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Abstract

Identifying anomalies in multi-view data is a difficult task
due to the complicated data characteristics of anomalies.
Specifically, there are two types of anomalies in multi-view
data–anomalies that have inconsistent features across mul-
tiple views and anomalies that are consistently anomalous
in each view. Existing multi-view anomaly detection ap-
proaches have some issues, e.g., they assume multiple views
of a normal instance share consistent and normal clustering
structures while anomaly exhibits anomalous clustering char-
acteristics across multiple views. When there are no clusters
in data, it is difficult for existing approaches to detect anoma-
lies. Besides, existing approaches construct a profile of nor-
mal instances, then identify instances that do not conform to
the normal profile as anomalies. The objective is formulated
to profile normal instances, but not to estimate the set of nor-
mal instances, which results in sub-optimal detectors. In ad-
dition, the model trained to profile normal instances uses the
entire dataset including anomalies. However, anomalies could
undermine the model, i.e., the model is not robust to anoma-
lies. To address these issues, we propose the nearest neighbor-
based MUlti-View Anomaly Detection (MUVAD) approach.
Specifically, we first propose an anomaly measurement cri-
terion and utilize this criterion to formulate the objective of
MUVAD to estimate the set of normal instances explicitly.
We further develop two concrete relaxations for implement-
ing the MUVAD as MUVAD-QPR and MUVAD-FSR. Exper-
imental results validate the superiority of the proposed MU-
VAD approaches.

Introduction
Anomalies are data patterns that possess different data char-
acteristics from normal instances. Anomaly detection aims
at identifying anomalies in a given dataset, which is an
important task due to the fact that anomalies often pro-
vide significant and critical information. For example, in
credit card transactions, anomalies could indicate fraudulent
credit card usage (Aleskerov, Freisleben, and Rao 1997). In
computer-assisted diagnosis, anomaly detection techniques
are widely used to detect anomalous images which could
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Figure 1: Illustration of normal instances, unanimous
anomaly and dissension anomaly. Both views derive from
the same original instances. Here, blue circles and orange
squares are normal instances with different labels. The red
up-triangle is a dissension anomaly and the green down-
triangle is an unanimous anomaly. Note that labels of the
red up-triangle in two views create dissension and the green
down-triangle is consistently distant from normal instances.

signify the presence of a certain disease (Spence, Parra, and
Sajda 2001). Anomaly detection also plays a significant role
in network systems, where anomalies could stand for mali-
cious attacks (Ding et al. 2012).

Nowadays, data are usually collected from diverse
sources and different sources of data exhibit heterogeneous
properties. Features from a particular source are regarded
as a particular view to describe the object. Multi-view
learning approaches can utilize the abundant information
of different views and explore the consistency property to
get better generalization ability (Blum and Mitchell 1998;
Wang and Zhou 2010; Bickel and Scheffer 2004; Jia, Salz-
mann, and Darrell 2010; Kumar, Rai, and Daumé III 2011;
Ye et al. 2015). Although the consistency property provides
more information facilitating the discrimination, it also
brings more challenges for anomaly detection since anoma-
lies now have more complicated data characteristics. Specif-
ically, anomalies in multi-view data can be classified into
two groups: (i) anomaly that has inconsistent features across
multiple views and (ii) anomaly that is consistently anoma-
lous in each view. For simplicity, we will refer to view-
inconsistent anomaly as “dissension anomaly” and consis-
tently anomalous anomaly as “unanimous anomaly”. The
different characteristics of these two types of anomalies are
illustrated in Fig. 1.
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The ability to detect anomalies in multi-view data is a
highly desirable feature in many application domains such
as micro-expression detection (Yan et al. 2013), purchase
behavior analysis (Gao et al. 2011), information dispar-
ity management (Duh et al. 2013), malicious insider de-
tection (Liu and Lam 2012), etc. In the task of micro-
expression detection, a video clip is given and the goal is
to find frames that contain micro-expressions (facial expres-
sions that have short duration and low intensity). Yan et
al. (2013) find that unlike conventional facial expressions,
micro-expressions usually appear partially (either upper face
or lower face). The upper face and lower face are naturally
two views to describe the emotion of the subject. Partially
appeared micro-expressions are dissension anomalies since
the upper face and lower face are inconsistent in expres-
sions and fully appeared micro-expressions are unanimous
anomalies since upper face and lower face are consistently
anomalous from the neutral facial expressions. Multi-view
anomaly detection technique helps the detection of micro-
expressions, which benefits various fields such as national
security (Ekman 2009).

A straightforward approach for multi-view anomaly de-
tection is to concatenate all views into one single view
and adapt the problem to single-view anomaly detection
problem. However, this concatenation neglects the abundant
and consistent information across multiple views, which re-
sults in sub-optimal detectors. Recently, a number of ap-
proaches have been proposed for multi-view anomaly detec-
tion (Gao et al. 2011; Liu and Lam 2012; Alvarez et al. 2013;
Li, Shao, and Fu 2015; Zhao and Fu 2015). Most existing ap-
proaches rely on the clustering assumption: multiple views
of normal instances share consistent and normal clustering
structures while dissension anomalies tend to fall into differ-
ent clusters and unanimous anomalies consistently deviate
from all clusters w.r.t. different views.

We argue that existing multi-view anomaly detection ap-
proaches have three main issues: (i) Clustering assumptions
on data: when there are no clusters in data, it is difficult
for existing approaches to detect anomalies. (ii) Sub-optimal
performance due to normal instance profiling: the objective
is formulated to profile normal instances, but not formulated
to estimate the set of normal instances explicitly. As a conse-
quence, the performance might not be as good as expected.
(iii) Lack of robustness: the model is trained with the en-
tire dataset including anomalies. However, anomalies in the
dataset could undermine the model, e.g., the centers of clus-
ters might be corrupted by anomalies. Consequently, exist-
ing approaches are not robust to anomalies.

To address these issues, we propose the nearest neighbor-
based MUlti-View Anomaly Detection (MUVAD) approach
that is capable of detecting dissension and unanimous
anomalies simultaneously. We outline the major contribu-
tions as:

• The MUVAD approach addresses the issue (i) of exist-
ing approaches by taking the neighborhood structure of
data into account and making no assumption on the clus-
tering structures. Consequently, the MUVAD can handle
data that have no clusters.

• We propose a nearest neighbor-based anomaly measure-
ment criterion. In contrast to existing approaches that pro-
file normal instances, we utilize the proposed criterion to
formulate the objective which aims at estimating the set of
normal instances explicitly. Thus, the MUVAD can solve
the issue (ii) of existing approaches.

• We develop two concrete relaxations for implementing
the MUVAD as MUVAD-QPR and MUVAD-FSR. By
downweighting anomalies, the MUVAD mitigate the ef-
fects of anomalies and improve the robustness. Thus, the
MUVAD can solve the issue (iii) of existing approaches.

• We apply the MUVAD approach on datasets from differ-
ent domains. Experimental results demonstrate the supe-
riority of the MUVAD approach.

The rest of paper starts with a detailed description of the
methodology of the MUVAD. Then two concrete relaxations
are developed for implementing the MUVAD. Next is a re-
view of existing multi-view anomaly detection approaches,
followed by empirical evaluation and conclusion.

Methodology
This section first clarifies notations and gives formal defini-
tions of two types of multi-view anomalies and t-nearest C
neighbors. Then a novel anomaly measurement criterion is
proposed based on these definitions. The objective is further
formulated to estimate the set of normal instances explicitly.

Preliminaries
Assume we are handling a dataset D of N instances and
V views, D = {Xi|i = 1, 2, . . . , N}, where Xi =
(x1

i , . . . ,x
V
i ) is the i-th instance. xv

i denotes the v-th view of
Xi. AssumeD consists of N0 normal instances and N −N0

anomalies. The N − N0 anomalies are either dissension or
unanimous anomalies. Let S denotes the set of all normal
instances’ indexes, i.e., i ∈ S represents Xi is a normal in-
stance. Let� denotes the element-wise product operator. Let
card(C) denotes the cardinality of set C. |v| represents tak-
ing absolute value of each element in vector v. 1 and 0 are
column vectors with all of the elements equaling to 1 and 0,
respectively. diag(A) represents taking diagonal elements of
matrix A. Let Kv denotes the similarity matrix in the v-th
view, where Kv

ij ≥ 0 measures the similarity between xv
i

and xv
j . Kv

i represents the i-th row of Kv . To make near-
est neighbor selection unique and repeatable, we will add a
small random positive value to elements inKv

i that are equal
in value.

We define dissension and unanimous anomaly as:

Definition 1. Dissension anomaly is an anomaly that pos-
sesses inconsistent characteristics (e.g., different class mem-
bership) across different views.

Definition 2. Unanimous anomaly is an anomaly that pos-
sesses consistent anomalous characteristics in each view.

We define t-nearest C neighbors as:

Definition 3. Let C = {c1, . . . , ck, . . . , cN0
} denotes an in-

dex set of size N0, where 1 ≤ ck ≤ N and ck ∈ Z. Let
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DC = {Xk|k ∈ C} denotes the dataset that consists of in-
stances with indexes in C. For any instance Xi in D, its t-
Nearest C Neighbors in the v-th view is defined as the set
of t instances in DC (not including i if i ∈ C) that are most
similar to xv

i in the v-th view.
Let N t

C(x
v
i ) denotes the t-nearest C neighbors of xi in

the v-th view. Note that when C = S, then all instances’
t-nearest C neighbors are normal instances. We will refer
to N t

S(x
v
i ) as t-Nearest Normal Neighbors of xv

i in the
v-th view. Take Fig. 1 as an example: for the up-triangle dis-
sension anomaly, its 5-nearest normal neighbors in the first
view are the five circle normal instances and 5-nearest nor-
mal neighbors in the second view are the five square normal
instances.

To simplify notations and explanations, we will start with
the case where D has two views and will further extend to a
more general case where D has multiple views.

Anomaly Measurement Criterion
Since multi-view data provide abundant and consistent in-
formation, it’s natural to assume multiple views of a normal
instance have similar neighborhood structures, i.e., for a nor-
mal instance, its t-nearest normal neighbors in one view will
also be similar to it in the other view. Thus, we propose a
nearest neighbor-based anomaly measurement criterion as:

st(Xi) =
∑

j∈N t
S(x1

i )

K2
ij +

∑
j∈N t

S(x2
i )

K1
ij .

This criterion helps identify dissension and unanimous
anomalies simultaneously. The interpretations are given as
follows:
• For a normal instance Xi, since it is consistent across

multiple view, its t-nearest normal neighbors in one view
should be similar to it in the other view, which would give
rise to a large value of st(Xi).

• For a dissension anomaly Xi, since it is inconsistent
across multiple views, its t-nearest normal neighbors in
one view could be dissimilar to it in the other view, lead-
ing to a small value of st(Xi).

• For an unanimous anomaly Xi, since it is consistently
anomalous in each view, it is dissimilar to normal in-
stances in each view. Thus, its t-nearest normal neighbors
in one view are also dissimilar to it in the other view, re-
sulting in a small value of st(Xi) as well.

Thus, both dissension and unanimous anomalies could re-
sult in small anomaly measurement values. We will refer to
this criterion as s-Score in the following. Note that although
simple and effective, s-score can not be used directly in prac-
tice since the computation of s-score uses the set of normal
instances, which is unknown beforehand.

The Formulation
Given an index set C of size N0, we define u-Score for Xi

w.r.t. C as:

utC(Xi) =
∑

j∈N t
C(x

1
i )

K2
ij +

∑
j∈N t

C(x
2
i )

K1
ij .

Note that when C = S, utC(Xi) = st(Xi). We estimate
the set of normal instances and s-scores by formulating the
objective as:

max
C

∑
i∈C

utC(Xi)

s.t. card(C) = N0, C = {y|y ∈ Z, 1 ≤ y ≤ N}.
(1)

The optimal solution to Eq. 1 is the estimated index set of
normal instances. Eq. 1 means that we should find a set C
that the sum of u-scores of C is largest, where the u-scores
are calculated using t-nearest C neighbors. This is reason-
able since the u-score of an anomaly in C would be smaller
than the s-score of a normal instance that are not in C. Be-
sides, anomalies in C that appear as other normal instance’s
t-nearest C neighbors would make the u-scores of these nor-
mal instances be smaller than their s-scores.

In order to simplify the optimization problem in Eq. 1,
we introduce auxiliary variables O and W = {W 1,W 2},
where O ∈ {0, 1}N and W 1,W 2 ∈ {0, 1}N×N . O has N0

elements that equal to 1. Note that given O, there exists a
corresponding index set CO of size N0, where Oi = 1 and
Oi = 0 represents that i is in CO and not in CO, respec-
tively. Each row of W 1,W 2 has t elements that equal to 1
and the diagonal elements of W 1,W 2 equal to 0. Eq. 1 can
be equivalently rewritten as:

max
O,W

`(O,W ) =

N∑
i,j

OiOjW
1
ijK

2
ij +

N∑
i,j

OiOjW
2
ijK

1
ij

s.t. W v ∈ {0, 1}N×N , W v1 = t1, diag(W v) = 0,

min
j∈{k:Wv

ik=1}
OjK

v
ij > max

j∈{k:Wv
ik=0∧k 6=i}

OjK
v
ij ,

O ∈ {0, 1}N , O>1 = N0,

∀v ∈ {1, 2}, i ∈ {1, . . . , N}.
(2)

Proposition 1. Let O?,W ? denote the optimal solution to
Eq. 2 and CO? denotes the corresponding index set, respec-
tively. Then CO? is the optimal solution to Eq. 1.

Proof. Note that

max
O,W

`(O,W ) = max
CO

max
W

`(CO,W ).

Given CO, the optimization problem over W can be solved
by optimizing W 1

1 , . . . ,W
1
N ,W

2
1 , . . . ,W

2
N separately. Due

to the constraints w.r.t.W v
i , the solutionW v

i
? is the indicator

vector of N t
CO (x

v
i ), i.e., W v

ij = 0 for j /∈ N t
CO (x

v
i ) and

W v
ij = 1 for j ∈ N t

CO (x
v
i ). Thus, we can get:

max
CO

max
W

`(CO,W )

= max
CO

∑
i∈CO

(
∑

j∈N t
CO

(x1
i )

K2
ij +

∑
j∈N t

CO
(x2

i )

K1
ij)

= max
CO

∑
i∈CO

utCO (Xi).

Thus, CO? is the optimal solution to Eq. 1.
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The objective `(O,W ) in Eq. 2 can be rewritten in matrix
form as:

`(O,W ) = O>(K2 ⊗W 1 +K1 ⊗W 2)O. (3)

The discussion for two-view data can be naturally adapted
to V -view data (V ≥ 2) by considering the combination of
every two views. The formulation for V -view data is:

max
W,O

O>(

V∑
i 6=j

Ki ⊗W j)O

s.t. W v ∈ {0, 1}N×N , W v1 = t1, diag(W v) = 0,

min
j∈{k:Wv

ik=1}
OjK

v
ij > max

j∈{k:Wv
ik=0∧k 6=i}

OjK
v
ij ,

O ∈ {0, 1}N , O>1 = N0,

∀v ∈ {1, . . . , V }, i ∈ {1, . . . , N}.
(4)

As a matter of fact, O can be regarded as a weights vector,
where each elementOi corresponds to a nonnegative weight
for Xi. The idea is then to preserve normal instance by as-
signing its weight to 1 and downweight anomaly by assign-
ing its weight to 0. N0 can be treated as a hyperparameter.
Note that now we can only select a fix number of anomalies
each time and cannot sort all instances according to their in-
tensity of anomaly. In the next section, we will develop two
relaxation approaches which provide a way to choose the
number of anomalies adaptively based on the value of O.

Optimization
Since we only care about the relative magnitude of O, it is
more natural and flexible to use softer weight rather than
hard weight {0, 1}, which also provides a way to choose the
number of anomalies adaptively. Thus, we relax the integer
constraint of O in Eq. 4 in two different ways and develop
corresponding approaches for optimization. The basic idea
behind these two approaches is to iteratively optimize O and
then update W to satisfy the constraints. When the variation
of objective value is smaller than the predefined threshold,
the algorithms terminate with the current solution. The two
proposed relaxation approaches are quadratic programming
relaxation (MUVAD-QPR) approach and fast spectral relax-
ation (MUVAD-FSR) approach.

Quadratic Programming Relaxation

To simplify notations, let AW =
∑V

i 6=j K
i ⊗ W j . Since

diag(W v) = 0 for all v ∈ {1, . . . , V }, AW is an indef-
inite matrix with diagonal elements that equal to 0. Since
Oi ∈ {0, 1} and O>1 = N0, the objective OTAWO can be
replaced with:

O>BWO, (5)

where BW = AW + λI . I is a N × N identity matrix and
λ < 0. So far, the optimal solution remains the same as in
Eq. 4. We relax the integer constraint ofOi toOi ∈ [0, 1] for
all i ∈ {1, . . . , N} and solve the problem in an alternative
manner:

Optimizing O when W is fixed: When W is fixed, the
sub-problem becomes:

max
O

O>CWO, s.t. 0 ≤ O ≤ 1, O>1 = N0, (6)

where CW = (BW +(BW )>)/2. Note that when λ is taken
a small value, CW is guaranteed to be negative definite. The
sub-problem can be converted to a convex quadratic pro-
gram by minimizing the negative of the objective, which can
be efficiently solved by off-the-shelf solvers, e.g., quadprog
in MATLAB.

Updating W when O is fixed: When O is fixed,
W 1

1 , . . . ,W
1
N , . . . ,W

v
1 , . . . ,W

v
N , . . . ,W

V
1 , . . . ,W

V
N can be

updated separately. Since W v
i satisfies W v

i ∈ {0, 1}N ,
W v

i 1 = t, W v
ii = 0 and

min
j∈{k:Wv

ik=1}
OjK

v
ij ≥ max

j∈{k:Wv
ik=0∧k 6=i}

OjK
v
ij ,

the solution W v
i
? can be obtained by t-nearest neighbor

search ofXi based on the weighted similarity. The weighted
similarity between Xi and Xj is OjK

v
ij . W v

ij
? = 1 if and

only if j is one of the t-nearest neighbors of Xi.

Fast Spectral Relaxation
Since Oi ∈ {0, 1} and O>1 = N0, the objective OTAWO
can be replaced with:

O>(AW + γ11T )O, (7)

where γ > 0. So far, the optimal solution remains the same
as in Eq. 4. The integer constraintOi ∈ {0, 1} can be rewrit-
ten as O2

i − Oi = 0. By summarizing all N + 1 constraints
w.r.t. O:

O2
i −Oi = 0,

N∑
i=1

Oi = N0,

we can get a spectral relaxation problem:

max
W,O

O>(AW + γ11T )O

s.t. W v ∈ {0, 1}N×N , W v1 = t1, diag(W v) = 0,

min
j∈{k:Wv

ik=1}
OjK

v
ij > max

j∈{k:Wv
ik=0∧k 6=i}

OjK
v
ij ,

‖O‖22 = N0,∀v ∈ {1, . . . , V }, i ∈ {1, . . . , N}.

(8)
Similarly, we solve the optimization problem in Eq. 8 in an
alternative manner:

Optimizing O whenW is fixed: WhenW is fixed,AW+
γ11T can be replaced with a symmetric matrix DW , where
DW = (AW + (AW )>)/2 + γ11T . Thus, the sub-problem
becomes:

max
O

O>DWO, s.t. ‖O‖22 = N0. (9)

Let v denotes the leading eigenvector of DW , i.e., the one
associated with the largest eigenvalue. It can be proved that√
N0|v| is one of the optimal solutions to Eq. 9.

Proposition 2.
√
N0|v| is one of the optimal solutions to

Eq. 9
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Proof. Since v is the first eigenvector of DW ,
√
N0v is one

of the optimal solution to Eq. 9. Replacing O with
√
N0|v|

in the objective of Eq. 9, we can get:

N0|v>|DW |v| = N0|v>DWv| ≥ N0v
>DWv.

The first equality comes from the fact that all elements in
Dw are nonnegative. Thus,

√
N0|v| is one of the optimal

solutions to Eq. 9.

Updating W when O is fixed: When O is fixed, the up-
date ofW is as same as in quadratic programming relaxation
approach.

The effect of γ11T is to regularize O to be smooth and
prevent the weights from concentrating on only a few in-
stances. Note that in fast spectral relaxation approach, the
solution is irrelevant to N0 since we only care about the rel-
ative magnitude of O. Calculating the leading eigenvector
of a matrix can be solved efficiently by existing methods,
e.g., power method. Each iteration in power method takes
O(N2), which is more efficient compared with the cubic
complexity of convex quadratic programming.

The intuition behind the two relaxation approaches is iter-
atively reweighting data and refining the estimated t-nearest
normal neighbors. Although O can no longer be used to in-
dicate anomalies after the relaxation, we find that the rela-
tive magnitude of O are well kept after the relaxation, i.e.,
a normal instance Xi is more likely to have a larger weight
Oi. Since the relaxation approaches downweight anomalies,
they are also robust to anomalies. When stop criterion meets,
we can sort O in ascending order and use a cut-off threshold
to select anomalies.

Related Work
Anomaly detection is an important research topic in pat-
tern recognition and data mining (Chandola, Banerjee, and
Kumar 2009; Akoglu, Tong, and Koutra 2015). The impor-
tance of anomaly detection is due to the fact that anoma-
lies in data often provide significant and critical informa-
tion. Various approaches have been proposed for anomaly
detection (Breunig et al. 2000; Schölkopf et al. 2001; Bay
and Schwabacher 2003; Liu, Ting, and Zhou 2008). How-
ever, most existing anomaly detection approaches focus on
single-view data.

There has been great interest in multi-view learning (Xu,
Tao, and Xu 2013). Anomaly detection for multi-view data
is a new research topic. The pioneering work on this topic
is horizontal anomaly detection (HOAD) approach (Gao
et al. 2011). HOAD first constructs a combined similar-
ity graph of each view. Then the k smallest eigenvectors
of the graph Laplacian are calculated as spectral embed-
dings of the instances. The anomalous score is defined as
the cosine distance between spectral embeddings of differ-
ent views. HOAD can be regarded as performing constrained
spectral clustering in each view firstly and then finding in-
stances that belong to different clusters in different views.
Liu and Lam (2012) proposed a multi-view anomaly de-
tection approach using consensus clustering (CC). CC also
aims at detecting dissension anomalies by exploring the in-
consistency of clustering results across multiple views. It is

worth noting that both HOAD and CC are only designed
to detect dissension anomalies. To detect both dissension
anomalies and unanimous anomalies simultaneously, Li,
Shao, and Fu (2015) proposed multi-view low-rank analy-
sis (MLRA). MLRA performs cross-view low-rank analysis
to reveal the intrinsic structures of data. To detect two types
of anomalies simultaneously, they design a criterion to esti-
mate the anomalous scores by analyzing the obtained repre-
sentation coefficients. Zhao and Fu (2015) proposed Dual-
Regularized Multi-View Outlier Detection (DMOD) for de-
tecting two types of anomalies simultaneously. DMOD rep-
resents multi-view data with latent coefficients and sample-
specific errors and characterize each kind of anomaly explic-
itly. An anomaly measurement function is designed to detect
both dissension and unanimous anomalies jointly.

Experiment
To evaluate the proposed MUVAD approaches, we per-
form experiments on synthetic datasets that have no clusters,
benchmark datasets and real world multi-view anomaly de-
tection task. We compare the proposed MUVAD-QPR and
MUVAD-FSR approaches with OCSVM (Schölkopf et al.
2001), HOAD (Gao et al. 2011), CC (Liu and Lam 2012),
MLRA (Li, Shao, and Fu 2015), DMOD (Zhao and Fu 2015)
and CRMOD (Zhao et al. 2018). CRMOD is the extended
version of DMOD. Notably, OCSVM is a representative ap-
proach for single-view anomaly detection and we include it
to investigate the performance of single-view approach on
multi-view data. As for OCSVM, multiple views are first
concatenated into one single view and then used as input.
As for MUVAD-QPR, we use t = 7, N0 = 0.9N,λ =
−2000 as default parameters. As for MUVAD-FSR, we use
t = 7, γ = 2000 as default parameters. We use the area un-
der the ROC curve (AUC) as the evaluation measure. The
higher the AUC is, the better the approach performs.

Synthetic Data
This experiment is performed on synthetic data that have no
clusters. We simulate two-view datasets of size N = 400
with 398 normal instances, 1 dissension anomaly and 1
unanimous anomaly. Both of the two views X1, X2 have 2
features. For normal instances and dissension anomaly, the
first view is sampled from the uniform distribution:

x ∼ Uniform(x|0.9 ≤ ‖x‖ ≤ 1).

The first view of unanimous anomaly is sampled from:

x ∼ Uniform(x|0.4 ≤ ‖x‖ ≤ 0.5).

We perform kernel PCA on X1 with RBF kernel and keep
all components. LetZ denotes the projection by kernel PCA.
Each instance xi corresponds to projection data zi. For nor-
mal instance and unanimous anomaly, we set their second
view to the projected data. The unanimous anomaly is con-
sistently anomalous in each view. For dissension anomaly
Xi, we generate inconsistent view by setting the second
view to −zi. We repeat the generation procedure for 50
times. Fig. 2 illustrates one of the synthetic datasets. We
evaluate all approaches on the synthetic data with default
parameters. The results are reported in Tab. 1.
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View 1
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Figure 2: Illustration of a multi-view dataset that has no clus-
ters. Both views derive from the same original instances.
Here, blue and orange circles represent normal instances.
Red down-triangle represents unanimous anomaly and black
up-triangle represents dissension anomaly.

Table 1: Comparison on synthetic data. The mean AUC ±
std. are shown in the table.

AUC (mean ± std)

OCSVM 0.500 ± 0.000
HOAD 0.806 ± 0.045

CC 0.519 ± 0.175
MLRA 0.505 ± 0.193
DMOD 0.184 ± 0.121

CRMOD 0.196 ± 0.121
MUVAD-QPR 1.000 ± 0.000
MUVAD-FSR 1.000 ± 0.000

From the results, we can see that both MUVAD-QPR
and MUVAD-FSR achieve highest performance. The per-
formance of OCSVM is not good and the std. is 0. We ob-
serve that OCSVM always puts the unanimous anomaly at
the first position and the dissension anomaly at the last po-
sition in the ranked list. This is due to the fact that OCSVM
is a single-view anomaly detection approach and is difficult
to identify dissension anomaly. The AUCs of HOAD, CC,
MLRA, DMOD, CRMOD are lower than MUVAD-QPR
and MUVAD-FSR, because they rely on the clustering as-
sumption and are difficult to identify anomalies when there
are no clusters in data.

Benchmark Dataset
This experiment compares the proposed approaches with
others on benchmark datasets from UCI Machine Learning
Repository1 and real world multi-view applications. Follow-
ing (Gao et al. 2011; Alvarez et al. 2013; Li, Shao, and Fu
2015; Zhao and Fu 2015), we employ three UCI datasets,
Ionosphere, Vowel and Zoo for comparison. Two-views are
generated by splitting features into two subsets, where each
subset corresponds to one view of the data. For each dataset,
we also strictly follow (Zhao and Fu 2015) to generate
anomalies: for dissension anomaly, we randomly sample
two instances Xi, Xj from different classes and swap their

1http://archive.ics.uci.edu/ml
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Figure 3: Changes of AUC as the number of anomalies in-
creases.

first view x1
i ,x

1
j ; for unanimous anomaly, we random sam-

ple an instance and then replace its features with random
values. To evaluate the performance on dataset with more
than two views, we also include two real world multi-view
datasets, NewsM and NewsNG, which are extracted from
the 20 Newsgroup datasets and have 3 views (Bisson and
Grimal 2012). The same anomaly generation procedure is
performed on two chosen views. For each dataset, three
subsettings are considered: (i) 2% dissension anomalies +
8% unanimous anomalies; (ii) 5% dissension anomalies +
5% unanimous anomalies; (iii) 8% dissension anomalies +
2% unanimous anomalies. For each dataset and each sub-
setting, we repeat the anomaly generation procedure for 50
times. All anomaly detection approaches are then evaluated
on these datasets and the results are reported in Tab. 2.

From Tab. 2, we can see that the proposed approaches
alomost consistently achieve the highest performance. The
above observation is within expectation since the objective
in Eq. 4 is formulated to estimate the set of normal in-
stances explicitly, while other multi-view anomaly detectors
are formulated to profile normal instances and single-view
anomaly detection approach can not utilize the full informa-
tion of multi-view data to improve its performance.

The changes of AUC given different amount of anoma-
lies are also investigated, as shown in Fig. 3. We increase
the number of anomalies from 5% to 25%, where the num-
ber of dissension and unanimous anomaly are same. Results
on two datasets are listed. The performance of MUVAD-
QPR and MUVAD-FSR are on par with each other. Besides,
MUVAD-QPR and MUVAD-FSR consistently achieve high-
est performance with all the anomaly ratios.

It is beneficial to understand how our reweighting ap-
proaches contribute to the anomaly detection. We measure
the weights distribution O of instances. The weights are nor-
malized and results on Vowel dataset are listed. As shown
in Fig. 4, MUVAD-FSR and MUVAD-QPR assign smaller
weights to most anomalies and this makes the proposed ap-
proaches detect anomalies reliably.

The efficiency of MUVAD is also investigated. Conver-
gence trends on Ionosphere dataset are illustrated. As shown
in Fig. 5, the objectives converge at a small number of it-
eration, both less than 5 and MUVAD-FSR is less than
MUVAD-QPR. Since MUVAD-FSR also has lower com-
putational complexity per iteration, MUVAD-FSR is faster
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Table 2: Comparison on benchmark datasets. The setting is formatted as ”Name-Number of view-Dissension anomaly ratio
(%)-Unanimous anomaly ratio (%)”. The last two rows list the number of times MUVAD approaches W/T/L (win/tie/loss)
when compared with other approaches (pairwise t-tests at 95% significance level). The remaining rows list the mean AUC±std.
on the corresponding datasets.

MUVAD-QPR MUVAD-FSR OCSVM HOAD CC MLRA DMOD CRMOD

Ionosphere-2-2-8 0.834±0.013 0.833±0.014 0.725±0.029 0.655±0.051 0.584±0.080 0.831±0.022 0.741±0.023 0.833±0.033
Ionosphere-2-5-5 0.834±0.018 0.833±0.018 0.703±0.045 0.583±0.057 0.566±0.071 0.780±0.022 0.758±0.030 0.743±0.026
Ionosphere-2-8-2 0.809±0.021 0.805±0.022 0.642±0.047 0.547±0.064 0.539±0.052 0.714±0.023 0.766±0.033 0.765±0.030

Vowel-2-2-8 0.886±0.005 0.879±0.012 0.879±0.015 0.349±0.030 0.499±0.025 0.735±0.028 0.851±0.017 0.833±0.021
Vowel-2-5-5 0.875±0.012 0.871±0.009 0.755±0.025 0.389±0.035 0.500±0.033 0.736±0.021 0.733±0.021 0.717±0.027
Vowel-2-8-2 0.865±0.012 0.862±0.010 0.626±0.032 0.454±0.029 0.499±0.028 0.739±0.035 0.619±0.022 0.584±0.031
Zoo-2-2-8 0.866±0.031 0.866±0.031 0.445±0.076 0.491±0.076 0.488±0.066 0.510±0.048 0.823±0.036 0.521±0.071
Zoo-2-5-5 0.891±0.037 0.891±0.037 0.500±0.109 0.474±0.101 0.487±0.087 0.524±0.088 0.786±0.043 0.496±0.102
Zoo-2-8-2 0.908±0.030 0.908±0.031 0.488±0.085 0.525±0.085 0.523±0.105 0.532±0.078 0.727±0.055 0.496±0.079

NewsM-3-2-8 0.892±0.016 0.896±0.019 0.854±0.015 0.498±0.003 0.474±0.037 0.743±0.034 0.873±0.017 0.883±0.017
NewsM-3-5-5 0.736±0.036 0.741±0.039 0.707±0.036 0.548±0.033 0.504±0.042 0.649±0.031 0.716±0.022 0.727±0.023
NewsM-3-8-2 0.596±0.039 0.594±0.031 0.582±0.042 0.558±0.053 0.509±0.039 0.552±0.029 0.569±0.036 0.523±0.036

NewsNG-3-2-8 0.898±0.019 0.896±0.020 0.865±0.022 0.671±0.077 0.450±0.003 0.673±0.023 0.877±0.018 0.887±0.018
NewsNG-3-5-5 0.751±0.025 0.745±0.031 0.735±0.033 0.640±0.054 0.468±0.075 0.631±0.037 0.736±0.021 0.746±0.020
NewsNG-3-8-2 0.616±0.033 0.610±0.044 0.607±0.038 0.536±0.037 0.491±0.017 0.540±0.027 0.581±0.041 0.590±0.043

W / T / L MUVAD-QPR vs. others 14 / 1 / 0 15 / 0 / 0 15 / 0 / 0 14 / 1 / 0 15 / 0 / 0 12 / 3 / 0
W / T / L MUVAD-FSR vs. others 12 / 3 / 0 15 / 0 / 0 15 / 0 / 0 14 / 1 / 0 14 / 1 / 0 11 / 4 / 0
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Figure 4: Illustration of instance weights distribution.
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Figure 5: Convergence curves w.r.t. iteration time.

than MUVAD-QPR.

Micro-Expression Detection
This experiment evaluates the performance of the MUVAD
on micro-expression detection task. We apply MUVAD-
QPR on The Chinese Academy of Sciences Micro-
Expression (CASME) dataset (Yan et al. 2013). CASME
contains 195 micro-expressions filmed under 60fps. Each
micro-expression is in a video clip (frame sequence), where
the onset and offset frame (the first and the last frame of the

Table 3: AUC on CASME datasets.

OCSVM HOAD CC MLRA DMOD CRMOD MUVAD

CAS-1 0.478 0.594 0.479 0.651 0.750 0.629 0.815
CAS-2 0.554 0.487 0.594 0.800 0.913 0.827 0.953
CAS-3 0.508 0.380 0.429 0.422 0.693 0.680 0.725
CAS-4 0.707 0.496 0.577 0.407 0.660 0.628 0.801
CAS-5 0.675 0.592 0.655 0.560 0.555 0.617 0.663
CAS-6 0.543 0.598 0.471 0.643 0.890 0.680 0.896
CAS-7 0.748 0.332 0.451 0.342 0.986 0.765 0.975
CAS-8 0.612 0.616 0.420 0.329 0.685 0.705 0.713
Mean 0.603 0.512 0.509 0.519 0.766 0.691 0.818

micro-expression) are recorded. All frames of a video clip
are organized as a multi-view dataset, where the first view
is the upper half face and the second view is the lower half
face. The frames from onset frame to offset frame are la-
beled as anomalies.

Experiments are performed on 8 frame sequences from
CASME dataset. For each frame sequence, we eliminate the
unnecessary background. The features of two views are ex-
tracted by the method of Local Binary Patterns (LBP) (Aho-
nen, Hadid, and Pietikäinen 2006). We set the diagram to
6 and the number of neighbors to 16. LBP histograms are
then used as feature vectors. The experimental results are
presented in Tab. 3. The proposed approach also gets best
result on this task.

Conclusion
This paper proposes the MUVAD approaches focusing on
addressing the main issues of existing multi-view anomaly
detection approaches, which include clustering assumption
on data, sub-optimal performance due to normal instance
profiling and lack of robustness. Specifically, we propose
a novel nearest neighbor-based anomaly measurement cri-
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terion firstly, then utilize this criterion to formulate an ob-
jective to estimate the set of normal instances explicitly. We
develop two concrete relaxations for implementing the MU-
VAD as MUVAD-QPR and MUVAD-FSR. The MUVAD
approaches are capable of handling the above mentioned is-
sues of existing approaches. Experiments on datasets from
different domains and real world application demonstrate
the superiority of the proposed MUVAD approaches.
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