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Abstract

Both random Fourier features and the Nyström method have been successfully
applied to efficient kernel learning. In this work, we investigate the fundamental
difference between these two approaches, and how the difference could affect
their generalization performances. Unlike approaches based on random Fourier
features where the basis functions (i.e., cosine and sine functions) are sampled
from a distribution independent from the training data, basis functions used by
the Nyström method are randomly sampled from the training examples and are
therefore data dependent. By exploring this difference, we show that when there
is a large gap in the eigen-spectrum of the kernel matrix, approaches based on
the Nyström method can yield impressively better generalization error bound than
random Fourier features based approach. We empirically verify our theoretical
findings on a wide range of large data sets.

1 Introduction

Kernel methods [16], such as support vector machines, are among the most effective learning meth-
ods. These methods project data points into a high-dimensional or even infinite-dimensional feature
space and find the optimal hyperplane in that feature space with strong generalization performance.
One limitation of kernel methods is their high computational cost, which is at least quadratic in the
number of training examples, due to the calculation of kernel matrix. Although low rank decom-
position approaches (e.g., incomplete Cholesky decomposition [3]) have been used to alleviate the
computational challenge of kernel methods, they still require computing the kernel matrix. Other ap-
proaches such as online learning [9] and budget learning [7] have also been developed for large-scale
kernel learning, but they tend to yield performance worse performance than batch learning.

To avoid computing kernel matrix, one common approach is to approximate a kernel learning prob-
lem with a linear prediction problem. It is often achieved by generating a vector representation of
data that approximates the kernel similarity between any two data points. The most well known
approaches in this category are random Fourier features [13, 14] and the Nyström method [20, 8].
Although both approaches have been found effective, it is not clear what are their essential dif-
ference, and which method is preferable under which situations. The objective of this work is to
understand the difference between these two approaches, both theoretically and empirically

The theoretical foundation for random Fourier transform is that a shift-invariant kernel is the Fourier
transform of a non-negative measure [15]. Using this property, in [13], the authors proposed to
represent each data point by random Fourier features. Analysis in [14] shows that, the generalization
error bound for kernel learning based on random Fourier features is given by O(N−1/2 + m−1/2),
where N is the number of training examples and m is the number of sampled Fourier components.

1



An alternative approach for large-scale kernel classification is the Nyström method [20, 8] that
approximates the kernel matrix by a low rank matrix. It randomly samples a subset of training
examples and computes a kernel matrix K̂ for the random samples. It then represents each data
point by a vector based on its kernel similarity to the random samples and the sampled kernel matrix
K̂. Most analysis of the Nyström method follows [8] and bounds the error in approximating the
kernel matrix. According to [8], the approximation error of the Nyström method, measured in
spectral norm 1, is O(m−1/2), where m is the number of sampled training examples. Using the
arguments in [6], we expected an additional error of O(m−1/2) in the generalization performance
caused by the approximation of the Nyström method, similar to random Fourier features.

Contributions In this work, we first establish a unified framework for both methods from the
viewpoint of functional approximation. This is important because random Fourier features and the
Nyström method address large-scale kernel learning very differently: random Fourier features aim
to approximate the kernel function directly while the Nyström method is designed to approximate
the kernel matrix. The unified framework allows us to see a fundamental difference between the
two methods: the basis functions used by random Fourier features are randomly sampled from a
distribution independent from the training data, leading to a data independent vector representation;
in contrast, the Nyström method randomly selects a subset of training examples to form its basis
functions, leading to a data dependent vector representation. By exploring this difference, we show
that the additional error caused by the Nyström method in the generalization performance can be
improved toO(1/m) when there is a large gap in the eigen-spectrum of the kernel matrix. Empirical
studies on a synthetic data set and a broad range of real data sets verify our analysis.

2 A Unified Framework for Approximate Large-Scale Kernel Learning

Let D = {(x1, y1), . . . , (xN , yN )} be a collection of N training examples, where xi ∈ X ⊆ Rd,
yi ∈ Y . Let κ(·, ·) be a kernel function,Hκ denote the endowed Reproducing Kernel Hilbert Space,
and K = [κ(xi,xj)]N×N be the kernel matrix for the samples in D. Without loss of generality,
we assume κ(x,x) ≤ 1,∀x ∈ X . Let (λi,vi), i = 1, . . . , N be the eigenvalues and eigenvectors
of K ranked in the descending order of eigenvalues. Let V = [Vij ]N×N = (v1, . . . ,vN ) denote
the eigenvector matrix. For the Nyström method, let D̂ = {x̂1, . . . , x̂m} denote the randomly
sampled examples, K̂ = [κ(x̂i, x̂j)]m×m denote the corresponding kernel matrix. Similarly, let
{(λ̂i, v̂i), i ∈ [m]} denote the eigenpairs of K̂ ranked in the descending order of eigenvalues, and
V̂ = [V̂ij ]m×m = (v̂1, . . . , v̂m). We introduce two linear operators induced by examples in D and
D̂, i.e.,

LN [f ] =
1

N

N∑
i=1

κ(xi, ·)f(xi), Lm[f ] =
1

m

m∑
i=1

κ(x̂i, ·)f(x̂i). (1)

It can be shown that both LN and Lm are self-adjoint operators. According to [18], the eigenval-
ues of LN and Lm are λi/N, i ∈ [N ] and λ̂i/m, i ∈ [m], respectively, and their corresponding
normalized eigenfunctions ϕj , j ∈ [N ] and ϕ̂j , j ∈ [m] are given by

ϕj(·) =
1√
λj

N∑
i=1

Vi,jκ(xi, ·), j ∈ [N ], ϕ̂j(·) =
1√
λ̂j

m∑
i=1

V̂i,jκ(x̂i, ·), j ∈ [m]. (2)

To make our discussion concrete, we focus on the RBF kernel 2, i.e., κ(x, x̄) = exp(−‖x −
x̄‖22/[2σ2]), whose inverse Fourier transform is given by a Gaussian distribution p(u) =
N (0, σ−2I) [15]. Our goal is to efficiently learn a kernel prediction function by solving the fol-
lowing optimization problem:

min
f∈HD

λ

2
‖f‖2Hκ +

1

N

N∑
i=1

`(f(xi), yi), (3)

1We choose the bound based on spectral norm according to the discussion in [6].
2 The improved bound obtained in the paper for the Nystrom method is valid for any kernel matrix that

satisfies the eigengap condition.
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where HD = span(κ(x1, ·), . . . , κ(xN , ·)) is a span over all the training examples 3, and `(z, y) is
a convex loss function with respect to z. To facilitate our analysis, we assume maxy∈Y `(0, y) ≤ 1
and `(z, y) has a bounded gradient |∇z`(z, y)| ≤ C. The high computational cost of kernel learning
arises from the fact that we have to search for an optimal classifier f(·) in a large spaceHD.

Given this observation, to alleviate the computational cost of kernel classification, we can reduce
spaceHD to a smaller spaceHa, and only search for the solution f(·) ∈ Ha. The main challenge is
how to construct such a spaceHa. On the one hand,Ha should be small enough to make it possible
to perform efficient computation; on the other hand, Ha should be rich enough to provide good ap-
proximation for most bounded functions inHD. Below we show that the difference between random
Fourier features and the Nyström method lies in the construction of the approximate space Ha. For
each method, we begin with a description of a vector representation of data, and then connect the
vector representation to the approximate large kernel machine by functional approximation.

Random Fourier Features The random Fourier features are constructed by first sam-
pling Fourier components u1, . . . ,um from p(u), projecting each example x to u1, . . . ,um
separately, and then passing them through sine and cosine functions, i.e., zf (x) =
(sin(u>1 x), cos(u>1 x), . . . , sin(u>mx), cos(u>mx)). Given the random Fourier features, we then
learn a linear machine f(x) = w>zf (x) by solving the following optimization problem:

min
w∈R2m

λ

2
‖w‖22 +

1

N

N∑
i=1

`(w>zf (xi), yi). (4)

To connect the linear machine (4) to the kernel machine in (3) by a functional approximation, we can
construct a functional space Hfa = span(s1(·), c1(·), . . . , sm(·), cm(·)), where sk(x) = sin(u>k x)
and ck(x) = cos(u>k x). If we approximateHD in (3) byHfa , we have

min
f∈Hfa

λ

2
‖f‖2Hκ +

1

N

N∑
i=1

`(f(xi), yi). (5)

The following proposition connects the approximate kernel machine in (5) to the linear machine
in (4). Proofs can be found in supplementary file.

Proposition 1 The approximate kernel machine in (5) is equivalent to the following linear machine

min
w∈R2m

λ

2
w>(w ◦ γ) +

1

N

N∑
i=1

`(w>zf (xi), yi), (6)

where γ = (γs1 , γ
c
1, · · · , γsm, γcm)> and γs/ci = exp(σ2‖ui‖22/2).

Comparing (6) to the linear machine based on random Fourier features in (4), we can see that other
than the weights {γs/ci }mi=1, random Fourier features can be viewed as to approximate (3) by re-
stricting the solution f(·) toHfa .

The Nyström Method The Nyström method approximates the full kernel matrix K by first sam-
pling m examples, denoted by x̂1, · · · , x̂m, and then constructing a low rank matrix by K̂r =

KbK̂
†K>b , where Kb = [κ(xi, x̂j)]N×m, K̂ = [κ(x̂i, x̂j)]m×m, K̂† is the pseudo inverse of K̂,

and r denotes the rank of K̂. In order to train a linear machine, we can derive a vector representa-
tion of data by zn(x) = D̂

−1/2
r V̂ >r (κ(x, x̂1), . . . , κ(x, x̂m))

>
, where D̂r = diag(λ̂1, . . . , λ̂r) and

V̂r = (v̂1, . . . , v̂r). It is straightforward to verify that zn(xi)
>zn(xj) = [K̂r]ij . Given the vector

representation zn(x), we then learn a linear machine f(x) = w>zn(x) by solving the following
optimization problem:

min
w∈Rr

λ

2
‖w‖22 +

1

N

N∑
i=1

`(w>zn(xi), yi). (7)

3We use HD , instead of Hκ in (3), owing to the representer theorem [16].
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In order to see how the Nyström method can be cast into the unified framework of approximating the
large scale kernel machine by functional approximation, we construct the following functional space
Hna = span(ϕ̂1, . . . , ϕ̂r), where ϕ̂1, . . . , ϕ̂r are the first r normalized eigenfunctions of the operator
Lm. The following proposition shows that the linear machine in (7) using the vector representation
of the Nyström method is equivalent to the approximate kernel machine in (3) by restricting the
solution f(·) to an approximate functional spaceHna .

Proposition 2 The linear machine in (7) is equivalent to the following approximate kernel machine

min
f∈Hna

λ

2
‖f‖2Hκ +

1

N

N∑
i=1

`(f(xi), yi), (8)

Although both random Fourier features and the Nyström method can be viewed as variants of the
unified framework, they differ significantly in the construction of the approximate functional space
Ha. In particular, the basis functions used by random Fourier features are sampled from a Gaussian
distribution that is independent from the training examples. In contrast, the basis functions used by
the Nyström method are sampled from the training examples and are therefore data dependent.

This difference, although subtle, can have significant impact on the classification performance. In
the case of large eigengap, i.e., the first few eigenvalues of the full kernel matrix are much larger than
the remaining eigenvalues, the classification performance is mostly determined by the top eigenvec-
tors. Since the Nyström method uses a data dependent sampling method, it is able to discover the
subspace spanned by the top eigenvectors using a small number of samples. In contrast, since ran-
dom Fourier features are drawn from a distribution independent from training data, it may require a
large number of samples before it can discover this subspace. As a result, we expect a significantly
lower generalization error for the Nyström method.

To illustrate this point, we generate a synthetic data set consisted of two balanced classes with a
total of N = 10, 000 data points generated from uniform distributions in two balls of radius 0.5
centered at (−0.5, 0.5) and (0.5, 0.5), respectively. The σ value in the RBF kernel is chosen by
cross-validation and is set to 6 for the synthetic data. To avoid a trivial task, 100 redundant features,
each drawn from a uniform distribution on the unit interval, are added to each example. The data
points in the first two dimensions are plotted in Figure 1(a) 4, and the eigenvalue distribution is
shown in Figure 1(b). According to the results shown in Figure 1(c), it is clear that the Nyström
method performs significantly better than random Fourier features. By using only 100 samples, the
Nyström method is able to make perfect prediction, while the decision made by random Fourier fea-
tures based method is close to random guess. To evaluate the approximation error of the functional
space, we plot in Figure 1(e) and 1(f), respectively, the first two eigenvectors of the approximate
kernel matrix computed by the Nyström method and random Fourier features using 100 samples.
Compared to the eigenvectors computed from the full kernel matrix (Figure 1(d)), we can see that
the Nyström method achieves a significantly better approximation of the first two eigenvectors than
random Fourier features.

Finally, we note that although the concept of eigengap has been exploited in many studies of kernel
learning [2, 12, 1, 17], to the best of our knowledge, this is the first time it has been incorporated in
the analysis for approximate large-scale kernel learning.

3 Main Theoretical Result

Let f∗m be the optimal solution to the approximate kernel learning problem in (8), and let f∗N be the
solution to the full version of kernel learning in (3). Let f∗ be the optimal solution to

min
f∈Hκ

(
F (f) =

λ

2
‖f‖2Hκ + E [`(f(x), y)]

)
,

where E[·] takes expectation over the joint distribution P (x, y). Following [10], we define the excess
risk of any classifier f ∈ Hκ as

Λ(f) = F (f)− F (f∗). (9)

4Note that the scales of the two axes in Figure 1(a) are different.
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Figure 1: An Illustration Example

Unlike [6], in this work, we aim to bound the generalization performance of f∗m by the generalization
performance of f∗N , which better reflects the impact of approximatingHD byHna .

In order to obtain a tight bound, we exploit the local Rademacher complexity [10]. Define ψ(δ) =(
2
N

∑N
i=1 min(δ2, λi)

)1/2
. Let ε̃ as the solution to ε̃2 = ψ(ε̃) where the existence and uniqueness

of ε̃ are determined by the sub-root property of ψ(δ) [4], and ε = max

(
ε̃,
√

6 lnN
N

)
. According

to [10], we have ε2 = O(N−1/2), and when the eigenvalues of kernel function follow a p-power law,
it is improved to ε2 = O(N−p/(p+1)). The following theorem bounds Λ(f∗m) by Λ(f∗N ). Section 4
will be devoted to the proof of this theorem.

Theorem 1 For 16ε2e−2N ≤ λ ≤ 1, λr+1 = O(N/m) and

(λr − λr+1)/N = Ω(1) ≥ 3

(
2 ln(2N3)

m
+

√
2 ln(2N3)

m

)
,

with a probability 1− 3N−3, we have

Λ(f∗m) ≤ 3Λ(f∗N ) +
1

λ
Õ

(
ε2 +

1

m

)
,

where Õ(·) suppresses the polynomial term of lnN .

Theorem 1 shows that the additional error caused by the approximation of the Nyström method is
improved to O(1/m) when there is a large gap between λr and λr+1. Note that the improvement
from O(1/

√
m) to O(1/m) is very significant from the theoretical viewpoint, because it is well

known that the generalization error for kernel learning is O(N−1/2) [4]5. As a result, to achieve
a similar performance as the standard kernel learning, the number of required samples has to be

5It is possible to achieve a better generalization error bound of O(N−p/(p+1)) by assuming the eigenvalues
of kernel matrix follow a p-power law [10]. However, large eigengap doest not immediately indicate power law
distribution for eigenvalues and and consequently a better generalization error.
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O(N) if the additional error caused by the kernel approximation is bounded by O(1/
√
m), leading

to a high computational cost. On the other hand, with O(1/m) bound for the additional error caused
by the kernel approximation, the number of required samples is reduced to

√
N , making it more

practical for large-scale kernel learning.

We also note that the improvement made for the Nyström method relies on the property that Hna ⊂
HD and therefore requires data dependent basis functions. As a result, it does not carry over to
random Fourier features.

4 Analysis

In this section, we present the analysis that leads to Theorem 1. Most of the proofs can be found in
the supplementary materials. We first present a theorem to show that the excessive risk bound of f∗m
is related to the matrix approximation error ‖K − K̂r‖2.

Theorem 2 For 16ε2e−2N ≤ λ ≤ 1, with a probability 1− 2N−3, we have

Λ(f∗m) ≤ 3Λ(f∗N ) + C2

(
ε2

λ
+
‖K − K̂r‖2

Nλ
+ e−N

)
,

where C2 is a numerical constant.

In the sequel, we let Kr be the best rank-r approximation matrix for K. By the triangle inequality,
‖K − K̂r‖2 ≤ ‖K − Kr‖2 + ‖Kr − K̂r‖2 ≤ λr+1 + ‖Kr − K̂r‖2, we thus proceed to bound
‖Kr − K̂r‖2. Using the eigenfunctions of Lm and LN , we define two linear operators Hr and Ĥr

as

Hr[f ](·) =

r∑
i=1

ϕi(·)〈ϕi, f〉Hκ , Ĥr[f ](·) =

r∑
i=1

ϕ̂i(·)〈ϕ̂i, f〉Hκ , (10)

where f ∈ Hκ. The following theorem shows that ‖Kr − K̂r‖2 is related to the linear operator
∆H = Hr − Ĥr.

Theorem 3 For λ̂r > 0 and λr > 0, we have

‖K̂r −Kr‖2 ≤ N‖L1/2
N ∆HL

1/2
N ‖2,

where ‖L‖2 stands for the spectral norm of a linear operator L.

Given the result in Theorem 3, we move to bound the spectral norm of L1/2
N ∆HL

1/2
N . To this

end, we assume a sufficiently large eigengap ∆ = (λr − λr+1)/N . The theorem below bounds
‖L1/2

N ∆HL
1/2
N ‖2 using matrix perturbation theory [19].

Theorem 4 For ∆ = (λr − λr+1)/N > 3‖LN − Lm‖HS , we have

‖L1/2
N ∆HL

1/2
N ‖2 ≤ η

4‖LN − Lm‖HS
∆− ‖LN − Lm‖HS

,

where η = max

(√
λr+1

N
,

2‖LN − Lm‖HS
∆− ‖LN − Lm‖HS

)
.

Remark To utilize the result in Theorem 4, we consider the case when λr+1 = O(N/m) and
∆ = Ω(1). We have

‖L1/2
N ∆HL

1/2
N ‖2 ≤ O

(
max

[
1√
m
‖LN − Lm‖HS , ‖LN − Lm‖2HS

])
.

Obviously, in order to achieve O(1/m) bound for ‖L1/2
N ∆HL

1/2
N ‖2, we need an O(1/

√
m) bound

for ‖LN − Lm‖HS , which is given by the following theorem.
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Theorem 5 For κ(x,x) ≤ 1,∀x ∈ X , with a probability 1−N−3, we have

‖LN − Lm‖HS ≤
2 ln(2N3)

m
+

√
2 ln(2N3)

m
.

Theorem 5 directly follows from Lemma 2 of [18]. Therefore, by assuming the conditions in The-
orem 1 and combining results from Theorems 3, 4, and 5, we immediately have ‖K − K̂r‖2 ≤
O (N/m). Combining this bound with the result in Theorem 2 and using the union bound, we have,
with a probability 1 − 3N−3, Λ(f∗m) ≤ 3Λ(f∗N ) + C

λ

(
ε2 + 1

m + e−N
)
. We complete the proof of

Theorem 1 by using the fact e−N < 1/N ≤ 1/m.

5 Empirical Studies

To verify our theoretical findings, we evaluate the empirical performance of the Nyström method
and random Fourier features for large-scale kernel learning. Table 1 summarizes the statistics of the
six data sets used in our study, including two for regression and four for classification. Note that
datasets CPU, CENSUS, ADULT and FOREST were originally used in [13] to verify the effective-
ness of random Fourier features. We evaluate the classification performance by accuracy, and the
performance of regression by mean square error of the testing data.

We use uniform sampling in the Nyström method owing to its simplicity. We note that the empirical
performance of the Nyström method may be improved by using a different implementation [21,
11]. We download the codes from the website http://berkeley.intel-research.net/
arahimi/c/random-features for the implementation of random Fourier features. A RBF
kernel is used for both methods and for all the datasets. A ridge regression package from [13] is used
for the two regression tasks, and LIBSVM [5] is used for the classification tasks. All parameters
are selected by a 5-fold cross validation. All experiments are repeated ten times, and prediction
performance averaged over ten trials is reported.

Figure 2 shows the performance of both methods with varied number of random samples. Note
that for large datasets (i.e., COVTYPE and FOREST), we restrict the maximum number of random
samples to 200 because of the high computational cost. We observed that for all the data sets, the
Nyström method outperforms random Fourier features 6. Moreover, except for COVTYPE with 10
random samples, the Nyström method performs significantly better than random Fourier features,
according to t-tests at 95% significance level. We finally evaluate that whether the large eigengap
condition, the key assumption for our main theoretical result, holds for the data sets. Due to the
large size, except for CPU, we compute the eigenvalues of kernel matrix based on 10, 000 randomly
selected examples from each dataset. As shown in Figure 3 (eigenvalues are in logarithm scale),
we observe that the eigenvalues drop very quickly as the rank increases, leading to a significant gap
between the top eigenvalues and the remaining eigenvalues.

6 Conclusion and Discussion

We study two methods for large-scale kernel learning, i.e., the Nyström method and random Fourier
features. One key difference between these two approaches is that the Nyström method uses data

6We note that the classification performance of ADULT data set reported in Figure 2 does not match with
the performance reported in [13]. Given the fact that we use the code provided by [13] and follow the same
cross validation procedure, we believe our result is correct. We did not use the KDDCup dataset because of the
problem of oversampling, as pointed out in [13].

Table 1: Statistics of data Sets

TASK DATA # TRAIN # TEST #Attr. TASK DATA # TRAIN # TEST #Attr.
Reg. CPU 6,554 819 21 Class. COD-RNA 59,535 271,617 8
Reg. CENSUS 18,186 2,273 119 Class. COVTYPE 464,810 116,202 54
Class. ADULT 32,561 16,281 123 Class. FOREST 522,910 58,102 54

7
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Figure 2: Comparison of the Nymström method and random Fourier features. For regression tasks,
the mean square error (with std.) is reported, and for classification tasks, accuracy (with std.) is
reported.
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Figure 3: The eigenvalue distributions of kernel matrices. N is the number of examples used to
compute eigenvalues.

dependent basis functions while random Fourier features introduce data independent basis functions.
This difference leads to an improved analysis for kernel learning approaches based on the Nyström
method. We show that when there is a large eigengap of kernel matrix, the approximation error
of Nyström method can be improved to O(1/m), leading to a significantly better generalization
performance than random Fourier features. We verify the claim by an empirical study.

As implied from our study, it is important to develop data dependent basis functions for large-scale
kernel learning. One direction we plan to explore is to improve random Fourier features by making
the sampling data dependent. This can be achieved by introducing a rejection procedure that rejects
the sample Fourier components when they do not align well with the top eigenfunctions estimated
from the sampled data.
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