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2. ThiNet Framework

Advantages of ThiNet

Filter selection: use 

the information of 

next layer to guide 

the pruning of 

current layer.

Pruning: Remove all 

weak filters 

(channels) of current 

(next) layer. 

Fine-tuning: Fine-

tune one or two 

epochs to recover 

model accuracy.

next 

layer

We focus on filter level pruning,

which do not change  structure;

We achieve acceleration and

compression simultaneously;

Pruned model can be further

compressed via other methods;

Main idea

We formally establish filter

pruning as an optimization

problem.

Selection criterion: minimize

the reconstruction error.

Selection + Reconstruction
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 We focus on the next layer (dotted box part) to determine

which filters can be pruned (highlighted in yellow).

 These weak filters and channels could be removed safely.

 We then fine-tune the pruned model and move to next layer.

3. Selection + Reconstruction

𝑥: the sliding 

window 
෡𝒲: the corresponding filter

𝑦: a random 

sampled data
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Goal: find a subset 𝑆 ⊂ {1,2, … , 𝐶} making the 

equality hold.

3. Selection + Reconstruction

Given 𝑚 training examples {(ොx𝑖 , ො𝑦𝑖)}, the original channel selection

problem becomes the following optimization problem:

arg min
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s.t. S = 𝐶 × 𝑟, 𝑆 ⊂ 1,2, … , 𝐶

arg min
𝑇
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s.t. 𝑇 = 𝐶 × (1 − 𝑟), 𝑇 ⊂ 1,2, … , 𝐶

let 𝑆 ∪ 𝑇 = 1,2,… , 𝐶
and 𝑆 ∩ 𝑇 = ∅

Final Step: After selection, we further minimize the reconstruction error:

ෝw = arg min
w
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which can be solved using least square. Finally, we use ෝw to rescale the 

selected filter weight:
𝒲:,𝑖,:,: = ෝw𝑖𝒲:,𝑖,:,:

We propose a greedy algorithm to solve the optimization problem:

• Initialize the removed channel set T = ∅ ;

• At each time, we calculate the objective value if we add current

channel into T;

• We choose the channel which has smallest objective value, and

add it into T;

• Move to next iteration if 𝑇 < 𝐶 × (1 − 𝑟);

4. Experiments

Weight sum [1]: 𝑆𝑖 = σ 𝒲(𝑖, : , : , : ) ;

APoZ [2]: Si =
1

I(i,:,:,:)
σσ𝕀( I 𝑖, : , : , : == 0 );

ThiNet w/o ෝw: ThiNet without least square;

ThiNet: our channel selection method.

4.1 Compared on CUB200
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4.2 Prune VGG16 on ImageNet

 Pruning is much better than training from scratch;

 VGG-16 model can be further pruned into a very

small model with only 5.05MB model size,

preserving AlexNet level accuracy;

4.3 Transfer Learning
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