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Abstract
This is the supplementary material of paper ”Tailoring Em-
bedding Function to Heterogeneous Few-Shot Tasks by
Global and Local Feature Adaptors”. In this material, we
provide more discussions and analyses about our proposed
Global and Local Feature Adaptor (GLoFA), which gener-
ates bi-level task-adaptive feature masks for few-shot learn-
ing. There are three parts in this supplement: first, we review
our proposed GLoFA; then, some discussions on algorithm
details are given; last are experiment details.

Review of GLoFA
GLoFA belongs to metric-based meta-learning meth-
ods (Koch, Zemel, and Salakhutdinov 2015; Vinyals et al.
2016; Snell, Swersky, and Zemel 2017). These algorithms
often meta-learn an embedding function from meta-training
set, and then reuse the learned representation on meta-testing
set. A main drawback of these algorithms is that all the tasks
share a same embedding space, ignoring the diversity of
tasks. Some researchers proposed task-specific embedding
space in recent works (Oreshkin, López, and Lacoste 2018;
Li et al. 2019; Ye et al. 2020). Different from these meth-
ods which apply a global transformation to all the instances,
GLoFA incorporates extra local transformations, improving
the representation ability of feature adaptors.

There are three components in GLoFA, namely embed-
ding network φ(·), feature adaptor F and mask combiner
g(·). The embedding network extracts vector features from
raw data. Global and local feature adaptors capture gen-
eral and detailed characteristics respectively by generating
feature masks. Instances from each class are projected into
class-specific feature spaces by local masks. Global and lo-
cal masks have different effects, and different masks should
be emphasized for different tasks. To obtain an adaptive fu-
sion of two masks, we balance them via a mask combiner.

In detail, for a task T = (S,Q), task-level feature adap-
tor receives all the support instances as input and outputs a
global mask, which is then applied to the whole task:

mtask = f task({φ(xi)|xi ∈ S}) (1)
Class-level feature adaptors generates local masks:

mcls
n = f cls({φ(xi)|xi ∈ S ∧ yi = n}), n ∈ [N ] (2)
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Mask combiner provides two smoothing parameters αtask

and αcls to balance the strengths of two masks:

[αtask, αcls] = g({φ(xi)|xi ∈ S}) (3)

For each support instance (xi, yi) ∈ S , we compute its
masked representation as Equation (4), which is then used
to obtain the transformed class centres en in Equation (5).

zi = φ(xi)�
(
1+

mtask

αtask

)
�

(
1+

mcls
yi

αcls

)
(4)

en =
1

K

∑
(xi,yi)∈S∧yi=n

zi, n ∈ [N ] (5)

For each query instance (xj , yj) ∈ Q, we need to compute
its distances to N masked class centres. Although we have
no access to yj , we can apply the global mask and the n-th
local mask to it when comparing it to the n-th class center:

znj = φ(xj)�
(
1+

mtask

αtask

)
�
(
1+

mcls
n

αcls

)
(6)

The posterior probability of label is computed as Equation 7

p(ŷj = n|xj) =
exp{−dis(znj , en)}∑N

n′=1 exp{−dis(zn
′
j , en′)}

(7)

Our main objective is to maximize log of label posterior
probability on all query instances from sampled tasks.

min
φ,F,g

∑
T ∼Dtr

∑
(xj ,yj)∈Qtr

− log p(ŷj = yj |xj) (8)

The whole flow of GLoFA is summarized in Algorithm 1.

Discussion on Algorithm
In this section, we will focus on the following questions:

• How to set truncation hyper-parameter δ?

• Why to concatenate the output of MLP(·) with φ(x) in
F and g(·)?

• What is the effect of pre-training embedding network?



Algorithm 1 Algorithm flow of GLoFA.
Require: Pre-trained embedding network φ(·), randomly

initialized feature adaptors F = {f task(·), f cls(·)}, ran-
domly initialized mask combiner g(·), meta-training set
Dtr, N , K, M .
repeat

Sample an N -way K-shot task T = (S,Q) from Dtr.
Compute global mask mtask by Equation (1).
ComputeN local masks mcls

n , n ∈ [N ] by Equation (2).
Compute smoothing parameters αtask and αcls by Equa-
tion (3).
Get masked representations of support instances by
Equation (4).
Get masked representations of query instances by
Equation (6).
Compute query loss as Equation (8).

until Convergence
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(a) Influence of δ.
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(b) Effect of concatenation.

Figure 1: (a) Mean and standard deviation of accuracy for
different δ values. The value of δ does not have a noticeable
influence on model accuracy. Smaller δ tends to slightly re-
duce the variance of accuracy. (b) Convergence curves of
GLoFA with (without) the residual operation. At the first
few episodes, concatenating φ(x) with the output of the first
MLP(·) is beneficial to training.

Truncation Hyper-Parameter δ
In GLoFA, we assume that masks encode excess impor-
tance of each feature dimension and values in a mask are
all positive. Thus, we project the masks into range [0, δ] by
hδ(·) = min(δ,max(0, ·)). The reason why we introduce
truncation hyper-parameter δ is computational. With assis-
tance of this truncation hyper-parameter, all the mask values
will be no larger than δ, preventing them from being infinity.
Larger δ allows mask values to be in a larger range. But we
find that absolute values of masks are not very influential to
the model performance. In Figure 1a, we train our model on
the meta-training set of miniImageNet and report the accu-
racy on meta-testing set. Mean accuracy does not change a
lot when δ varies from 1 to 5. With a smaller δ, the standard
deviation of accuracy tends to be smaller. We set δ to 2 for
all the experiments in this paper.

Residual Operation
In our concrete implementation of feature adaptors F and
mask combiner g(·), the output of the first multi-layer linear
network is concatenated with the raw representation φ(x).

This can be seen as a kind of residual operation which is
beneficial to training process (He et al. 2016; Xie et al.
2017). Feature adaptors f task(·), f cls(·) and mask combiner
g(·) are all randomly initialized but the embedding network
φ(·) is pre-trained on the meta-training split. At the first few
episodes, the outputs ofF and g(·) are meaningless. Directly
inputting φ(x) to the second multi-layer linear network pro-
vides more information and helps the model to converge
faster. Figure 1b shows the convergence curves of GLoFA
with (without) this residual operation. The model gets stable
earlier with the assistance of this residual operation.

Pre-Training of φ(·)
As in many few-shot learning works (Li et al. 2019; Ye
et al. 2020; Zhen et al. 2020), we pre-train our embed-
ding network on the meta-training split using cross-entropy
loss function. In Table 1, we show the accuracy of GLoFA
on miniImageNet and tieredImageNet with (without) pre-
training. We can see that pre-training significantly improves
the model accuracy.

Experiment Details
We will provide detailed settings for all the experiments in
this section. Our experiments contain three parts: heteroge-
neous tasks, benchmark evaluations, and further analyses.

Heterogeneous Tasks
Datasets. We construct a dataset mixed by 5 fine-grained
classification sub-datasets, namely AirCraft (Maji et al.
2013), Car-196 (Krause et al. 2013), CUB-200-2011 (Wah
et al. 2011), Stanford Dog (Khosla et al. 2011), and Indoor
Scenes (Quattoni and Torralba 2009). All these fine-grained
classification datasets are public. For each sub-dataset, we
randomly select 20 classes from it, and then split the 20
classes into three parts: 10 classes for meta-training, 5
classes for meta-validating, and 5 classes for meta-testing.
We randomly sample 100 images for each class. In total,
there are 5000 images from 50 classes in meta-training set,
2500 images from 25 classes in meta-validating set, and
2500 images from 25 classes in meta-testing set. We will
make this mixed dataset public once the paper is accepted.

Implementation details. For a 5-way K-shot task sam-
pled from the mixed dataset, we define its granularity G
as the number of sub-datasets involved in this task. When
G = 1, all the classes in this task are all from a same
sub-dataset, making the task extremely fine-grained. When
G = 5, the task is very easy because there is a noticeable
gap between each pair of classes. We take the commonly
used ResNet-12 as the embedding network. The embedding
network φ(·) is pre-trained on the meta-training split of the
mixed dataset. Other modules in GLoFA are randomly ini-
tialized. In meta-training phase, 40000 episodes are ran-
domly sampled from the meta-training split. Due to the ran-
domness in sampling, some of these tasks are coarse-grained
and some are fine-grained. We optimize our model using
SGD optimizer on these 40000 tasks. The momentum and



miniImageNet tieredImageNet
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

GLoFA w/ pre-training 66.12 ± 0.42 81.37 ± 0.33 69.75 ± 0.33 83.58 ± 0.42
GLoFA w/o pre-training 64.38 ± 0.39 80.54 ± 0.44 67.39 ± 0.28 82.70 ± 0.35

Table 1: Average test accuracies (%) with 95% confidence intervals on tasks sampled from meta-testing set of miniImageNet
and tieredImageNet. Pre-training the embedding network on meta-training split significantly improves model accuracy.

weight decay of the optimizer are set to 0.9 and 0.0005 re-
spectively. The initial learning rate for the pre-trained em-
bedding network and other modules are set to 0.001 and 0.01
respectively. Two learning rates are decreased by 0.2 after
5000, 10000, 20000, and 30000 episodes. Truncation hyper-
parameter δ is set to 2. In meta-testing phase, we sample
600 episodes with G in {1, 2, 3, 4, 5} from the meta-testing
split. We compare our proposed method to three metric-
based meta-learning algorithms: ProtoNet (Snell, Swersky,
and Zemel 2017), TADAM (Oreshkin, López, and Lacoste
2018), and CTM (Li et al. 2019). We reimplement these
methods using ResNet-12 backbone. The embedding net-
works in these compared methods are also pre-trained on
the meta-training split.

Benchmark Evaluations
Datasets. In this part of experiment, we evaluate GLoFA
on two widely used benchmark dataset, i.e., miniImageNet
and tieredImageNet. The miniImageNet dataset was first
proposed by (Vinyals et al. 2016) and it is a subset of
ILSVRC-12 (Russakovsky et al. 2015). In this dataset, there
are 100 classes and 600 images in each class. Each image
in miniImageNet is resized to 84× 84. We follow (Ravi and
Larochelle 2017) to split miniImageNet, which means the
total 100 classes are divided into meta-training set, meta-
validating set, and meta-testing set, with 64, 16, and 20
classes respectively. The tieredImageNet is a larger subset
of ILSVRC-12. There are 608 classes and 779165 images
in total. These classes are divided into 34 categories, with
each category containing between 10 to 30 classes. The im-
ages in tieredImageNet are also resized to 84× 84. Follow-
ing (Ren et al. 2018), we split tieredImageNet into meta-
training, meta-validating and meta-testing set, with 20, 6,
and 8 categories respectively.

Implementation details. We use ResNet-12 as our em-
bedding network. Number of meta-training episodes and
meta-testing episodes are both 10000. We optimize our
model using SGD optimizer on 10000 tasks. The momen-
tum and weight decay of the optimizer are set to 0.9 and
0.0005 respectively. The initial learning rate for the pre-
trained embedding network and other modules are set to
0.001 and 0.01 respectively. Two learning rates are de-
creased by 0.2 after every 2000 episodes. Truncation hyper-
parameter δ is set to 2. We also utilize data augmenta-
tion in meta-training phase. In detail, each image is ran-
domly resized and cropped to 84×84, and then horizontally
flipped with a probability 0.5. Finally, images are normal-
ized with mean [0.485, 0.456, 0.406] and standard deviation

[0.229, 0.224, 0.225]. In meta-testing phase, we only center
crop and normalize the images.

Further Analyses
In this part of experiment, we mainly focus on two ques-
tions. Firstly, does every single module in GLoFA improve
the model performance? Secondly, can GLoFA successfully
converge to a stable point? We conduct ablation study and
convergence analysis on miniImageNet. The detailed de-
scription about miniImageNet dataset can be found in pre-
vious subsection. The implementation details are same as
those in previous subsection.
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