
ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression

Jian-Hao Luo1, Jianxin Wu1, and Weiyao Lin2

1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2Shanghai Jiao Tong University, Shanghai, China

luojh@lamda.nju.edu.cn, wujx2001@nju.edu.cn, wylin@sjtu.edu.cn

Abstract

We propose an efficient and unified framework, namely
ThiNet, to simultaneously accelerate and compress CNN
models in both training and inference stages. We focus on
the filter level pruning, i.e., the whole filter would be dis-
carded if it is less important. Our method does not change
the original network structure, thus it can be perfectly sup-
ported by any off-the-shelf deep learning libraries. We for-
mally establish filter pruning as an optimization problem,
and reveal that we need to prune filters based on statistics in-
formation computed from its next layer, not the current layer,
which differentiates ThiNet from existing methods. Experi-
mental results demonstrate the effectiveness of this strategy,
which has advanced the state-of-the-art. We also show the
performance of ThiNet on ILSVRC-12 benchmark. ThiNet
achieves 3.31× FLOPs reduction and 16.63× compression
on VGG-16, with only 0.52% top-5 accuracy drop. Similar
experiments with ResNet-50 reveal that even for a compact
network, ThiNet can also reduce more than half of the param-
eters and FLOPs, at the cost of roughly 1% top-5 accuracy
drop. Moreover, the original VGG-16 model can be further
pruned into a very small model with only 5.05MB model
size, preserving AlexNet level accuracy but showing much
stronger generalization ability.

1. Introduction
In the past few years, we have witnessed a rapid develop-

ment of deep neural networks in the field of computer vision,
from basic image classification tasks such as the ImageNet
recognition challenge [18, 28, 11], to some more advanced
applications, e.g., object detection [7], semantic segmenta-
tion [24], image captioning [16] and many others. Deep
neural networks have achieved state-of-the-art performance
in these fields compared with traditional methods based on
manually designed visual features.

In spite of its great success, a typical deep model is hard
to be deployed on resource constrained devices, e.g., mobile
phones or embedded gadgets. A resource constrained sce-

nario means a computing task must be accomplished with
limited resource supply, such as computing time, storage
space, battery power, etc. One of the main issues of deep
neural networks is its huge computational cost and storage
overhead, which constitute a serious challenge for a mobile
device. For instance, the VGG-16 model [28] has 138.34 mil-
lion parameters, taking up more than 500MB storage space,1

and needs 30.94 billion float point operations (FLOPs) to
classify a single image. Such a cumbersome model can easily
exceed the computing limit of small devices. Thus, network
compression has drawn a significant amount of interest from
both academia and industry.

Pruning is one of the most popular methods to reduce
network complexity, which has been widely studied in the
model compression community. In the 1990s, LeCun et
al. [20] had observed that several unimportant weights can
be removed from a trained network with negligible loss in
accuracy. A similar strategy was also explored in [2]. This
process resembles the biological phenomena in mammalian
brain, where the number of neuron synapses has reached the
peak in early childhood, followed by gradual pruning during
its development. However, these methods are mainly based
on the second derivative, thus are not applicable for today’s
deep model due to expensive memory and computation costs.

Recently, Han et al. [10] introduced a simple pruning
strategy: all connections with weights below a threshold are
removed, followed by fine-tuning to recover its accuracy.
This iterative procedure is performed several times, gener-
ating a very sparse model. However, such a non-structured
sparse model can not be supported by off-the-shelf libraries,
thus specialized hardwares and softwares are needed for effi-
cient inference, which is difficult and expensive in real-world
applications. On the other hand, the non-structured random
connectivity ignores cache and memory access issues. As
indicated in [32], due to the poor cache locality and jumping
memory access caused by random connectivity, the practical
acceleration is very limited (sometimes even slows down),
even though the actual sparsity is relatively high.

To avoid the limitations of non-structured pruning men-

11 MB= 220 ≈ 1.048 million bytes, and 1 million is 106.



tioned above, we suggest that the filter level pruning would
be a better choice. The benefits of removing the whole unim-
portant filter have a great deal: 1) The pruned model has
no difference in network structure, thus it can be perfectly
supported by any off-the-shelf deep learning libraries. 2)
Memory footprint would be reduced dramatically. Such
memory reduction comes not only from model parameter
itself, but also from the intermediate activation, which is
rarely considered in previous studies. 3) Since the pruned
network structure has not be damaged, it can be further com-
pressed and accelerated by other compression methods, e.g.,
the parameter quantization approach [33]. 4) More vision
tasks, such as object detection or semantic segmentation, can
be accelerated greatly using the pruned model.

In this paper, we propose a unified framework, namely
ThiNet (stands for “Thin Net”), to prune the unimportant
filters to simultaneously accelerate and compress CNN mod-
els in both training and test stages with minor performance
degradation. With our pruned network, some important trans-
fer tasks such as object detection or fine-grained recognition
can run much faster (both training and inference), especially
in small devices. Our main insight is that we establish a well-
defined optimization problem, which shows that whether a
filter can be pruned depends on the outputs of its next layer,
not its own layer. This novel finding differentiates ThiNet
from existing methods which prune filters using statistics
calculated from their own layer.

We then compare the proposed method with other state-
of-the-art criteria. Experimental results show that our ap-
proach is significantly better than existing methods, espe-
cially when the compression rate is relatively high. We
evaluate ThiNet on the large-scale ImageNet classification
task. ThiNet achieves 3.31× FLOPs reduction and 16.63×
compression on VGG-16 model [28], with only 0.52% top-5
accuracy drop. The ResNet-50 model [11] has less redun-
dancy compared with classic CNN models. ThiNet can still
reduce 2.26× FLOPs and 2.06× parameters with roughly
1% top-5 accuracy drop. To explore the limits of ThiNet, we
show that the original VGG-16 model can even be pruned
into 5.05MB, but still preserving AlexNet level accuracy.

In addition, we also explore the performance of ThiNet
in a more practical task, i.e., transfer learning on small-scale
datasets. Experimental results demonstrate the excellent
effectiveness of ThiNet, which achieves the best trade-off
between model size and accuracy.

The key advantages and major contributions of this paper
can be summarized as follows.

• We propose a simple yet effective framework, namely
ThiNet, to simultaneously accelerate and compress
CNN models. ThiNet shows significant improvements
over existing methods on numerous tasks.
• We formally establish filter pruning as an optimization

problem, and reveal that we need to prune filters us-

ing statistics information computed from its next layer,
not the current layer, which differentiates ThiNet from
existing methods.
• In experiments, the VGG-16 model can be pruned into

5.05MB, showing promising generalization ability on
transfer learning. Higher accuracy could be preserved
with a more accurate model using ThiNet.

2. Related work
Many researchers have found that deep models suffer

from heavy over-parameterization. For example, Denil et
al. [4] demonstrated that a network can be efficiently recon-
structed with only a small subset of its original parameters.
However, this redundancy seems necessary during model
training, since the highly non-convex optimization is hard to
be solved with current techniques [5, 13]. Hence, there is a
great need to reduce model size after its training.

Some methods have been proposed to pursuit a balance
between model size and accuracy. Han et al. [10] proposed
an iterative pruning method to remove the redundancy in
deep models. Their main insight is that small-weight con-
nectivity below a threshold should be discarded. In practice,
this can be aided by applying `1 or `2 regularization to push
connectivity values becoming smaller. The major weakness
of this strategy is the loss of universality and flexibility, thus
seems to be less practical in the real applications.

In order to avoid these weaknesses, some attention has
been focused on the group-wise sparsity. Lebedev and Lem-
pitsky [19] explored group-sparse convolution by introduc-
ing the group-sparsity regularization to the loss function,
then some entire groups of weights would shrink to zeros,
thus can be removed. Similarly, Wen et al. [32] proposed
the Structured Sparsity Learning (SSL) method to regularize
filter, channel, filter shape and depth structures. In spite of
their success, the original network structure has been de-
stroyed. As a result, some dedicated libraries are needed for
an efficient inference speed-up.

In line with our work, some filter level pruning strate-
gies have been explored too. The core is to evaluate neuron
importance, which has been widely studied in the commu-
nity [34, 27, 21, 14, 23]. A simplest possible method is based
on the magnitude of weights. Li et al. [21] measured the
importance of each filter by calculating its absolute weight
sum. Another practical criterion is to measure the sparsity of
activations after the ReLU function. Hu et al. [14] believed
that if most outputs of some neurons are zero, these activa-
tions should be expected to be redundant. They compute
the Average Percentage of Zeros (APoZ) of each filter as its
importance score. These two criteria are simple and straight-
forward, but not directly related to the final loss. Inspired
by this observation, Molchanov et al. [23] adopted Taylor
expansion to approximate the influence to loss function in-
duced by removing each filter.



prune weak filters

* … …*Original 

Model

* *
……

Pruned 

Model

input of 

layer 𝑖
filters of 

layer 𝑖
input of 

layer 𝑖+1

filters of 

layer 𝑖+1

input of 

layer 𝑖+2

fine-tuning

* *
……

Fine-tuned 

Model

Figure 1. Illustration of ThiNet. First, we focus on the dotted box
part to determine several weak channels and their corresponding
filters (highlighted in yellow in the first row). These channels
(and their associated filters) have little contribution to the overall
performance, thus can be discarded, leading to a pruned model.
Finally, the network is fine-tuned to recover its accuracy. (This
figure is best viewed in color.)

Beyond pruning, there are also other strategies to obtain
small CNN models. One popular approaches is parameter
quantization [8, 3, 33, 9]. Low-rank approximation is also
widely studied [5, 29]. Note that these methods are com-
plementary to filter pruning, which can be combined with
ThiNet for further improvement.

3. ThiNet
In this section, we will give a comprehensive introduc-

tion to our filter level pruning approach: ThiNet. First, the
overall framework will be presented. Next, a more detailed
description of our selection algorithm would be presented.
Finally, we will show our pruning strategy, which takes both
efficiency and effectiveness into consideration.

3.1. Framework of ThiNet

Pruning is a classic method used for reducing model
complexity. Although vast differences exist (such as differ-
ent criteria in selecting what should be pruned), the overall
framework is similar in pruning filters inside a deep neural
network. It can be summarized in one sentence: evaluate the
importance of each neuron, remove those unimportant ones,
and fine-tune the whole network.

This framework is illustrated in Figure 1. In the next sub-
section, we will focus on the dotted box part to introduce our
data-driven channel selection method, which determines the
channels (and their associated filters) that are to be pruned
away.

Given a pre-trained model, it would be pruned layer by
layer with a predefined compression rate. We summarize our
framework as follows:

1. Filter selection. Unlike existing methods that use layer
i’s statistics to guide the pruning of layer i’s filters, we
use layer i + 1 to guide the pruning in layer i. The
key idea is: if we can use a subset of channels in layer

(i+ 1)’s input to approximate the output in layer i+ 1,
the other channels can be safely removed from the input
of layer i+ 1. Note that one channel in layer (i+ 1)’s
input is produced by one filter in layer i, hence we can
safely prune the corresponding filter in layer i.

2. Pruning. Weak channels in layer (i + 1)’s input and
their corresponding filters in layer i would be pruned
away, leading to a much smaller model. Note that, the
pruned network has exactly the same structure but with
fewer filters and channels. In other words, the original
wide network is becoming much thinner. That is why
we call our method “ThiNet”.

3. Fine-tuning. Fine-tuning is a necessary step to recover
the generalization ability damaged by filter pruning.
But it will take very long for large datasets and complex
models. For time-saving considerations, we fine-tune
one or two epochs after the pruning of one layer. In
order to get an accurate model, more additional epochs
would be carried out when all layers have been pruned.

4. Iterate to step 1 to prune the next layer.

3.2. Data-driven channel selection

We use a triplet 〈Ii,Wi, ∗〉 to denote the convolution
process in layer i, where Ii ∈ RC×H×W is the input tensor,
which has C channels, H rows and W columns. AndWi ∈
RD×C×K×K is a set of filters with K×K kernel size, which
generates a new tensor with D channels.

Our goal is to remove some unimportant filters in Wi.
Note that, if a filter in Wi is removed, its corresponding
channel in Ii+1 andWi+1 would also be discarded. How-
ever, since the filter number in layer i + 1 has not been
changed, the size of its output tensor, i.e., Ii+2, would be
kept exactly the same. Inspired by this observation, we
believe that if we can remove several filters that has little
influence on Ii+2 (which is also the output of layer i+ 1), it
would have little influence on the overall performance too.
In other words, minimizing the reconstruction error of Ii+2

is closely related to the network’s classification performance.

3.2.1 Collecting training examples

In order to determine which channel can be removed safely,
a training set used for importance evaluation would be col-
lected. As illustrated in Figure 2, an element, denoted by y,
is randomly sampled from the tensor Ii+2 (before ReLU).
A corresponding filter Ŵ ∈ RC×K×K and sliding window
x ∈ RC×K×K (after ReLU) can also be determined accord-
ing to its location. Here, some index notations are omitted for
a clearer presentation. Normally, the convolution operation
can be computed with a corresponding bias b as follows:

y =

C∑
c=1

K∑
k1=1

K∑
k2=1

Ŵc,k1,k2
× xc,k1,k2

+ b. (1)



𝑥: the sliding 

window 
𝒲: the corresponding filter

𝑦: a random 

sampled data

input of layer 𝑖+1 filters of layer 𝑖+1 input of layer 𝑖+2

* =...

Figure 2. Illustration of data sampling and variables’ relationship.

Now, if we further define:

x̂c =

K∑
k1=1

K∑
k2=1

Ŵc,k1,k2
× xc,k1,k2

, (2)

Eq. 1 can be simplified as:

ŷ =

C∑
c=1

x̂c, (3)

in which ŷ = y − b. It is worthwhile to keep in mind that x̂
and ŷ are random variables whose instantiations require fixed
spatial locations indexed by c, k1 and k2. A key observation
is that channels in x̂ = (x̂1, x̂2, . . . , x̂C) is independent: x̂c

only depends on xc,:,:, which has no dependency relationship
with xc′,:,:, if c′ 6= c.

In other words, if we can find a subset S ⊂ {1, 2, . . . , C}
and the equality

ŷ =
∑
c∈S

x̂c (4)

always holds, then we do not need any x̂c if c /∈ S and these
variables can be safely removed without changing the CNN
model’s result.

Of course, Eq. 4 cannot always be true for all instances
of the random variables x̂ and ŷ. However, we can manually
extract instances of them to find a subset S such that Eq. 4
is approximately correct.

Given an input image, we first apply the CNN model in
the forward run to find the input and output of layer i + 1.
Then for any feasible (c, k1, k2) triplet, we can obtain a C-
dimensional vector variable x̂ = {x̂1, x̂2, . . . , x̂C} and a
scalar value ŷ using Eq. 1 to Eq. 3. Since x̂ and ŷ can be
viewed as random variables, more instances can be sampled
by choosing different input images, different channels, and
different spatial locations.

3.2.2 A greedy algorithm for channel selection

Now, given a set of m (the product of number of images
and number of locations) training examples {(x̂i, ŷi)}, the
original channel selection problem becomes the following

Algorithm 1 A greedy algorithm for minimizing Eq. 6
Input: Training set {(x̂i, ŷi)}, and compression rate r
Output: The subset of removed channels: T
1: T ← ∅; I ← {1, 2, . . . , C};
2: while |T | < C × (1− r) do
3: min value← +∞;
4: for each item i ∈ I do
5: tmpT ← T ∪ {i};
6: compute value from Eq. 6 using tmpT ;
7: if value < min value then
8: min value← value;min i← i;
9: end if

10: end for
11: move min i from I into T ;
12: end while

optimization problem:

argmin
S

m∑
i=1

ŷi −
∑
j∈S

x̂i,j

2

s.t. |S| = C × r, S ⊂ {1, 2, . . . , C}.

(5)

Here, |S| is the number of elements in a subset S, and r
is a pre-defined compression rate (i.e., how many channels
are preserved). Equivalently, let T be the subset of removed
channels (i.e., S ∪ T = {1, 2, . . . , C} and S ∩ T = ∅), we
can minimize the following alternative objective:

argmin
T

m∑
i=1

∑
j∈T

x̂i,j

2

s.t. |T | = C × (1− r), T ⊂ {1, 2, . . . , C}.

(6)

Eq. 6 is equivalent to Eq. 5, but has faster speed because |T |
is usually smaller than |S|. Solving Eq. 6 is still NP hard,
thus we use a greedy strategy (illustrated in algorithm 1).
We add one element to T at a time, and choose the channel
leading to the smallest objective value in the current iteration.

Obviously, this greedy solution is sub-optimal. But the
gap can be compensated by fine-tuning. We have also tried
some other sophisticated algorithms, such as sparse coding
(specifically, the homotopy method [6]). However, our sim-
ple greedy approach has better performance and faster speed
according to our experiments.

3.2.3 Minimize the reconstruction error

So far, we have obtained the subset T such that the n-th
channel in each filter of layer i+ 1 can be safely removed
if n ∈ T . Hence, the corresponding filters in the previous
layer i can be pruned too.



Now we will further minimize the reconstruction error
(c.f . Eq. 5) by weighing the channels, which can be defined
as:

ŵ = argmin
w

m∑
i=1

(ŷi −wTx̂∗i )
2, (7)

where x̂∗i indicates the training examples after channel se-
lection. Eq. 7 is a classic linear regression problem, which
has a unique closed-form solution using the ordinary least
squares approach: ŵ = (XTX)−1XTy.

Each element in ŵ can be regarded as a scaling factor of
corresponding filter channel such thatW:,i,:,: = ŵiW:,i,:,:.
From another point of view, this scaling operation provides
a better initialization for fine-tuning, hence the network is
more likely to reach higher accuracy.

3.3. Pruning strategy

There are mainly two types of different network archi-
tectures: the traditional convolutional/fully-connected archi-
tecture, and recent structural variants. The former is repre-
sented by AlexNet [18] or VGGNet [28], while the latter
mainly includes some recent networks like GoogLeNet [30]
and ResNet [11]. The main difference between these two
types is that more recent networks usually replace the
FC (fully-connected) layers with a global average pooling
layer [22, 34], and adopt some novel network structures like
Inception in GoogLeNet or residual blocks in ResNet.

We use different strategies to prune these two types of net-
works. For VGG-16, we notice that more than 90% FLOPs
exist in the first 10 layers (conv1-1 to conv4-3), while the
FC layers contribute nearly 86.41% parameters. Hence, we
prune the first 10 layers for acceleration consideration, but
replace the FC layers with a global average pooling layer.
Although the proposed method is also valid for FC layers,
we believe removing them is simpler and more efficient.

For ResNet, there exist some restrictions due to its special
structure. For example, the channel number of each block
in the same group needs to be consistent in order to finish
the sum operation (see [11] for more details). Thus it is hard
to prune the last convolutional layer of each residual block
directly. Since most parameters are located in the first two
layers, pruning the first two layers is a good choice, which is
illustrated in Figure 3.

4. Experiments
We empirically study the performance of ThiNet in this

section. First, a comparison among several different fil-
ter selection criteria would be presented. Experimental re-
sults show that our method is significantly better than others.
Then, we would report the performance on ILSCVR-12 [26].
Two widely used networks are pruned: VGG-16 [28] and
ResNet-50 [11]. Finally, we focus on a more practical sce-
nario to show the advantages of ThiNet. All the experiments

64×256×1×1

64×64×3×3

256×64×1×1

+

relu

relu

ReLU

256-d

32×256×1×1

32×32×3×3

256×32×1×1

+

relu

relu

256-d

prune 50%

256-d 256-dReLU

Figure 3. Illustration of the ResNet pruning strategy. For each
residual block, we only prune the first two convolutional layers,
keeping the block output dimension unchanged.

are conducted within Caffe [17].

4.1. Different filter selection criteria

There exist some heuristic criteria to evaluate the impor-
tance of each filter in the literature. We compare our selec-
tion method with two recently proposed criteria to demon-
strate the effectiveness of our evaluation criterion. These
criteria are briefly summarized as follows:

• Weight sum [21]. Filters with smaller kernel weights
tend to produce weaker activations. Thus, in this strat-
egy the absolute sum of each filter is calculated as its
importance score: si =

∑
|W(i, :, :, :)|.

• APoZ (Average Percentage of Zeros) [14]. This
criterion calculates the sparsity of each channel in
output activations as its importance score: si =

1
|I(i,:,:)|

∑∑
I(I(i, :, :) == 0), where |I(i, :, :)| is

the elements number in i-th channel of tensor I (af-
ter ReLU), and I(·) denotes the indicator function.

To compare these different selection methods, we evalu-
ate their performance on the widely used fine-grained dataset:
CUB-200 [31], which contains 11,788 images of 200 differ-
ent bird species (5994/5794 images for training/test, respec-
tively). Except for labels, no additional supervised informa-
tion (e.g., bounding box) is used.

Following the pruning strategy in Section 3.3, all the FC
layers in VGG-16 are removed, and replaced with a global
average pooling layer, and fine-tuned on new datasets. Start-
ing from this fine-tuned model, we then prune the network
layer by layer with different compression rate. Each prun-
ing is followed by one epoch fine-tuning, and 12 epochs
are performed in the final layer to improve accuracy. This
procedure is repeated several times with different channel
selection strategies. Due to the random nature of ThiNet, we
repeated our method 4 times and report the averaged result.
For a fair comparison, all the settings are kept the same,
except the selection method.

Figure 4 shows the pruning results on the CUB bird
dataset. We also evaluated the performance of random se-
lection with the same pruning strategy. In addition, another



100% 80% 60% 40% 20% 0%
FLOPs Reduction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
To

p-
1 

Ac
cu

ra
cy

Random
Weight sum
APoZ
ThiNet w/o w
ThiNet

Figure 4. Performance comparison of different channel selection
methods: the VGG-16-GAP model pruned on CUB-200 with dif-
ferent compression rates. (This figure is best viewed in color and
zoomed in.)

version of ThiNet without least squares (denoted by “ThiNet
w/o ŵ”) is also evaluated to demonstrate the effectiveness of
least squares in our method. Obviously, ThiNet achieves con-
sistently and significantly higher accuracy compared with
other selection methods.

One interesting result is: random selection shows pretty
good performance, even better than heuristic criteria in some
cases. In fact, according to the property of distributed repre-
sentations (i.e., each concept is represented by many neurons;
and, each neuron participates in the representation of many
concepts [12, 1]), randomly selected channels may be quite
powerful in theory. However, this criterion is not robust. As
shown in Figure 4, it can lead to very bad result and the
accuracy is very low after all layers are compressed. Thus,
random selection is not applicable in practice.

Weight sum has pretty poor accuracy on CUB-200. This
result is reasonable, since it only takes the magnitude of ker-
nel weights into consideration, which is not directly related
to the final classification accuracy. In fact, small weights
could still have large impact on the loss function. When we
discard a large number of small filters at the same time, the
final accuracy can be damaged greatly. For example, if we
removed 60% filters in conv1-1 using the small weight crite-
rion, the top-1 accuracy is only 40.99% (before fine-tuning),
while random criterion is 51.26%. By contrast, our method
(ThiNet w/o w) can reach 68.24%, and even 70.75% with
least squares (ThiNet). The accuracy loss of weight sum is
so large that fine-tuning cannot completely recover it from
the drop.

In contrast, our method shows much higher and robust
results. The least squares approach does indeed aid to get a
better weight initialization for fine-tuning, especially when
the compression rate is relatively high.

4.2. VGG-16 on ImageNet

We now evaluate the performance of the proposed ThiNet
method on large-scale ImageNet classification task. The
ILSCVR-12 dataset [26] consists of over one million train-
ing images drawn from 1000 categories. We randomly select
10 images from each category in the training set to comprise
our evaluation set (i.e., collected training examples for chan-
nel selection). And for each input image, 10 instances are
randomly sampled with different channels and different spa-
tial locations as described in section 3.2.1. Hence, there are
in total 100,000 training samples used for finding the optimal
channel subset via Algorithm 1. We compared several dif-
ferent choices of image and location number, and found that
the current choice (10 images per class and 10 locations per
image) is enough for neuron importance evaluation. Finally,
top-1 and top-5 classification performance are reported on
the 50k standard validation set, using the single-view testing
approach (central patch only).

During fine-tuning, images are resized to 256× 256, then
224× 224 random cropping is adopted to feed the data into
network. Horizontal flip is also used for data augmentation.
At the inference stage, we center crop the resized images
to 224 × 224. No more tricks are used here. The whole
network is pruned layer by layer and fine-tuned in one epoch
with 10−3 learning rate. Since the last layer of each group
(i.e., conv1-2, conv2-2, conv3-3) is more important (pruning
these layers would lead to a big accuracy drop), we fine-tune
these layers with additional one epoch of 10−4 learning rate
to prevent accuracy drop too much. When pruning the last
layer, more epochs (12 epochs) are adopted to get an accurate
result with learning rate varying from 10−3 to 10−5. We use
SGD with mini-batch size of 128, and other parameters are
kept the same as the original VGG paper [28].

We summarize the performance of the ThiNet approach
in Table 1. Here, “ThiNet-Conv” refers to the model in
which only the first 10 convolutional layers are pruned with
compression rate 0.5 (i.e., half of the filters are removed
in each layer till conv4-3) as stated above. Because some
useless filters are discarded, the pruned model can even
outperform the original VGG-16 model. However, if we
train this model from scratch, the top-1/top-5 accuracy are
only 67.00%/87.45% respectively, which is much worse
than our pruned network. Then the FC layers are removed,
replaced with a GAP (global average pooling) layer and fine-
tuned in 12 epochs with the same hyper-parameters, which
is denoted by “ThiNet-GAP”. The classification accuracy
of GAP model is slightly lower than the original model,
since the model size has been reduced dramatically. Further
reduction can be obtained with a higher compression rate
(denoted by “ThiNet-Tiny”), which would be discussed later.

The actual speed-up of ThiNet is also reported. We test
the forward/backward running time of each model using
the official “time” command in Caffe. This evaluation is



Table 1. Pruning results of VGG-16 on ImageNet using ThiNet.
Here, M/B means million/billion (106/109), respectively; f./b. de-
notes the forward/backward timing in milliseconds tested on one
M40 GPU with batch size 32.
Model Top-1 Top-5 #Param. #FLOPs1 f./b. (ms)

Original2 68.34% 88.44% 138.34M 30.94B 189.92/407.56
ThiNet-Conv 69.80% 89.53% 131.44M 9.58B 76.71/152.05
Train from scratch 67.00% 87.45% 131.44M 9.58B 76.71/152.05
ThiNet-GAP 67.34% 87.92% 8.32M 9.34B 71.73/145.51
ThiNet-Tiny 59.34% 81.97% 1.32M 2.01B 29.51/55.83
SqueezeNet[15] 57.67% 80.39% 1.24M 1.72B 37.30/68.62

1 In this paper, we only consider the FLOPs of convolution operations,
which is commonly used for computation complexity comparison.

2 For a fair comparison, the accuracy of original VGG-16 model is eval-
uated on resized center-cropped images using pre-trained model as
adopted in [10, 14]. The same strategy is also used in ResNet-50.

Table 2. Comparison among several state-of-the-art pruning meth-
ods on the VGG-16 network. Some exact values are not reported
in the original paper and cannot be computed, thus we use ≈ to
denote the approximation value.

Method Top-1 Acc. Top-5 Acc. #Param. ↓ #FLOPs ↓
APoZ-1 [14] -2.16% -0.84% 2.04× ≈ 1×
APoZ-2 [14] +1.81% +1.25% 2.70× ≈ 1×
Taylor-1 [23] – -1.44% ≈ 1× 2.68×
Taylor-2 [23] – -3.94% ≈ 1× 3.86×

ThiNet-WS [21] +1.01% +0.69% 1.05× 3.23×
ThiNet-Conv +1.46% +1.09% 1.05× 3.23×
ThiNet-GAP -1.00% -0.52% 16.63× 3.31×

conducted on one M40 GPU with batch size 32 accelerated
by cuDNN v5.1. Since convolution operations dominate
the computational costs of VGG-16, reducing FLOPs would
accelerate inference speed greatly, which is shown in Table 1.

We then compare our approach with several state-of-the-
art pruning methods on the VGG-16 model, which is shown
in Table 2. These methods also focus on filter-level pruning,
but with totally different selection criteria.

APoZ [14] aims to reduce parameter numbers, but its
performance is limited. APoZ-1 prunes few layers (conv4,
conv5 and the FC layers), but leads to significant accuracy
degradation. APoZ-2 then only prunes conv5-3 and the FC
layers. Its accuracy is improved but this model almost does
not reduce the FLOPs. Hence, there is a great need for
compressing convolution layers.

In contrast, Molchanov et al. [23] pay their attention to
model acceleration, and only prune the convolutional layers.
They think a filter can be removed safely if it has little influ-
ence on the loss function. But the calculating procedure can
be very time-consuming, thus they use Taylor expansion to
approximate the loss change. Their motivation and goals are
similar to ours, but with totally different selection criterion
and training framework. As shown in Table 2, the ThiNet-
Conv model is significantly better than Taylor method. Our
model can even improve classification accuracy with more
FLOPs reduction.

As for weight sum [21], they have not explored its perfor-

mance on VGG-16. Hence we simply replace our selection
method with weight sum in the ThiNet framework, and re-
port the final accuracy denoted by “ThiNet-WS”. All the
parameters are kept the same except for selection criterion.
Note that different fine-tuning framework may lead to very
different results. Hence, the accuracy may be different if Li
et al. [21] had done this using their own framework. Because
the rest setups are the same, it is fair to compare ThiNet-WS
and ThiNet, and ThiNet has obtained better results.

To explore the limits of ThiNet, we prune VGG-16 with
a larger compression rate 0.25, achieving 16× parameters
reduction in convolutional layers. The conv5 layers are also
pruned to get a smaller model. As for conv5-3, which is
directly related to the final feature representation, we only
prune half of the filters for accuracy consideration.

Using these smaller compression ratios, we train a very
small model. Denoted as “ThiNet-Tiny” in Table 1, it only
takes 5.05MB disk space (1MB=220 bytes) but still has
AlexNet-level accuracy (the top-1/top-5 accuracy of AlexNet
is 57.2%/80.3%, respectively). ThiNet-Tiny has exactly the
same level of model complexity as the recently proposed
compact network: SqueezeNet [15], but showing high accu-
racy. Although ThiNet-Tiny needs more FLOPs, its actual
speed is even faster than SqueezeNet because it has a much
simpler network structure. SqueezeNet adopts a special
structure, namely the Fire module, which is parameter ef-
ficient but relies on manual network structure design. In
contrast, ThiNet is a unified framework, and higher accuracy
would be obtained if we start from a more accurate model.

4.3. ResNet-50 on ImageNet

We also explore the performance of ThiNet on the re-
cently proposed powerful CNN architecture: ResNet [11].
We select ResNet-50 as the representative of the ResNet
family, which has exactly the same architecture and little
difference with others.

Similar to VGG-16, we prune ResNet-50 from block
2a to 5c iteratively. Except for filters, the corresponding
channels in batch-normalization layer are also discarded.
After pruning, the model is fine-tuned in one epoch with
fixed learning rate 10−4. And 9 epochs fine-tuning with
learning rate changing from 10−3 to 10−5 is performed at
the last round to gain a higher accuracy. Other parameters
are kept the same as our VGG-16 pruning experiment.

Because ResNet is a recently proposed model, the liter-
ature lack enough works that compress this network. We
report the performance of ThiNet on pruning ResNet-50,
which is shown in Table 3. We prune this model with 3
different compression rates (preserve 70%, 50%, 30% fil-
ters in each block respectively). Unlike VGG-16, ResNet is
more compact. There exists less redundancy, thus pruning
a large amount of filters seems to be more challenging. In
spite of this, our method ThiNet-50 can still prune more than



Table 3. Overall performance of pruning ResNet-50 on ImageNet
via ThiNet with different compression rate. Here, M/B means
million/billion respectively, f./b. denotes the forward/backward
speed tested on one M40 GPU with batch size 32.

Model Top-1 Top-5 #Param. #FLOPs f./b. (ms)
Original 72.88% 91.14% 25.56M 7.72B 188.27/269.32

ThiNet-70 72.04% 90.67% 16.94M 4.88B 169.38/243.37
ThiNet-50 71.01% 90.02% 12.38M 3.41B 153.60/212.29
ThiNet-30 68.42% 88.30% 8.66M 2.20B 144.45/200.67

half of the parameters with roughly 1% top-5 accuracy drop.
Further pruning can also be carried out, leading to a much
smaller model at the cost of more accuracy loss.

However, reduced FLOPs can not bring the same level
of acceleration in ResNet. Due to the structure constraints
of ResNet-50, non-tensor layers (e.g., batch normalization
and pooling layers) take up more than 40% of the inference
time on GPU. Hence, there is a great need to accelerate these
non-tensor layers, which should be explored in the future.

In this experiment, we only prune the first two layers of
each block in ResNet for simplicity, leaving the block output
and projection shortcuts unchanged. Pruning these parts
would lead to further compression, but can be quite difficult,
if not entirely impossible. And this exploration seems to be
a promising extension for the future work.

4.4. Domain adaptation ability of the pruned model

One of the main advantages of ThiNet is that we have
not changed network structure, thus a model pruned on Ima-
geNet can be easily transfered into other domains.

To help us better understand this benefit, let us consider
a more practical scenario: get a small model on a domain-
specific dataset. This is a very common requirement in the
real-world applications, since we will not directly apply
ImageNet models in a real application. To achieve this goal,
there are two feasible strategies: starting from a pre-trained
ImageNet model then prune on the new dataset, or train a
small model from scratch. In this section, we argue that it
would be a better choice if we fine-tune an already pruned
model which is compressed on ImageNet.

These strategies are compared on two different domain-
specific dataset: CUB-200 [31] for fine-grained classifica-
tion and Indoor-67 [25] for scene recognition. We have
introduced CUB-200 in section 4.1. As for Indoor-67, we
follow the official train/test split (5360 training and 1340
test images) to organize this dataset. All the models are
fine-tuned with the same hyper-parameters and epochs for a
fair comparison. Their performance is shown in Table 4.

We first fine-tune the pre-trained VGG-16 model on the
new dataset, which is a popular strategy adopted in numer-
ous recognition tasks. As we can see, the fine-tuned model
has the highest accuracy at the cost of huge model size and
slow inference speed. Then, we use the proposed ThiNet
approach to prune some unimportant filters (denoted by “FT

Table 4. Comparison of different strategies to get a small model on
CUB-200 and Indoor-67. “FT” stands for “Fine Tune”.

Dataset Strategy #Param. #FLOPs Top-1

CUB-200

VGG-16 135.07M 30.93B 72.30%
FT & prune 7.91M 9.34B 66.90%

Train from scratch 7.91M 9.34B 44.27%
ThiNet-Conv 128.16M 9.58B 70.90%
ThiNet-GAP 7.91M 9.34B 69.43%
ThiNet-Tiny 1.12M 2.01B 65.45%

AlexNet 57.68M 1.44B 57.28%

Indoor-67

VGG-16 134.52M 30.93B 72.46%
FT & prune 7.84M 9.34B 64.70%

Train from scratch 7.84M 9.34B 38.81%
ThiNet-Conv 127.62M 9.57B 72.31%
ThiNet-GAP 7.84M 9.34B 70.22%
ThiNet-Tiny 1.08M 2.01B 62.84%

AlexNet 57.68M 1.44B 59.55%

& prune”), converting the cumbersome model into a much
smaller one. With small-scale training examples, the accu-
racy cannot be recovered completely, i.e., the pruned model
can be easily trapped into bad local minima. However, if
we train a network from scratch with the same structure, its
accuracy can be much lower.

We suggest to fine-tune the ThiNet model, which is first
pruned using the ImageNet data. As shown in Table 4, this
strategy gets the best trade-off between model size and clas-
sification accuracy. It is worth noting that the ThiNet-Conv
model can even obtain a similar accuracy as the original
VGG-16, but is smaller and much faster.

We also report the performance of ThiNet-Tiny on these
two datasets. Although ThiNet-Tiny has the same level of
accuracy as AlexNet on ImageNet, it shows much stronger
generalization ability. This tiny model can achieve 3% ∼ 8%
higher classification accuracy than AlexNet when transferred
into domain-specific tasks with 50× fewer parameters. And
its model size is small enough to be deployed on resource
constrained devices.

5. Conclusion
In this paper, we proposed a unified framework, namely

ThiNet, for CNN model acceleration and compression. The
proposed filter level pruning method shows significant im-
provements over existing methods.

In the future, we would like to prune the projection short-
cuts of ResNet. An alternative method for better channel
selection is also worthy to be studied. In addition, extensive
exploration on more vision tasks (such as object detection
or semantic segmentation) with the pruned networks is an
interesting direction too. The pruned networks will greatly
accelerate these vision tasks.

Acknowledgements
This work was supported in part by the National Natural

Science Foundation of China under Grant No. 61422203.



References
[1] Y. Bengio, A. Courville, and P. Vincent. Representation

learning: A review and new perspectives. TPAMI, 35(8):1798–
1828, 2013. 6

[2] G. Chechik, I. Meilijson, and E. Ruppin. Synaptic pruning in
development: A computational account. Neural computation,
10(7):1759–1777, 1998. 1

[3] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen.
Compressing neural networks with the hashing trick. In ICML,
pages 2285–2294, 2015. 3

[4] M. Denil, B. Shakibi, L. Dinh, and N. de Freitas. Predicting
parameters in deep learning. In NIPS, pages 2148–2156, 2013.
2

[5] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus.
Exploiting linear structure within convolutional networks for
efficient evaluation. In NIPS, pages 1269–1277, 2014. 2, 3

[6] D. L. Donoho and Y. Tsaig. Fast solution of `1-norm mini-
mization problems when the solution may be sparse. IEEE
Trans. Information Theory, 54(11):4789–4812, 2008. 4

[7] R. Girshick. Fast R-CNN. In ICCV, pages 1440–1448, 2015.
1

[8] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing
deep convolutional networks using vector quantization. In
arXiv preprint arXiv:1412.6115, pages 1–10, 2014. 3

[9] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quan-
tization and huffman coding. In ICLR, pages 1–14, 2016.
3

[10] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights
and connections for efficient neural network. In NIPS, pages
1135–1143, 2015. 1, 2, 7

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016. 1, 2,
5, 7

[12] G. Hinton. Learning distributed representations of concepts.
In CogSci, pages 1–12, 1986. 6

[13] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. Improving neural networks by pre-
venting co-adaptation of feature detectors. In arXiv preprint
arXiv:1207.0580, pages 1–18, 2012. 2

[14] H. Hu, R. Peng, Y. W. Tai, and C. K. Tang. Network trimming:
A data-driven neuron pruning approach towards efficient deep
architectures. In arXiv preprint arXiv:1607.03250, pages 1–9,
2016. 2, 5, 7

[15] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. SqueezeNet: AlexNet-level accuracy
with 50× fewer parameters and <0.5 MB model size. In
arXiv preprint arXiv:1602.07360, pages 1–13, 2016. 7

[16] X. Jia, E. Gavves, B. Fernando, and T. Tuytelaars. Guiding the
long-short term memory model for image caption generation.
In ICCV, pages 2407–2415, 2015. 1

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Learning distributed
representations of concepts. In ACM MM, pages 675–678,
2014. 5

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, pages 1097–1105, 2012. 1, 5

[19] V. Lebedev and V. Lempitsky. Fast convnets using group-wise
brain damage. In CVPR, pages 2554–2564, 2016. 2

[20] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain
damage. In NIPS, pages 598–605, 1990. 1

[21] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.
Pruning filters for efficient ConvNets. In ICLR, pages 1–13,
2017. 2, 5, 7

[22] M. Lin, Q. Chen, and S. Yan. Network in network. In arXiv
preprint arXiv:1312.4400, pages 1–10, 2013. 5

[23] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.
Pruning convolutional neural networks for resource efficient
transfer learning. In ICLR, pages 1–17, 2017. 2, 7

[24] H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In ICCV, pages 1520–1528,
2015. 1

[25] A. Quattoni and A.Torralba. Recognizing indoor scenes. In
CVPR, pages 413–420, 2009. 8

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and F.-F. Li. ImageNet large scale visual recognition chal-
lenge. IJCV, 115(3):211–252, 2015. 5, 6

[27] R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra. Grad-CAM: Visual explanations from deep
networks via gradient-based localization. In arXiv preprint
arXiv:1610.02391, pages 1–24, 2016. 2

[28] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, pages
1–14, 2015. 1, 2, 5, 6

[29] V. Sindhwani, T. Sainath, and S. Kumar. Structured trans-
forms for small-footprint deep learning. In NIPS, pages 3088–
3096, 2015. 3

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. In CVPR, pages 1–9, 2015. 5

[31] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD birds-200-2011 dataset. Technical Report
CNS-TR-2011-001, California Institute of Technology, 2011.
5, 8

[32] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning
structured sparsity in deep neural networks. In NIPS, pages
2074–2082, 2016. 1, 2

[33] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized
convolutional neural networks for mobile devices. In CVPR,
pages 4820–4828, 2016. 2, 3

[34] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.
Learning deep features for discriminative localization. In
NIPS, pages 2921–2929, 2016. 2, 5


