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Abstract

In the supplemental material of the paper “Distill-
ing Cross-Task Knowledge via Relationship Matching”,
we provide more discussions, analyses, experiments for
our proposed RElationship FacIlitated Local cLassifiEr
Distillation (REFILLED) approach, which reuses the classi-
fication knowledge from a cross-task model to facilitate the
training of the current task classifier. There are three parts
in the supplementary: first, we provide concrete deviations
and discussions to explain the two steps in REFILLED; then,
we describe the concrete settings for all the experiments in
detail; last are additional experimental results.

1. Discussion on Two-Steps in REFILLED

There are two steps in REFILLED to distill the knowl-
edge from a cross-task teacher w.r.t. the embedding and
the (top-layer) classifier, respectively. In this section, we
discuss the advantage of each step, and provide concrete
derivations in the main paper.

1.1. Distill the Embedding

REFILLED distills the discriminative ability of the em-
bedding by aligning the stochastic probability over triplets
with the teacher [22]. Given a triplet (xi, xj , xk), the anchor
xi is similar to its target neighbor xj and is dissimilar to the
impostor xk. Thus a high-quality embedding pulls similar
instances together and pushes dissimilar ones far away. The
similarity between instances are usually measured by their
labels — we think two instances are similar if they come
from the same class, and they are dissimilar if they have
different labels.

Usually, we apply a loss function ι(·) over the triplets to
force the distance between embeddings to be matched with
the relationship indicated by the triplet. Specifically, we can
minimize the embedding φ over the sampled triplets:

min
φ

∑
ijk

ι (Distφ (xi,xk)−Distφ (xi,xj)) . (1)

The summation over ijk means we sum the loss over the
sampled triplets {xi,xj ,xk}. The loss function ι(x) over
the embedding usually acts as an upper bound of the zero-
one loss, where the larger the value of the input x, the
smaller of the loss output. By minimizing Eq. 1, the em-
bedding makes distance between dissimilar instances larger
than the distance between similar ones. There are sev-
eral options for the loss function, such as the hinge loss
(ι(x) = max(1 − x, 0)) [25, 19, 11] and logistic loss
(ι(x) = log(1 + exp(−x))).

As in [22], we define the stochastic probability of a
triplet (xi, xj , xk) as a Bernoulli distribution Pijk, where
the random variable means whether such a triplet is satis-
fied (with probability pijk) or not (with probability 1−pijk)
based on the current embedding φ.

pijk(φ) = (2)

exp(−Distφ(xi,xj)/τ)

exp(−Distφ(xi,xj)/τ) + exp(−Distφ(xi,xk)/τ)
.

In Eq. 3, we match the Bernoulli distribution of triplets
based on both teacher’s and student’s embedding φT and φS
with KL-divergence, so that the teacher’s embedding super-
vises the optimizing of the student’s embedding.

min
φS

∑
ijk

KL
(
Pijk(φT ) ‖ Pijk(φS)

)
. (3)

Sampling Semi-Hard Triplets. All triplets are composed
by the current task instances. In other words, when optimiz-
ing the student model with stochastic gradient descent, we
generate triplets for each sampled mini-batch. We make `2-
normalization on all the embeddings before computing their
distances, and only apply the temperature τ in Pijk(φT ).
The triplets are sampled following the semi-hard proto-
col [19]. In detail, we enumerate all instances in the mini-
batch and treat each one as the triplet anchor. For each an-
chor, xi we first find all target neighbors xj (with the same
label) in the given mini-batch. Then for each pair of xi
and xj , we set xk as the nearest impostor with a different



label to xi, which meanwhile locates father away from xi
than xj . The distances in the previous sampling process are
measured based on the student’s embedding. Therefore, if
the student model finds some triplets are hard to evaluate, it
will ask the teacher for help about the concrete measures of
the similarity proportions.

Interpretation of the Matching. We can rethink the ob-
jective in Eq. 3 by the following reformulation:

KL (Pijk(φT ) ‖ Pijk(φS)) (4)

= pijk(φT ) ln
pijk(φT )

pijk(φS)
+ (1− pijk(φT )) ln

1− pijk(φT )

1− pijk(φS)

= pijk(φT ) ln pijk(φT )︸ ︷︷ ︸
constant

−pijk(φT ) ln pijk(φS)

+ (1− pijk(φT )) ln (1− pijk(φT ))︸ ︷︷ ︸
constant

− (1− pijk(φT )) ln (1− pijk(φS))
∼= − pijk(φT ) ln pijk(φS) − ln (1− pijk(φS))

+ pijk(φT ) ln (1− pijk(φS))
∼= − pijk(φT )(−DistφS

(xi,xj)− ln ∆) + ln ∆

+ DistφS
(xi,xk) + pijk(φT )(−DistφS

(xi,xk)− ln ∆)

∆ , exp (−DistφS
(xi,xj)) + exp (−DistφS

(xi,xk))
∼= pijk(φT )DistφS

(xi,xj) + (1− pijk(φT ))DistφS
(xi,xk)

+ ln ∆
∼= pijk(φT )DistφS

(xi,xj) + (1− pijk(φT ))DistφS
(xi,xk)

+ ln (exp (−DistφS
(xi,xj)) + exp (−DistφS

(xi,xk)))
∼= (pijk(φT )− 1)DistφS

(xi,xj)

+ (1− pijk(φT ))DistφS
(xi,xk)

+ ln (1 + exp (−(DistφS
(xi,xk)−DistφS

(xi,xj))))
∼= ρijk (DistφS

(xi,xk)−DistφS
(xi,xj))

+ ι (DistφS
(xi,xk)−DistφS

(xi,xj))

The notation ∼= neglects the constant term in the equation.
Define ρijk = 1 − pijk(φT ) and ι(x) = ln(1 + exp(−x))
as the logistic loss. From Eq. 4, we find by matching the
stochastic triplet probability based on φT and φS , the ob-
jective first optimizes embedding with a logistic loss, where
the similar instances indicated by the triplets have small dis-
tances while dissimilar ones should have large distances.
Furthermore, Eq. 4 rectify the minimizing/maximizing of
distances by adding different weights upon the distances
between similar/dissimilar pairs based on the teacher’s es-
timation. For example, if a pair (xi,xj) is similar, then
pijk(φT ) is large and ρijk is small, which applies more
weights on their distances DistφS

(xi,xj) and the rectifi-
cation of the logistic loss has minor influence. Otherwise,
ρijk is large and the force to minimize DistφS

(xi,xj) will
not be strong since xi and xj are not too similar measured

by the teacher’s embedding. In other words, different from
the binary label (“similar” or “dissimilar”) indicated by the
triplet, the relative similarities between pairs are specified
by the teacher’s embedding φT .

Differences with Related Methods. There are several re-
cent methods propose to distill the knowledge from the em-
bedding perspective [2, 1, 10, 14, 21], and the effectiveness
of the distilled embedding is usually verified for the repre-
sentation learning tasks or standard knowledge distillation
tasks. For example, an implementation choice in [13] con-
structs angels over triplets first, and then matches the angels
by regression; Qi et al [15] take advantage of the imprinted
weights to initialize the classifier for low-shot learning. In
our REFILLED approach, we emphasize to distill the clas-
sification ability from a cross-task teacher model, and in
the embedding distillation stage, we take advantage of the
stochastic triplet probability, which is more general as re-
vealed in Eq. 4. The superiority of REFILLED is also vali-
dated in the experiments.

1.2. Distill the Local Classifier

In the standard knowledge distillation [5], we optimize
the student model together with matching its prediction con-
fidences with a (fixed) teacher:

min
fS

N∑
i=1

`(fS(xi),yi) + λR(sτ (fT (xi)), sτ (fS(xi))) .

(5)
Denote the vanilla objective with the cross-entropy loss
(i.e., the first part in Eq. 5) asOxent and the whole objective
in Eq. 5 as Okd.

Facilitated by the improved embedding, we propose to
utilize a local knowledge distillation term to assist distill
the classification ability from the teacher:

min
fS

N∑
i=1

`(fS(xi),yi)+λKL (pφT
(yi | xi), sτ (fS(xi))) .

(6)
It is notable that the pφT

(yi | xi) is the Nearest Center
Mean (NCM) confidence of the teacher over the C ′ classes
in the current mini-batch.1 fS(xi) = W>φS(xi) is the pre-
diction of the student model, while sτ (fS(xi)) is the cor-
responding probability normalized with the softmax. Eq. 6
is a local version to distill the knowledge since it only con-
siders the classes locally in the current sampled mini-batch.
We denote the objective with the Local Knowledge Distil-
lation (LKD) term as OLKD.

We analyze the effectiveness of the knowledge distilla-
tion by its gradient over the top-layer classifier W ∈ Rd×C ,
and we omit the bias for simplicity. The c-th column of W

1Recall there are C classes in total in the data set.



corresponds to the classifier wc. In the following, without
loss of generality, we analyze the gradient of wc over one
single instance x, whose target label is c. Denote pc and qc
as the c-th element in the student’s and teacher’s normalized
prediction sτ (fS(x)) and sτ (fT (x)) (the posterior proba-
bility of the c-th class given the student’s and the teacher’s
embedding of the instance), respectively.

In vanilla learning scenario, we have the gradient w.r.t.
wc as

∂Oxent

∂wc
= [−pc(1− pc)]φ(x) . (7)

With an additional knowledge distillation term (refer to
Eq. 5), the gradient w.r.t. wc changes to

∂Okd

∂wc
=

[
−pc +

C∑
c′=1

pc′qc

]
φ(x) . (8)

Comparing Eq. 7 and Eq. 8, when considering the soft su-
pervision from the teacher, not only the instance from the
target class, but also those from related classes (the relat-
edness is specified by the student’s prediction pc′ , weighted
by the teacher’s prediction qc) will be incorporated to direct
the update of the classifier.

The summation in Eq. 8 is computed over allC classes in
the data set, if the number ofC is large, the normalized class
posterior probability qc is small, so that the helpful related
class instance will not be weighted obviously. Therefore,
the supervision made by the teacher will be weakened a lot.

We verify this claim by an experiment on CIFAR-100.
The averaged norm differences between the vanilla cross-
entropy loss and the knowledge distillation variants over the
gradient of all top-layer classifiers serve as a measure. The
smaller the norm difference, the weaker the additional su-
pervision signal provided by the teacher. Fig. 1 plots the
change of the norm difference when we increase the num-
ber of randomly sampled classes in a task. All the gra-
dients are measured during the initial optimization of the
model. As demonstrated by the figure, when the number
of classes grows larger, the norm of gradient difference
between vanilla KD loss and cross-entropy loss decreases
faster than that between local KD loss and cross-entropy
loss, which means the supervision made by the vanilla KD
teacher is weakened more than the supervision made by the
local KD teacher.

Therefore, we consider a local version of the knowledge
distillation term in Eq. 6, where only the classes in the cur-
rent mini-batch are considered, i.e., the posterior probabili-
ties are only normalized over the current set of classes.

2. Experimental Settings
We will provide detailed settings for all tasks, namely the

cross-task knowledge distillation, the standard knowledge
distillation, and the middle-shot classification task.

Figure 1. The averaged norm differences between the vanilla
cross-entropy loss and the knowledge distillation variants (KD and
LKD) over the gradient of all top-layer classifiers. When the num-
ber of classes in a task grows, the norm difference decreases fast.
However, the decrease is mitigated when using local KD loss.

2.1. Cross-Task Knowledge Distillation

In the cross-task knowledge distillation task, we ’d like
to verify whether a well-trained cross-task teacher model
could help the training of the student model in current task.

Datasets. We investigate the Caltech-UCSD Birds-200-
2011 (CUB) [24] data set, which is a fine-grained classi-
fication problem over 200 different species of birds. We do
not use the attribute information of all the instances. As
a pre-processing, we crop all images based on the provide
bounding boxes.

Splits. We implement a cross-task knowledge transfer
task by selecting two sets for teacher and student respec-
tively with non-overlapping classes. Therefore, 100 of the
200 classes are selected to train a teacher model, while the
remaining 100 classes are used to train the student. The
classes in the CUB data set are sorted in alphabetic order,
and we consider two different kinds of split criteria.

In a “hard” case, the two sets of 100 classes are split
based on the given alphabetic order. While in the “easy”
case, we randomly select 100 classes from the class pool to
train the teacher, and the remaining classes are used for the
student. The main difference between the two cases is the
domain gap between the training set of the teacher and the
student. Since the original classes are sorted in alphabetic
order, the classes with numerically close indexes are more
similar. Thus, the teacher is more “distant” from the student
in the hard case than in the easy one.

For each 100-way classification task for the teacher or
the student, we split 70% data in each class for training, and



the remaining instances are used for test.

Implementation of the Teacher. By optimizing a cross-
entropy loss, we train a teacher model based on the corre-
sponding training set with a MobileNets [6] model, whose
width multiplier is 1.0. We use the Stochastic Gradient De-
scent (SGD) as the default optimizer, where the momen-
tum is 0.9, batch-size is 128, maximum epoch number is
200, the initial learning rate is 0.1, and we time the learn-
ing rate by 0.2 after 50 epochs. We hold out a part of ex-
amples from the training set for validation, from which the
best set of hyper-parameters are selected. With the best se-
lected hyper-parameters, we re-train the teacher model on
the whole training set. When training the model, we first
resize the image to 224 × 224, and use the random crop
together with the horizontal flip as the data augmentation.
This is the same when training the student.

Implementation of the Student. We use different config-
urations of the MobileNets [6] and adjust the model com-
plexity with different width multipliers (complicated mod-
els have larger multipliers) in {1, 0.75, 0.5, 0.25}. There are
two stages for the student. In both stages, the temperature τ
of the teacher’s model is set to 2, and we do not smooth the
logits of the student. When distilling the embedding, we set
the momentum 0.9, the batch-size 128, the maximum epoch
200, the initial learning rate 0.1, and we time the learning
rate by 0.2 after 50 epochs. While in the second stage, we
use the same hyper-parameter values. λ is set to 0.01, and
the same λ is used across different experiments on a data
set. We find the performance of REFILLED is not very sen-
sitive to λ. Since the weight parameter λ in Eq. 6 is decayed
during the optimization, we use λ = 1000 ∗ exp(−0.05)λ
to update the weight of the local knowledge distillation term
after each epoch.

Evaluations. The averaged classification accuracy over 3
trials (with different random seeds) is reported.

Comparison Baselines. We consider three kinds of base-
line methods in this task.

• Classification based on the teacher’s embedding. We
can extract features with the pre-trained teacher’s em-
bedding function φT for those instances in the stu-
dent’s split. Based on the teacher’s embedding, we
can make classification by either the nearest neighbor
(1NN) classifier or the linear logistic regression (LR).
Besides, we fine-tune the teacher’s model with the in-
stances in the student’s split with small learning rate
(0.0001) and fixed number of epochs (50). Fine-tuning

the teacher model requires the student has the same ar-
chitecture with the teacher. Since in this case, the stu-
dent has the same number of training instances as the
teacher, using a large learning rate will make the stu-
dent obtain the same weights as training from scratch,
so we use a small initial learning rate in our experi-
ments.

• Knowledge distillation baselines. In the cross-task
knowledge distillation task, we compare our method
with one representative embedding-based distilla-
tion approach, the Relational Knowledge Distillation
(RKD), and fine-tune the whole student model with its
distilled embedding. The hyper-parameters for RKD
are tuned in the same way as our REFILLED approach.

• Variants of REFILLED. We investigate the importance
of different components in REFILLED.

2.2. Standard Knowledge Distillation

In the standard knowledge distillation, we reuse the
knowledge from a same-task teacher model, i.e., both the
teacher and the student target the same classification task.

Datasets. Following [1], we test the knowledge distilla-
tion ability of our REFILLED on the benchmark data set
CIFAR-100 [9]. CIFAR-100 is a small-image data set (with
size 32× 32), which contains 100 classes and 6000 images
in each class. In addition, we also consider the CUB data
set, which has a different split strategy compared with the
one in the previous task.

Splits. In CIFAR-100, we follow the standard split, where
there are 5,000 images in each class for training and 1,000
images for test. While on CUB, all 200 classes are used
during training. The standard training and test partitions are
used here. It is notable that both the teacher and the student
models are investigated on the same training and test sets.

Implementation of the Teacher and the Student Three
different families of the neural networks are taken into
account to test the ability of REFILLED, namely the
ResNet [4] , Wide-ResNet [27], and MobileNets [6]. To-
wards getting different capacities of the model, we change
the depth of the ResNet (through the number of layers),
the (depth, width) pair of the Wide-ResNet, and the width
of the MobileNets (through the width multipliers). We set
λ = 0.02 on CIFAR-100.

We mainly consider two sub-tasks in the standard knowl-
edge distillation, i.e., setting the teacher and the student
model from either the same or different model families.

• Same-family knowledge distillation. Both the teacher
and the student come from the same model family. We



use the same configuration as [1]. In CIFAR-100, both
the teacher and the student are Wide-ResNets. We
set the (depth, width) pair of the teacher as (40, 2),
and change such configuration parameters of the stu-
dent model among (40, 2), (16, 2), (40, 1), and (16, 1).
On CUB, we consider the MobileNets, by setting the
teacher’s width multiplier to 1, we vary the width mul-
tipliers of the student among {1, 0.75, 0.5, 0.25}.

• Different-family knowledge distillation. The model of
the teacher and the student come from different archi-
tecture families. We consider the knowledge transfer
flow from ResNet to MobileNets. Taking the com-
putational burden into consideration, when in CIFAR-
100, we choose the teacher as the ResNet-110, and
we use ResNet-34 as the teacher in CUB. We only
change the width multipliers of the student model in
{0.75, 0.5, 0.25} on CUB to keep the student model
has smaller capacity when compared with the teacher.

Similar ways with the previous section are used to train
both the teacher and the student model in the standard
knowledge distillation task. Here we set the temperature
of the teacher’s model to 4. For CIFAR-100, we pad 4 for
each edge before we do the random crop.

Evaluations. Both teacher and student are trained on the
same set with three different seeds of initialization, and we
report the mean accuracy of the student on the test set.

2.3. Middle-Shot Classification Task

Similar to the popular few-shot learning task (FSL) [23,
17, 3, 16, 12, 26, 15], we also investigate the problem learn-
ing with middle-shot of examples.

Datasets. We use the popular MiniImageNet data set [23],
which contains 100 classes in total and 600 images in each
class. All images are resized to 84 × 84 before inputting
into the models.

Splits. Following [23, 17], there are 64 classes (SEEN
class) to train the teacher (a.k.a. the meta-train set), 16
classes for validation (a.k.a. the meta-val set), and we sam-
ple tasks from the remaining 20 classes (a.k.a. the meta-test
set) to train the student.

Implementation of the Teacher and the Student. We set
the student as a 4-layer ConvNet [23, 20, 3], and consider
two types of the teacher model, i.e., the same 4-layer Con-
vNet (but trained on different classes in the meta-train set)
and the ResNet [12, 26]. The ConvNet contains 4 identical
blocks, and each block is a sequential of convolution oper-
ator, batch normalization [8], ReLU, and Max pooling. We

add another global max pooling layer to reduce the compu-
tational burden after the 4 blocks, which gives rise to a 64-
dimensional embedding before the top-layer classifier. For
ResNet, we follow the architecture in [12, 26], which re-
moves the two down-sampling layers in the vanilla ResNet.
The ResNet outputs 640-dimension embeddings.

We train a teacher model on the SEEN classes set (meta-
train set) with ResNet and ConvNet. Supervised by the
cross-entropy loss, we use random crop and horizontal flip
as the data augmentation, SGD w/ momentum 0.9 as the
optimizer, 128 as the batch size. Then the student is trained
with the help of the teacher and the tasks are sampled from
the UNSEEN classes (meta-test set).

Evaluations. Define a K-shot C-way task as a C-class
classification problem, and there are K instances in each
class. Different from the few-shot learning where C = 5
and K ∈ {1, 5}, here we consider there are a bit more in-
stances in each class, i.e., K = {10, 30}. Although the
value of K increases in the middle-shot learning, it is still
small to train a complicated neural network from scratch.
We sample tasks from the 20-class split (meta-test set) to
train the student model and evaluate the results by classi-
fying another 15 instances from each of the C classes. We
evaluate the performance by mean accuracy over 600 trials.

Comparison Methods. We compare our methods with
two branches of baselines:

• Meta-learning methods. Meta-learning is a popular
way to solve the few-shot classification problem. To
mimic the test case, it samples C-Way K-Shot tasks
from the SEEN class set to learn task-level inductive
bias like embedding [23, 20]. However, the computa-
tional burden (e.g., the batch size) becomes large when
the number of shots increases. Besides, meta-learning
needs to specify the way to obtain a meta-model from
the SEEN classes. We compare our methods with the
embedding-based meta-learning approaches like and
ProtoNet [20] and FEAT [26].

• Embedding-based baselines. We can make predictions
directly with the teacher’s embedding, the penultimate
layer of the teacher model, by leveraging the nearest
neighbor. Based on the embedding, we also train linear
classifiers like SVM on the current task’s middle-shot
data or fine-tune the whole model. It is notable that we
tune the hyper-parameter of such methods with sam-
pled middle-shot tasks on the validation split.

3. Additional Experimental Results
This section shows the additional experimental results on

the knowledge distillation and middle-shot learning tasks.



Table 1. The cross-task distillation mean accuracy on CUB data set, where teacher and student are trained for non-overlapping 100 classes
with MobileNets. Two split scenarios are considered, i.e., the “Easy” and “Hard” cases. The three values in the teacher’s correspond to
baselines: applying 1NN based on teacher’s embedding, train a linear LR classifier based on fixed teacher’s embedding, and Fine-Tune (FT)
based on teacher’s embedding. More details can be found in the text.

Easy Hard

Channel 1 0.75 0.5 0.25 1 0.75 0.5 0.25

Teacher 1NN: 49.23, LR: 56.77, FT: 66.94 1NN: 45.31, LR: 53.82, FT: 65.72
Student 70.04 68.13 66.44 64.63 71.25 67.56 66.85 64.48

RKD [13] 71.10 68.81 67.15 64.28 70.83 68.8 67.44 63.97
Vanilla 71.62 70.27 70.15 66.75 71.90 69.14 68.91 65.38
LKD 71.93 70.73 70.88 67.41 72.53 70.01 69.50 66.42

REFILLED 72.48 71.04 71.35 67.87 73.38 70.42 69.77 67.10

3.1. Cross-Task Knowledge Distillation

The results of cross-task distillation could be found in
Table 1. Two splits of the data are considered, where the
domain gaps between the teacher and student are different.

We first adapt the teacher model for the cross-task classi-
fication via three baselines, i.e., the 1NN based on teacher’s
embedding, train a linear Logistic Regression (LR) clas-
sifier based on the fixed teacher’s embedding, and Fine-
Tune (FT) the model based on teacher’s embedding. The
teacher has the width multiplier 1, so it achieves the test ac-
curacy around 70.04 when directly training on the student’s
split (equal the student’s performance with width multiplier
1). The test accuracy of the student becomes higher when
learning with more complicated models (larger width mul-
tiplier values). It can be found that the baselines of the
teacher model perform higher when trained in the easy sce-
nario (the left part in Table 1).

We also compare with one representative embedding-
based approach Relation Knowledge Distilla-
tion (RKD) [13], and fine-tune the model after obtaining
the distilled embedding from the cross-task teacher. RKD
sometimes gets better accuracy than the vanilla student
model (denoted as “student” in the table).

Since REFILLED distills both the embedding and the
classification ability from the teacher, we perform two base-
lines upon the improved embedding of REFILLED. We test
the quality of the embedding by fine-tune the model with
cross-entropy based on the REFILLED’s distilled embed-
ding, which is denoted as “Vanilla” in the table. It gets
better classification ability than RKD, which verifies our ap-
proach gets high-quality embedding in the first stage.

LKD denotes the local version in REFILLED utilizing the
local knowledge distillation but without decayed weights. It
can further improve the vanilla training. Our REFILLED
approach achieves the best classification performance in
all cases. Benefited from reusing the knowledge from the
teacher, the classification achieves a further improvement

w.r.t. the vanilla training.

Table 2. The mean classification accuracy of knowledge distilla-
tion methods on CUB data set. Teacher is trained with ResNet-34,
which gets 75.31% test accuracy. Student is learned with Mo-
bileNets, whose width multiplier is changed.

width multiplier 0.75 0.5 0.25

Student 74.87 72.41 69.72

KD [5] 76.02 74.17 71.97
FitNet [18] 75.03 72.17 70.03

AT [28] 76.11 72.94 70.99
NST [7] 75.89 73.82 71.92

KD+VID-I [1] 76.41 74.04 72.20
RKD [13] 76.11 75.24 72.84

REFILLED 78.01 75.90 73.15

3.2. Standard Knowledge Distillation

We use REFILLED to distill the knowledge from a cross-
family teacher on CUB. We set the teacher as ResNet-
34, and use the MobileNets with different width multipli-
ers (from {0.75, 0.5, 0.25}) as the student model. Table 2
demonstrates the results, where we re-implement all the
comparison methods in this case. REFILLED keeps its su-
periority in this case.

3.3. Few-Shot Learning and Middle-Shot Learning

The same configuration of REFILLED on the middle-
shot learning tasks could also be applied to the few-shot
learning scenarios. In addition to the middle-shot learn-
ing results, we provide additional few-shot learning results
(where the number of shots is equal to 1 or 5) in Table 3.
Both ProtoNet and FEAT are meta-learned over the pre-
trained embeddings from the SEEN classes set (meta-train
set). REFILLED gets better results when reusing a strong
teacher (i.e., the ResNet), and works well with larger shots.



Table 3. The mean accuracy over 600 trials of few-shot and middle-shot tasks. We set the student model as the ConvNet, and investigate both
ResNet and ConvNet as the teacher model, for our REFILLED approach. Detailed results and configurations are in the supp. REFILLED1

denotes the results reusing a ResNet teacher and REFILLED2 stands for the results reusing a ConvNet teacher.

Tasks 1-Shot 5-Way 5-Shot 5-Way 10-Shot 5-Way 30-Shot 5-Way

1NN 49.73 63.11 66.56 69.80
SVM 51.61 69.17 74.24 77.87

Fine-Tune 45.89 68.61 74.95 78.62

MAML [3] 48.70 63.11 - -
ProtoNet [20] 51.79 70.38 74.42 78.10

FEAT [26] 55.15 71.61 74.86 78.84

REFILLED1 54.82 71.97 76.42 80.33
REFILLED2 53.44 70.60 75.37 78.94

3.4. Ablation Study, 1-Stage vs. 2-Stage Learning

We train REFILLED in a two-stage manner as [18, 1].
We discuss the pros and cons of the two ways first, and then
provide the ablation study results in Table 4 and Table 5.
Experiment settings in Table 4 and Table 5 are the same as
those in Section 5.1 and Section 5.2 of the paper. In both ta-
bles, REFILLEDγ means training REFILLED in a one-stage
manner with balancing hyper-parameter γ, i.e.,

min
φS ,fS

γ
∑
ijk

KL
(
Pijk(φT ) ‖ Pijk(φS)

)
(9)

+

N∑
i=1

` (fS(xi),yi) + λKL
(
pφT

(yi | xi), sτ (fS(xi))
)

From the model design perspective: The two-stage train-
ing in REFILLED works well since the distilled discrim-
inative embedding acts as a better initialization hence to
improves the discerning ability of the model; while train-
ing with a combined objective regularizes the classifier by
matching the predictions between student and teacher, so
that it relies on a suitable strength of the regularization.

From the implementation perspective: An important is-
sue for the joint training of the combined objective is to set
the right balance among the embedding learning (relation-
ship distillation), classification (cross-entropy), and knowl-
edge transition (local knowledge distillation) losses. In our
empirical study, it is a bit hard to tune the weights among
them. While in the two-stage training strategy, we can fist
learn a good embedding till convergence, and then use such
embedding to initialize the second stage, where the balance
between classification and distillation is solved with an an-
nealing strategy.

From the results in both Table 4 and Table 5 on two dif-
ferent data sets, the two-stage training makes REFILLED
easier to achieve higher performance. (The best result in
each configuration is in bold).

Table 4. The mean accuracy of cross-task distillation on CUB data
set. REFILLED0.1 and REFILLED0.2 denote the results using one-
stage training protocol with balancing hyper-parameter 0.1 and 0.2
respectively.

Width Multiplier 1 0.75 0.5 0.25

Teacher 1NN: 45.31 , LR: 53.82 , FT: 65.72

Student 71.25 67.56 66.85 64.48
RKD [13] 70.83 68.80 67.44 63.97

REFILLED 73.38 70.42 69.77 67.10

REFILLED0.1 72.64 70.13 69.28 66.41
REFILLED0.2 72.42 70.22 68.65 66.85

Table 5. The average classification results of knowledge distilla-
tion methods on CIFAR-100 data set based on the Wide-ResNet.
REFILLED0.1 and REFILLED0.2 denote the results using one-
stage training protocol with balancing hyper-parameter 0.1 and 0.2
respectively.

(depth, width) (40, 2) (16, 2) (40, 1) (16, 1)

Teacher 74.44
Student 74.44 70.15 68.97 65.44

KD [5] 75.47 71.87 70.46 66.54
FitNet [18] 74.29 70.89 68.66 65.38

AT [28] 74.76 71.06 69.85 65.31
NST [7] 74.81 71.19 68.00 64.95

VID-I [1] 75.25 73.31 71.51 66.32
KD+VID-I [1] 76.11 73.69 72.16 67.19

RKD [13] 76.62 72.56 72.18 65.22

REFILLED 77.49 74.01 72.72 67.56

REFILLED0.1 77.03 73.81 72.30 67.14
REFILLED0.2 76.95 73.90 71.64 67.34
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