · · ,wn+u] consists of parameters to
be learned for n + u instance specific distance met-
rics of both labeled examples and unlabeled instances;
ŷij = 1 iff yi = yj , and ŷij = −1 otherwise. � is a con-
vex loss function, such as hinge loss in classification
or least square loss in regression. Ω is a regularization
term responsible for the implicit metric propagation.
The set Si, induced by the labels of instances, provides
the side information with respect to xi. λ is a regular-
ization parameter. Here, as suggested by Frome et al.
(2006; 2007), we enforce wi ≥ 0 to ensure that the
distances are non-negative.

Inspired by Zhu et al. (2003), we pack the metric
propagation mechanism into regularization term Ω:

Ω(W,G) =
n+u∑

i,j=1

Eij ||wi − wj ||2 = 2tr(W�LW). (2)

Here, E = U− 1
2 GU− 1

2 is a normalized weight matrix
of G. G describes pairwise relationship between in-
stances, which is an implement of the graph. In this
paper, we assume that G is given. U is a diagonal
matrix whose (i, i)-entry is the i-th row/column sum
of G. L = (I − E) is the graph Laplacian and tr(M)
denotes the trace of matrix M. Obviously, the mini-
mization of Eq. 2 yields a smooth propagation of the
instance specific distances over the graph. Here, the
weight matrix G is firstly given as the Heat kernel
with Euclidean distance (Zhu et al., 2003). Further-
more, the G can be updated with the new instance
specific distances induced from Isd. In order to in-
vestigate whether Isd can be used to refine the graph
construction or not, more details during updating G
will be studied in Section 4.

The side information provided by two instances with
the same label or different labels could be sufficient
for disclosing which instances should be close to or
far from the concerned instance. For simplicity, we
follow the methods of utilizing label data in many lit-
eratures (Yang, 2006), i.e., we only consider the side
information between the concerned instance and one
labeled example.

Based on such pairwise side information, we instan-
tiate the loss functions � with L1-Loss and L2-Loss,
respectively. We will discuss the solutions to the ob-
jective function in Eq. 1 with respect to each of the in-
stantiation in the following subsections. We will show
that both of the two solutions are effective and the
solution with L2-Loss is more efficient.

As mentioned before, the constraints are not restricted
to be pairwise side information. So, the loss function
� in Isd is not limited to measure the pairwise rela-
tionship between the concerned instance xi and one
labeled example. More labeled examples can be con-
sidered for higher-order information in Isd, just like
that in Frome et al. (2006; 2007). If we set E to
be the identity matrix and utilize the L1-Loss based
on the “triplet” information induced by two labeled
examples other than the concerned instance, our Isd
becomes equivalent to (Frome et al., 2006).

3.1. Isd with L1-Loss

We define the loss function � in Eq. 1 based on L1-Loss:

� (ŷij , Di(xj)) = max (0, ŷij(Di(xj) − η)) , (3)
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where η is a threshold. According to Eq. 3, ŷij = 1
results in Di(xj) ≤ η while ŷij = −1 leads to Di(xj) ≥
η. Without loss of generality, we simply set η = 1.

By introducing slack variables and plugging Eq. 2 and
Eq. 3 into Eq. 1, we obtain the following convex opti-
mization problem:

min
W, ξi,j

λ
∑n

i=1

∑
j∈Si

ξi,j + 2tr(W�LW)

s.t ŷij(wiδxi,xj − 1) ≤ ξi,j , i = 1, · · · , n
ξ ≥ 0, wi ≥ 0, i = 1, · · · , n + u. (4)

Optimizing Eq. 4 with respect to all wi’s simultane-
ously is of great computational challenge. Instead of
solving it directly, we employ the alternating descent
method to solve Eq. 4. The main idea is to sequen-
tially solve one wi at each time by fixing the other
wj ’s, j �= i. We repeat this procedure until Eq. 4 con-
verges or a maximum number of iteration T is reached.

In each iteration, solving a specific wi while fixing
other wj ’s (j �= i) yields a standard QP problem:

min
wi, ξj

∑n+u

i,j=1
Eij(w�

i wi − 2w�
i wj) + λ

∑
j∈Ci

ξj

s.t. ŷij(w�
i δxi,xj

− 1) ≤ ξj , j ∈ Ci

ξ ≥ 0, wi ≥ 0. (5)

Instead of using constraints constructed from all la-
beled examples in Eq. 4, here we only use a subset
of these constraints. The subset Ci is consisted of two
parts, i.e., all the inequalities generated from instances
with different labels from xi, and equalities generated
from the neighbors of xi that have the same label as
xi. The consideration behind this particular setting
is that, instances from different classes are usually far
from each other while instances from the same class
are not necessarily close to each other, e.g., instances
with the same label may belong to different clusters
which may be scattered in the instance space.

By introducing lagrange multipliers for Eq. 5, we get

L(wi,α,γ, ξ,β) =
∑n+u

i,j=1
Eij(w�

i wi − 2w�
i wj)

+λ1�ξ + α�(Yi(D�
i. wi − 1) − ξ) − β�ξ − γ�wi .

Take the derivative of the Lagrangian with respect to
wi, with Kkt condition we get

∂L

∂wi
= 2

n+u∑

j=1

Eijwi − 2
n+u∑

j=1

Eijwj + D̂iα − γ = 0.

Thus,
wi = (Ci − D̂iα/2 + γ/2)/θi, (6)

where D̂i = Di.Yi, Ci =
∑

j Eijwj , θi =
∑

j Eij ,
Yi is a diagonal matrix whose (k, k)-entry is set to
ŷij if ŷij corresponds to the k-th constraint appearing
in Eq. 5. α ∈ Rp are the dual variables and Di. =[
δxi,x1 , δxi,x2 , · · · , δxi,xp

] ∈ Rd×p. p = card (Ci) is the
number of constraints.

Substituting Eq. 6 back to the Lagrangian yields the
following dual problem for Eq. 5.

min
α

(D̂iα − γ)�(D̂iα − γ)

− 4(D̂iα − γ)�Ci + 4θiα
�yi.

s.t. 0 ≤ α ≤ λ, γ ≥ 0. (7)

Since there are less constraints in the dual problem, we
choose to solve this dual form of the problem in order
to reduce the computational cost. Note that Eq. 7 is
also a standard QP problem and the global optimal of
α can be effectively found. After that, wi is computed
by Eq. 6, and hence, all the instance specific distances
of both labeled and unlabeled W can be obtained by
iteratively solving the dual problem in Eq. 7. Consid-
ering that the loss function in Eq. 4 is an L1-Loss, we
refer to this version of Isd as Isd-L1.

3.2. Isd with L2-Loss

Recall that in order to efficiently solve Isd-L1, we
employ the alternating descent method to solve the
problem in Eq. 4 and replace Si with Ci. However,
there may still exist many inequality constraints in-
duced from labeled examples whose labels are differ-
ent from the concerned instance, which will increase
the learning time.

Inspired by ν-Svm, we can obtain a more efficient
method if the loss � is defined with the L2-Loss:

� (ŷi,j , Di(xj)) = max (0, ŷi,j(Di(xj) − η))2 . (8)

By introducing slack variables and plugging Eq. 2 and
Eq. 8 into Eq. 1, we obtain the primal form:

min
W,ξi,j ,ρ

λ
∑n

i=1

∑
j∈Ci

ξ2
i,j + 2tr(W�LW) − ρ

s.t ŷij(wiδxi,xj − 1) ≤ ξi,j − ρ, wi ≥ 0. (9)

We first drop the last constraint, i.e., wi ≥ 0, so that
the alternating descent method can be used to sequen-
tially solve the Eq. 9, and then we project the solu-
tion back to the feasible region. After such simplifica-
tion, the dual problem for solving the sub-optimization
problem with respect to wi becomes:

min
α

α�(D̂�
i D̂i +

θi

λ
I)α + 4(θiy

�
i − C�

i D̂i)α

s.t. α�1 = 1, α ≥ 0, (10)
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where I is the identity matrix and 1 is a all-one vector.

Note that the Lagrange multipliers in Eq. 10 must sat-
isfy a linear equality (the first constraint), so we can
efficiently solve this dual variable α using Sequential
Minimal Optimization, where two Lagrange multipli-
ers are selected sequentially for joint optimization.

After the dual variable α is obtained, the primal vari-
able wi can be calculated by Eq. 11, which projects the
solution to the primal variable into the feasible region
defined by the last constraint in Eq. 9.

wi = max(0, (Ci − D̂iα/2)/θi). (11)

Since the loss function in Eq. 8 is an L2-Loss, we refer
to this version of Isd as Isd-L2. By instantiating the
loss function � with L2-Loss and solving Eq. 10 in an
Smo fashion, the optimization problem can be solved
more efficiently than by using L1-Loss as the loss func-
tion and solving Eq. 7 via the alternating descent.

4. Experiments

We evaluate the Isd approach on fifteen UCI data sets
(Blake et al., 1998) and a COREL image data set. The
names of data sets are abbreviated in Table 1. For the
COREL image data set, according to (Zhang et al.,
2005), 20 image classes are considered and 100 images
are selected for each class. One hundred and forty-four
visual features are extracted for each image.

For each data set, we randomly sample 2/3 instances
to create the labeled training set while the remaining
1/3 instances are used for testing. The distributions
of both training set and test set are kept as same as
that of the original data set. Recall that Isd works in
a transductive setting. Thus, we provide the learner
with the test instances whose labels are withheld.

We compare the two versions of the proposed Isd
method, i.e., Isd-L1 and Isd-L2, with four state-of-
the-art metric learning methods. Fsm (Frome et al.,
2006) learns instance specific distance for each labeled
example. Fssm (Frome et al., 2007) is an extension of
Fsm where the learned distances of different instances
are of global consistency. Both Fsm and Fssm are es-
sentially not capable of learning the instance specific
distances for the unlabeled instances. Here, the dis-
tance of an unlabeled instance with the distances of
its neighbors are derived as suggested by Frome et al.
(2006; 2007). The other two compared methods learn a
uniform Mahalanobis distance for all instances. Lmnn
(Weinberger et al., 2005) learns a Mahalanobis dis-
tance metric such that the k-nearest neighbors always
belong to the same class while the instances from dif-
ferent classes are separated by a large margin. Dne

(Zhang et al., 2007) learns a Mahalanobis distance
metric via low-dimensional embedding to squeeze the
instances with the same labels while push away those
with different labels within a neighborhood. In addi-
tion, we also evaluate the original Euclidian distance,
denoted as Euclid, as the baseline.

In the experiments we fix T , the maximum number of
iterations for alternating descent, to five and select the
regularization parameter λ from {10, 100, 1000, 10000}
via five-fold cross validation on training sets. The pa-
rameters of the compared methods are set according
to the suggestions in (Weinberger et al., 2005; Frome
et al., 2006; Frome et al., 2007; Zhang et al., 2007).
Fsm and Fssm were designed for visual recognition
where the constraints used in learning can be eas-
ily pruned according to the “feature-to-set” distances.
For general data sets, we select the constraints as fol-
lows: For an instance xj , we order all the other la-
beled examples based on the distances computed from
the values of a concerned feature, and then generate
constraints using the N nearest neighbors. We take
N = 5 as suggested in (Frome et al., 2007).

Distance is essential to many real applications, and
the learned distances can be evaluated in different sce-
narios. As an implementation, we plug the learned
distances into a k-nearest neighbor classifier, and eval-
uate the quality of the learned distances based on the
classification error rates. Here, the k value is selected
from {3, 5, 7, 9, 11} via five-fold cross validation.

Note that most of the compared methods could not
handle missing values. To make a fair comparison,
we fill in the missing values for all the data sets. For
numerical features, we fill in the mean value of the
concerned feature; for nominal features, we fill in the
mode of the concerned feature. We split all the nom-
inal features into a set of binary features to facilitate
distance computation. All features are normalized into
[0, 1].

We repeat the experiments on each data set for 30 runs
with random partitions of training/test instances. The
average classification error rates and the correspond-
ing standard deviations are tabulated in Table 1. The
best performance for each row is marked by a star,
and the significantly best performances (Zhou & Yang,
2005) are boldfaced. To identify the significantly best
performance, we first compare the other methods with
the one of the best performance in terms of the paired
t-tests at 95% significance level, and then, the per-
formances of the best method as well as the methods
which are not significantly worse than the best method
are regarded as significantly best performances. Note
that some entries are marked by “N/A”; in most of the
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Table 1. Comparison of test error rates (mean ± std.). The best performance on each data set is highlighted by ‘*’. The
performances without significant difference with the best performance are bolded (paired t-tests at 95% significance level).

Dataset Isd-L1 Isd-L2 Euclid Dne Lmnn Fsm Fssm
anneal .051±.011* .068±.011 .064±.012 .086±.018 .182 ±.016 .105±.091 .109±.016
audiolo .074±.040 .072 ±.033* .073±.035 .077±.035 .075 ±.029 .131 ±.032 .134±.029
austral .161±.019 .149±.019* .170 ±.023 .324±.024 .160±.018 .276±.026 .216±.026
autos .474±.038* .480±.046 .494±.048 .481±.043 N/A .579±.012 .564 ±.041
balance .114±.013 .116±.014 .124±.013 .149±.020 .113±.012* .134 ±.020 .143 ±.013
breastw .031 ±.010 .030±.010* .033±.010 .031±.011 .031±.010 .102±.041 .112±.029
clean1 .236±.037* .276±.028 .248±.034 .272±.035 .246±.038 N/A .365±.002
diabete .287±.019 .269±.023* .298±.018 .275±.029 .279 ±.031 .342±.050 .322±.232
echocar .175±.034* .189±.035 .200±.044 .194±.043 .209±.050 .198±.036 .193±.026
german .277±.015 .274±.013* .277±.016 .309±.020 .286±.018 .275±.021 .275 ±.060
haberma .277±.029 .273±.025* .276±.024 .287±.034 .291±.030 .276±.032 .276±.029
heart-s .181±.023* .219±.030 .201±.035 .202±.037 .203±.030 .277±.032 .252±.054
house-v .072±.017* .076 ±.019 .083±.019 .143±.022 .072±.023 .202±.041 .224±.034
ionosph .169 ±.029 .159±.031* .176±.037 .172±.022 .169±.028 .219±.045 .260 ±.037
spectf .288±.033 .285±.036 .287±.037 .298 ±.039 .282±.038 .280 ±.009 .272±.007 *
corel .681 ±.014 .682±.004 .683±.016 .697±.017 .677±.021* N/A N/A

cases, this means that the method fails to return any
result within a reasonable response time (i.e., 24 hours
for a single training in our case). The only exception
is that of Lmnn on autos; the program of Lmnn al-
ways quits with some error messages on autos. One
possible explanation is that autos is a multi-class data
set, and the lack of training instances of the same class
make it difficult to find neighbors of the same class or
neighbors from other classes.

Table 1 shows that Isd-L1 has achieved the signifi-
cantly best performance on 12 data sets while Isd-L2
has on 11 data sets. It is obvious that Isd-L1 and
Isd-L2 are among the best of all the compared algo-
rithms. Table 1 also discloses that Isd-L1 and Isd-L2
obtain the lowest error rate on 6 and 7 data sets, re-
spectively, while Lmnn performs the best on 2 data
sets and Fssm on 1 data set only.

To further investigate the classification results, we con-
duct paired t-tests at 95% significance level and sum-
marize the win/tie/lose counts of Isd versus other
methods in Table 2.

It can be observed from Table 2 that Isd-L1 signif-
icantly outperforms Euclid, Dne, Lmnn, Fsm and
Fssm for 11, 11, 6, 11 and 12 times, respectively, while
Isd-L2 significantly outperforms them for 9, 9, 6, 10,
11 times, respectively. Isd-L1 rarely loses to Euclid
and Fsm, and only loses once against Dne, Lmnn
and Fssm. Similar phenomenon can be observed for
Isd-L2, where Isd-L2 rarely loses to Fsm, and loses
only once to Dne and Fssm, twice against Lmnn, and
three times against Euclid. The time cost of Isd-
L1 is almost as same as Lmnn and much faster than
Fsm/Fssm. Isd-L2 runs even faster; it is about 3.6

Table 2. The win/tie/loss counts of Isd vs. other methods,
after paired t-tests at 95% significance level.

Isd-L1 Isd-L2
Euclid 11/5/0 9/4/3
Dne 11/4/1 9/6/1
Lmnn 6/8/1 6/7/2
Fsm 11/3/0 10/4/0
Fssm 12/2/1 11/3/1

times faster than Isd-L1. Hence, both Isd-l1 and
Isd-L2 are fairly efficient.

As mentioned in Section 3, the learned instance spe-
cific distances can be used for updating the provided
graph by reconstructing the weight matrix G. To in-
vestigate whether such update is beneficial, extra ex-
periments are conducted. Figure 1 plots the average
error rates of the compared methods against the num-
ber of updates of the graph. In Figure 1, graph is ini-
tialized by a given one, i.e., the Gaussian fields kernel
with Euclidean distance, and updated after instance
specific distances obtained for each round. It is ob-
served from Figure 1 that the error rates of Isd-L1
are reduced on 12 data sets except on autos, diabetes,
heart-statlog and spectf, as the number of update in-
creases. On autos, the error vibrates while the graph
keeps on updating itself; this is caused by the small T
value used in the experiments. By increasing T to 10,
the error of Isd-L1 decreases monotonously. On dia-
betes, heart-statlog and spectf, the error increases either
at the very beginning or after a few updates. Such a
degradation of performance might be caused by over-
fitting, where noise is introduced in the first round and
reinforced in the succeeded rounds. The performance
of Isd-L2 is different. The error of Isd-L2 decreases
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Figure 1. Influence of the iterative rounds

monotonously only on audiology and ionosphere. The
degradation of performance of Isd-L2 on the other
data sets suggests that Isd-L2 is more likely to overfit
than Isd-L1. This is not strange for L2-Loss is more
sensitive to noise so that Isd-L2 overfits more easily.
Therefore, it would be better not to update the graph
in Isd-L2, while updating the graph iteratively might
lead to a better performance for Isd-L1 given that the
maximum number of iterations for alternating descent
is large enough.

Furthermore, we conduct experiments to study the in-
fluence of the amount of labeled data. Here, each data
set is randomly partitioned into ten parts equally. We
use 1/3/5/7/9 parts, respectively, as the labeled train-
ing data and the other parts as unlabeled test set. Ex-
periments are repeated for 30 runs with random data
partitions. Due to the page limit, we only plot the

results on two data sets in Figure 2. It is observed
that the advantage of Isd-L1/L2 over other methods
is more obvious when the amount of labeled data are
small, and Isd is less sensitive to the influence of the
amount of labeled data.
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Figure 2. Influence of the amount of labeled data



Learning Instance Specific Distances Using Metric Propagation

5. Conclusion

Instance specific distance is desirable in many real ap-
plications, however, there is no complete framework
for this purpose since existing methods can only deal
with labeled examples. In this paper, we propose the
Isd method, which is able to learn instance specific
distances for labeled examples as well as unlabeled
instances. Experiments show that Isd is superior to
many state-of-the-art techniques.

The key of Isd is metric propagation. Although there
were many studies on label propagation, to the best of
our knowledge, this is the first attempt to propagating
and adapting metrics from labeled examples to unla-
beled instances. We accomplish the task in a convex
optimization framework and attain effective and effi-
cient solutions. It is evident that the idea of metric
propagation can be applied to many other scenarios,
and other kinds of metric propagation methods can be
developed in the future.

Our study shows that given an initial graph, updating
it gradually with the refined distances will lead to an
improved performance. An interesting future issue is
to study how to construct a good initial graph to en-
able a more effective and efficient metric propagation.
It is also interesting to explore that, given a graph con-
structed from a data set, in addition to label propaga-
tion and metric propagation, whether other properties
of instances can be propagated on the graph.
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