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Abstract

Meta-learning can extract an inductive bias from previous learning experience and
assist the training of new tasks. It is often realized through optimizing a meta-
model with the evaluation loss of task-specific solvers. Most existing algorithms
sample non-overlapping support sets and query sets to train and evaluate the solvers
respectively due to simplicity (S/Q protocol). Different from S/Q protocol, we can
also evaluate a task-specific solver by comparing it to a target model T , which is the
optimal model for this task or a model that behaves well enough on this task (S/T
protocol). Although being short of research, S/T protocol has unique advantages
such as offering more informative supervision, but it is computationally expensive.
This paper looks into this special evaluation method and takes a step towards putting
it into practice. We find that with a small ratio of tasks armed with target models,
classic meta-learning algorithms can be improved a lot without consuming many
resources. We empirically verify the effectiveness of S/T protocol in a typical
application of meta-learning, i.e., few-shot learning. In detail, after constructing
target models by fine-tuning the pre-trained network on those hard tasks, we match
the task-specific solvers and target models via knowledge distillation.

1 Introduction

Meta-learning means improving performance measures over a family of tasks by their training
experience [22]. It has been researched in various fields such as image classification [11, 16] and
reinforcement learning [6, 14]. By reusing transferable meta-knowledge extracted from previous
tasks, we can learn new tasks with a higher efficiency or a shortage of data.

A typical meta-learning algorithm can be decomposed into two iterative phases. In the first phase,
we train a solver of a task on its training set with assistance of meta-model. In the second phase, we
optimize the solver’s performance to update meta-model. One key factor in this procedure is the way
to evaluate the solver because the evaluation result acts as the supervision signal for meta-model.
Early meta-learning algorithms [19, 23] directly use the solver’s training loss as its performance
metric, and optimize this metric over a distribution of tasks. Obviously, inner-task over-fitting may
happen during the training of task-specific solvers, resulting in an inaccurate supervision signal for
the meta-model. This drawback is even more amplified in applications where the training set of each
task is limited such as few-shot learning and noisy learning.

Intuitively, assessment of solvers should be independent of their training sets. This principle draws
forth two important meta-learning algorithms in 2016 [24, 28], which respectively export solver
evaluation from the perspective of “data” and “model”. In this paper, we call these two methodologies
S/Q protocol and S/T protocol. In S/Q protocol, S means support set and Q means query set. They
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contain non-overlapping instances sampled from a same distribution. By training the solver on S
and evaluating it on Q, we are able to obtain an approximate generalization error of the solver and
eventually provide the meta-model with a reliable supervision signal. Another choice is to compare
the trained solver with an ideal target model T . Assuming that T works well on a task, we can
minimize the discrepancy between the trained solver and T to pull the solver closer to T . Here T
can be Bayesian optimal solution to a task or a model trained on a sufficiently informative dataset.
Figure 1 gives an illustration of both S/Q protocol and S/T protocol.
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Figure 1: Comparison between S/Q protocol and S/T
protocol. (a) In S/Q protocol, each task contains a sup-
port set S and a query setQ. We train a solver on S and
evaluate it onQ, and query loss is used to optimize meta-
model. (b) In S/T protocol, each task contains a support
set S and a target model T . After training a solver on S ,
we directly minimize the discrepancy between it and T .

Although appeared in the same year, S/Q pro-
tocol is more widely accepted by meta-learning
society [4, 8, 13, 10] while the research about
how to leverage target models remains imma-
ture. The main reason is the simplicity of S/Q
and the computational hardness of S/T . How-
ever, S/T protocol has some unique advantages.
Firstly, it does not depend on possibly biased
and noisy query sets. Secondly, by viewing sup-
port sets and their corresponding target mod-
els as (feature, label) samples, meta-learning
is reduced to supervised learning and we can
transfer insights from supervised learning to im-
prove meta-learning [2]. Thirdly, we can treat
the target model as a teacher and incorporate a
teacher-student framework like knowledge dis-
tillation [7] and curriculum learning [1] in meta-
learning. Thus, it is necessary and meaningful
to study S/T protocol in meta-learning.

This paper looks into S/T protocol and takes a
step towards enabling meta-learning from target
models. We mainly answer two questions: (1)
If we already have access to target models, how
to learn from them? What are the benefits of
learning from them? (2) In a real-world applica-
tion, how to obtain target models efficiently and
make S/T protocol computationally tractable?
For the first question, we propose to match the
task-specific solver to the target model in output space. Learning from target models brings us more
robust solvers. For the second question, we focus on a typical application scenario of meta-learning,
i.e., few-shot learning. We construct target models by fine-tuning the globally pre-trained network on
those hard tasks to maintain efficiency.

2 Related Work

Meta-Learning. Meta-learning aims at extracting task-level experience (so-called meta-knowledge)
from seen tasks, while generalizing the learned meta-knowledge to unseen tasks efficiently. Re-
searchers have studied several kinds of meta-knowledge like model initialization [3, 25], embedding
network [21, 12, 9, 20, 4], external memory [19, 5], optimization strategy [15, 18], and data aug-
mentation strategy [13]. Despite their diversity in meta-knowledge, most existing models are trained
under S/Q protocol, and rely on a randomly sampled and possibly biased query set. Actually, most
algorithms are protocol-agnostic, and both S/Q protocol and S/T protocol can be applied to them.
Thus, our work on S/T is general, and it has a wide application field.

Learning from Target Models. The idea of learning from target models in meta-learning is first
proposed by [28]. In [28], the authors constructed a model regression network that explicitly regresses
between small-sample classifiers and target models in parameter space. Here both solvers and target
models are limited to low-dimensional linear classifier, making it feasible to regress between them.
From our perspective, matching two models’ parameters is not practical when the dimension of
parameters is too high. Thus, we match two models in output space in this paper. Similarly, there are
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other papers focusing on meta-learning from target models [27, 31]. The most similar work to us
is [31], which constructs target models with abundant instances and matches task-specific solvers and
target models. However, they all assume that every single task has a target model, increasing both
space and time complexity of S/T protocol. To summarize, we claim that one key point in putting
S/T protocol into practice is reducing the requirement for target models. In this paper, we focus on
those hard tasks, and find that by learning from a small ratio of informative target models, classic
meta-learning algorithms can be improved.

3 Preliminary

Meta-learning extracts high-level knowledge by a meta-model from meta-training tasks sampled
from a task distribution p(τ ) and reuses the learned meta-model on new tasks belonging to the same
distribution. Each task τ has a task-specific support set S = {(xi,yi)}|S|i=1, and we can train on S a
solver g : X→ Y parameterized by γg. Without loss of generality, a meta-model can be defined as
f : S→ G parameterized by θf that receives a support set as input and outputs a solver. Here S is the
space of support sets and G is the space of solvers. In other words, f encodes the training process of g
on S under the supervision of meta-knowledge θf . Taking two well-known meta-learning algorithms,
MAML [3] and ProtoNet [21], as examples, we have the following concrete forms of f :

• MAML meta-learns a model initialization θf and fine-tunes it on each S with one gradient
descent step to obtain a task-specific solver g. It can be written as Equ (1). η is step size and
` : Y× Y→ R+ is some loss function.

f(S;θf ) = g

· ;θf − η ∇γ

∑
(xi,yi)∈S

` (g(xi;γ),yi)

∣∣∣∣∣∣
γ=θf

 (1)

• ProtoNet meta-learns an embedding function φθf
parameterized by θf and generates a lazy

solver which classifies an instance to the category of its nearest class center. Here g is
implicitly parameterized by both θf and embedded support instances.

f(S;θf ) = g
(
· ;θf , {φθf

(xi)|(xi,yi) ∈ S}
)

(2)

S/Q Protocol. How to evaluate the solver g trained on S? The answer to this question differs
conventional S/Q protocol [24] from S/T protocol. In S/Q protocol, we sample another query set
Q = {xj ,yj}|Q|j=1 apart from S for each task. Instances in S and Q are i.i.d. distributed and have a
same label set, and we evaluate g by its loss on Q. Since S and Q contain non-overlapping instances,
loss on Q is a more reliable supervision signal. S/Q protocol can be formulated as Equ (3). Here Dtr

is the meta-training set and we can sample meta-training tasks τ tr from it.

min
f

∑
τ tr=(S tr,Qtr)∈Dtr

∑
(xj ,yj)∈Qtr

`(f(S tr)(xj),yj) (3)

S/T Protocol. Any sampled query set Q can be biased and noisy, which may cause an inaccurate
evaluation of the solver. An alternative is directly matching the task-specific solver g = f(S) and a
target model T that works well on the corresponding task. By computing the distance from the solver
to target model, we obtain a more robust training signal to update meta-model. By replacing the
solver evaluation part in Equ (3), we have the following S/T protocol Equ (4). Here L : G×G→ R+

is some loss function to measure the discrepancy between g and target model T .

min
f

∑
τ tr=(S tr,T tr)∈Dtr

L(f(S tr), T tr) (4)

4 Effect of Target Model

We have introduced some basic concepts in meta-learning, and formulate S/Q protocol and S/T
protocol in Section 3. In this section, we assume that target models are available, and study how
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to utilize them to assist meta-learning. Firstly, we propose a model matching framework based on
output comparison. Secondly, we verify the effectiveness of our proposal in a synthetic experiment.
Moreover, we try to decrease the ratio of tasks that have target models, and show that it is possible to
reduce the resource consumption of S/T protocol.

4.1 Model Matching

Solver 𝑔

Target Model 𝒯
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𝑔 𝐱 =

𝒯 𝐱 =

Knowledge

Distillation
Parameter

Regression
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Figure 2: Two approaches to matching g and target
model T . Left: matching them in parameter space.
Right: matching them in output space.

In S/T protocol, one key point is how to
match the solver g and its target model
T . In other words, we need to specify
the concrete formulation of L(g, T ). Gener-
ally, methods to match g to T can be classi-
fied into two categories. Firstly, we can di-
rectly match two models’ parameters or use
another model to regress between two mod-
els’ parameters [28]. For example, let γg
and γT be the parameters of g and T , we
can set L(g, T ) =

∑
(xi,yi)∈S tr `(g(xi),yi) +

λ‖γg − γT ‖22. Here λ is a balancing hyper-
parameter. This method may work well for
low-dimensional parameters, but is not suitable for complex models like deep neural net-
works. A better alternative is to match two models in their output space, i.e., L(g, T ) =∑

(xi,yi)∈S tr [(1− λ)`(g(xi),yi) + λD(T (xi), g(xi))]. Here D(·, ·) is a function that measures
the discrepancy between T (xi) and g(xi). If we instantiate D(·, ·) as KL divergence KL(·||·) for
classification problem, the aforementioned loss function is equivalent to that of knowledge distillation.
Figure 2 is an illustration of approaches to matching a solver to a target model.

4.2 Empirical Study: Sinusoid Regression

In this part, we assume that target models are available, and evaluate the effectiveness of our proposed
matching approach. We construct a synthetic regression problem, and try to answer the following
questions: (1) Can S/T protocol outperform S/Q protocol when target models are available? (2) Is it
possible to improve meta-learning with only a few target models?

Setting. Consider regression tasks T (x) = a sin(bx− c) where a, b, and c are uniformly sampled
from [0.1, 5], [0.5, 2], and [0.5, 2π] respectively. For each task, we generate 10 support instances by
uniformly sampling x in range [−5, 5]. For S/Q protocol, we additionally sample 30 query instances
for each task. We then set y = T (x) + ε where ε ∼ N (0, 0.5) is a Gaussian noise. 10000 tasks are
used for both meta-training and meta-testing. 500 tasks are used for meta-validation.

Algorithms. We consider two classic meta-learning algorithms, MAML [3] and ProtoNet [21].
MAML can be directly applied to a regression task, but ProtoNet is originally designed for clas-
sification. In this part, we modify ProtoNet slightly to fit regression problem. In detail, we try
to meta-learn an embedding function φ : R → R100, with assistance of which the similarity-
based regression model g(· ; {φ(xi)|(xi, yi) ∈ S}) works well across all tasks. Here for any
instance (x, y), ŷ = g(x) =

∑
(xi,yi)∈S wiyi and wi = exp{〈φ(xi),φ(x)〉}∑

exp{〈φ(xi),φ(x)〉} . A same embed-
ding network is used in two algorithms. We train MAML and ProtoNet under S/Q protocol
and S/T protocol. When using S/Q protocol, we minimize MSE loss on 30 query instances
to optimize φ. For S/T protocol, we match the solver and the target model in output space,
and set D(T (xi), g(xi)) = ‖T (xi) − g(xi)‖22. Thus, the loss function under S/T protocol is
L(g, T ) =

∑
(xi,yi)∈S tr

[
(1− λ)‖g(xi)− yi‖22 + λ‖g(xi)− T (xi)‖22

]
. λ is a hyper-parameter.

More implementation details can be found in the supplementary material.

Superiority of S/T Protocol. Table 1 shows the MSE of four models on meta-testing tasks. We
can see that models trained under S/T protocol consistently outperform models trained under S/Q
protocol. In Figure 3, we visualize a randomly chosen meta-testing task. Different colors are used for
different meta-learning algorithms, and dotted lines and dashed lines are used for S/Q protocol and
S/T protocol respectively. We can see that models trained under S/T protocol fit the target sinusoid
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curve better. It is meaningful to discuss why target models improve meta-learning algorithms. In
this empirical study, distillation from target models can be interpreted as label denoising. In detail,
we can prove2 that meta-learning loss under S/T protocol (1− λ)‖g(x)− y‖22 + λ‖g(x)− T (x)‖22
is an upper bound of ‖g(x) − (y − λε)‖22, which is the standard MSE loss between the output of
solver g and cleaner label y − λε (raw label y equals to T (x) + ε). Therefore, the larger λ is, the
cleaner training labels are. Table 2 is an ablation study on hyper-parameter λ. As expected, both
algorithms trained under S/T achieve better performance with larger λ. These results demonstrate
the superiority of S/T protocol when target models are available.

Table 1: Average test MSE of two meta-learning algo-
rithms. Models trained under S/T protocol outperform
those trained under S/Q protocol.

Method MAML ProtoNet
S/Q S/T S/Q S/T

MSE on Dts 4.933 3.621 4.706 3.332
Table 2: Average test MSE of two meta-learning algo-
rithms with different λ values. Larger λ offers cleaner
labels, resulting in better models.

λ 1 0.8 0.5 0.2

MSE: MAML(S/T ) 3.220 3.419 3.621 3.833
MSE: ProtoNet(S/T ) 3.137 3.304 3.332 3.550
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Figure 3: Visualization of a randomly sampled meta-
testing task. Dotted lines are used for S/Q protocol
while dashed lines are used for S/T protocol. We can
see that models trained under S/T protocol can fit the
target sinusoid curve better.
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Figure 4: Change of MSE loss over number of meta-
training tasks that have target models. By selecting
hard tasks heuristically, we are able to obtain an evident
performance gain with a small number of target models.

Reducing the Requirement for Target Mod-
els. Despite the satisfying results in the empir-
ical study, it does not mean that we can apply
S/T protocol in real-world applications and nec-
essarily obtain higher performance. Up till now,
we have assumed that every single meta-training
task has a target model. This assumption is too
strong from two aspects. Firstly, we usually
don’t have ready-made target models, and con-
structing target models is not trivial. Secondly,
even though we have designed a method to con-
struct target models, it will cost too much time
to construct a target model for every single meta-
training task. Existing researches that focus on
meta-learning from target models often bypass
this dilemma by restricting the complexity of
solvers and target models [28] or building one
global target model. In this paper, we study a
more general methodology - reducing the num-
ber of required target models. If we randomly
choose a small subset of meta-training tasks,
and only provide these tasks’ target models, how
will the model performance change? To answer
the question, we first randomly sample subsets
of tasks that have target models, and abandon
target models for other tasks. In this case, the
meta-learning loss of tasks without target mod-
els degenerates to S/Q loss. By ranging the
size of this subset, we can plot the performance
curve of MAML and ProtoNet in Figure 4. Then,
we heuristically select the hardest tasks from all
meta-training tasks and only deploy target mod-
els for these tasks. In this regression problem, a
sinusoid curve is defined as a sin(bx− c), and
larger a or smaller b induce steeper curves. We
simply consider these steep curves as hard tasks,
and sort the hardness of all meta-training tasks
according to a − b. Another two performance
curves using this heuristic are also plotted in
Figure 4. We can see that when using this naive
heuristic, we can obtain an evident performance
gain with only 500(5%) target models. This
finding inspires us to analyse the hardness of
tasks in meta-learning, and confirms the possi-
bility of learning from a few target models.

2We leave the proof to the supplementary material.
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5 Application Case: Few-Shot Learning

Few-shot learning is a typical application of meta-learning. It aims at recognizing new categories with
only a few labelled instances. In few-shot learning, we have two datasets that contain non-overlapping
classes, i.e., Dtr and Dts. Dtr is composed of seen classes while Dts contains unseen classes. We can
sample N -way K-shot3 meta-training tasks from Dtr to train the meta-model, and expect that the
trained meta-model will also work well on Dts.

5.1 Task Hardness

Table 3: Average accuracy on auxiliary dataset Dau.
Fine-tuned target models outperform a single pre-trained
target model on randomly sampled tasks.

Target Model pre-train fine-tune

Accuracy on Dau 98.24 99.37
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Figure 5: Grouping of 1000 tasks according to their
hardness. Both φpt and φft achieve lower accuracy on
harder tasks, verifying the reasonability of our proposed
hardness metric. Fine-tuned target models obtain a re-
markable performance gain on hard tasks.

Following the idea of constructing target models
for hard tasks, we firstly investigate which tasks
are hard in few-shot learning. We consider the
relationship between classes as a key factor that
determines the hardness of a classification task.
Assuming that there are C tr classes in Dtr, we
first compute a similarity matrix F ∈ RC tr×C tr

whose element Fuv equals to the similarity be-
tween the u-th class centre and the v-th class
center. In few-shot learning, pre-training the
backbone network on Dtr has become a com-
mon practice [26, 30], and we can compute these
class centres based on the pre-trained model φpt

as Equ (5) and Equ (6). In Equ (5), Ku is the
number of instances of class u in Dtr, and with
a bit abuse of notation, we use yi = u to select
instances belonging to the u-th class.

cu =
1

Ku

∑
(xi,yi)∈Dtr∧yi=u

φpt(xi), u ∈ [C tr]

(5)

Fuv =
cu · cv

‖cu‖ · ‖cv‖
, u, v ∈ [C tr] (6)

With similarity matrix F, we can take out the
sub-similarity matrix of task τ by slicing the
rows and columns corresponding to classes contained in τ . The hardness of task τ is defined as the
sum of its sub-similarity matrix. The more similar classes in τ are, the more difficult to differ them
from each other. The hardness of every meta-training task can be evaluated with similarity matrix F,
and we compute F only once.

5.2 Target Model Construction

As mentioned in last part, pre-training the backbone network on seen classes is a widely used
technology in few-shot learning. The pre-trained network φpt is optimized using cross-entropy loss
on the whole meta-training set, and can classify all classes in Dtr. Since there are C tr classes in Dtr,
the output of φtr is a C tr-dimensional vector. Given a specific N -way task τ , a naive approach to
obtain a target model is taking out N corresponding dimensions of the pre-trained model’s output.
However, using a single pre-trained model to assist the meta-learning of all tasks is sub-optimal. We
claim that fine-tuning the pre-trained model on the subset of Dtr that contains classes in τ can give us
a better target model for τ .

Evaluation on Auxiliary Dataset. To verify the reasonability of the heuristic task hardness metric
and the effectiveness of the fine-tuning approach, we need another auxiliary datasetDau. Dau contains
same classes as Dtr, and we can evaluate the accuracy of constructed target models (trained on Dtr)
on Dau. We conduct an experiment on miniImageNet [24] to check whether fine-tuned target models

3An N -way K-shot task is a classification task with N classes and K instances in each class.
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(a) Bayesian optimal classifier. (b) ProtoNet trained under S/Q. (c) ProtoNet trained under S/T .

Figure 6: Decision boundaries of three different models in raw 2-d space. Different point colors represent
different classes, and different background colors represent different classification regions. 5% tasks have target
models. A 5-way 10-shot task is visualized. (a) Bayesian optimal model constructed with parameters {µn}Nn=1

and {Σn}Nn=1. Although having the lowest misclassification error in expectation, it is not robust to noises since
the decision boundary is very steep. (b) ProtoNet trained under S/Q protocol. Decision boundary is still not
regular. (c) ProtoNet trained under S/T protocol. Decision boundary is very smooth due to the regularization
effect of knowledge distillation. Models trained under S/T protocol are more robust to noisy of biased instances.

are better than pre-trained target models. Firstly, we pre-train a ResNet-12 with a linear layer on the
meta-training split of miniImageNet. After that, we randomly sample 1000 5-way tasks from Dtr,
and fine-tune the pre-trained backbone to obtain 1000 target models. For each task τ , we take out
all instances in Dau that belong to classes in τ to evaluate φpt and φft

τ . Table 3 shows the average
accuracy on auxiliary dataset Dau. We can see that fine-tuned target models achieve higher accuracy
because they are task-specific, but the performance gain is marginal. The pre-trained model already
works well enough on these seen classes. This means it is not cost-effective to fine-tune a target model
for every single meta-training task. In Figure 5, we divide these 1000 tasks into 10 bins according to
their hardness. In each bin, we compute the average accuracy of φpt and φft. Now we can draw two
conclusions. Firstly, both φpt and φft achieve lower accuracy on harder tasks, and this verifies the
reasonability of our proposed hardness metric. Secondly, the performance gain of fine-tuned target
models are most remarkable on hard tasks, and this means fine-tuning target models for hard tasks
can simultaneously save computing resources and improve the pre-trained target model.

Now we can summarize our S/T protocol for few-shot learning. Firstly, we pre-train φpt on Dtr,
and then sample meta-training tasks from seen classes. Secondly, we sort the meta-training tasks
according to their hardness, and fine-tune the pre-trained network to obtain local target models for a
small ratio of hardest tasks. Denote by Dtr

1 the set of tasks that have target models and Dtr
2 the set of

tasks that do not have target models. For tasks in Dtr
1 , we train task-specific solvers on their support

sets, and then evaluate these solvers under S/T protocol. For tasks in Dtr
2 , we simply use S/Q to

compute query loss, as shown in Equ (7).

min
f

∑
(S tr

1,T tr
1 )∈Dtr

1

∑
(xi,yi)∈S tr

1

[
(1− λ)`(f(S tr

1 )(xi),yi) + λKL(T tr
1 (xi)||f(S tr

1 )(xi))
]

+
∑

(S tr
2,Qtr

2)∈Dtr
2

∑
(xj ,yj)∈Qtr

2

`(f(S tr
2 )(xj),yj)

(7)

Different from S/Q protocol, S/T protocol does not rely on randomly sampled query sets, and
target models usually offer more information than instances. Distillation term plays the role of
regularization, enforcing the solvers for hard tasks to be smooth (see next subsection). Although the
idea of S/T protocol is proposed in 2016, it is not widely used due to its computational intractability.
However, in this paper we propose an efficient method to construct target models, and only deploy
target models for a small ratio of hard tasks. This opens the door for future research of S/T protocol,
and unearth the potential of existing meta-learning algorithms.
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5.3 Empirical Study: Gaussian Classification

In this part, we test our proposed method on a synthetic classification dataset. The purposes of this
empirical study are two-fold: (1) check whether S/T protocol with only a few target models can
improve classic meta-learning algorithm; (2) study why distillation from target models can help.

Setting. In this experiment, we randomly generate 100 2-d Gaussian distributions. There are 64
classes for meta-training, 16 classes for meta-validation, and 20 classes for meta-testing. We sample
100 instances for each class to form the whole dataset. For each class, we sample its mean vector
µ ∼ U2[−10, 10] ∈ R2 and covariance matrix Σ = Σ′>Σ′ where Σ′ ∼ U2×2[−2, 2] ∈ R2×2. Here
U means uniform distribution. We then sample 10000 5-way 10-shot tasks for both meta-training
and meta-testing. After every 500 episodes, we sample 500 tasks for meta-validation.

Algorithms. In this part, we use a ProtoNet [21] trained under S/Q protocol as our baseline. It
meta-learns a shared embedding function φ : R2 → R100 across tasks, and classifies an instance into
the category of its nearest support class center. To be specific, let cn = 1

K

∑
(xi,yi)∈S∧yi=n

φ(xi)

be the support class center of the n-th class4, then for instance x, the model will predict its N -
dimensional label ŷ as ŷn = exp{〈cn,φ(x)〉}∑

exp{〈cn,φ(x)〉} , n ∈ [N ]. As a comparison, we also train a ProtoNet
under S/T protocol. Here the target model is constructed by fine-tuning the pre-trained global
embedding network on specific tasks. To check whether S/T protocol can work with only a few
target models, we set the ratio the tasks that have target models to 5% and 10%. As presented in
last part, we sort all meta-training tasks according to their hardness and fine-tune the pre-trained
backbone on those hardest tasks. Refer to supplementary material for more details.

Table 4: Average accuracy on meta-testing set. Models
trained under S/T protocol outperform those trained un-
der S/Q protocol even though there are only a few target
models. φpt means directly using the pre-trained network
to solve meta-testing tasks without meta-training phase.
The second row and the third row represent biased sam-
pling, where we only sample instances that have low
likelihoods. When instances are biased, the superiority
of S/T protocol is more evident because target models
make task-specific solvers more robust.

Protocol φpt S/Q S/T -5% S/T -10%

ACC 82.33 87.90 90.32 92.87
ACC(< 0.3) 77.41 81.25 87.66 90.14
ACC(< 0.1) 65.57 70.10 79.22 84.02

Results and Discussions. Firstly, we report
the meta-testing accuracy of different models
in Table 4. Methods under S/T protocol
outperform vanilla ProtoNet by a large mar-
gin. Even with only 5% target models, we
can obtain a remarkable accuracy improve-
ment. Then, we study why S/T protocol
can help ProtoNet learn better. In Figure 6,
we visualize a 5-way 10-shot task and the
decision regions of 3 models in raw 2-d space.
Figure 6a is the Bayesian optimal classifier
T , i.e., for an instance x, p(ŷ = n|x) ∝
1
2π

1
|Σn|1/2

exp
{
− 1

2 (x− µn)
>Σ−1n (x− µn)

}
where µn and Σn are the mean vector and
covariance matrix of class n. Because different
classes have different covariance matrices, the
decision boundary of Bayesian classifier is very
steep. Figure 6b and Figure 6c are results of ProtoNet trained under S/Q protocol and S/T protocol
respectively. In Figure 6c, the decision boundary is smooth and regular, which is different from the
previous two models. This result offers a natural interpretation of S/T protocol’s benefit: target
models impose a regularization on task-specific solvers, making them more robust to noisy and
biased instances. In fact, [32] also gives a similar conclusion: knowledge distillation can be seen
as a special label smoothing and it can regularize model training. In order to more clearly verify
this property, we sample biased tasks only containing instances that have low likelihoods (< 0.3
or < 0.1), and test different models on them. In the second row and third row of Table 4, we can
see that S/T protocol can defend biased sampling to the maximum extent because of the strong
supervision offered by target models.

4With a bit abuse of notation, we use yi = n to select instances belonging to the n-th class.
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Table 5: Average test accuracy with 95% confidence intervals on meta-testing tasks of miniImageNet and
tieredImageNet. All the methods use ResNet-12 as backbone network except MAML with ? mark. The row with
? mark uses a 4-layer ConvNet as backbone network, which is shallower than ResNet-12. Blue values are cited
from existing papers while red values are reproduced by us. Best results are in bold. We can see that MAML
and ProtoNet trained under S/T protocol outperform models trained under S/Q protocol even with a few target
models. Specifically, ProtoNet trained under S/T protocol achieves state-of-the-art performance in most cases.

Method miniImageNet tieredImageNet
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

DeepEMD [33] 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58
FEAT [30] 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16
FRN [29] 66.45 ± 0.19 82.83 ± 0.13 72.06 ± 0.22 86.89 ± 0.14

MAML (S/Q)? [3] 48.70 ± 1.84 63.11 ± 0.92 - -
MAML (S/Q, re-implement) 58.84 ± 0.25 74.62 ± 0.38 63.02 ± 0.30 67.26 ± 0.32

MAML (S/T -5%) 59.14 ± 0.33 75.77 ± 0.29 64.52 ± 0.30 68.39 ± 0.34
MAML (S/T -10%) 60.06 ± 0.35 76.34 ± 0.42 65.23 ± 0.45 70.02 ± 0.33

ProtoNet (S/Q) [21] 60.37 ± 0.83 78.02 ± 0.57 65.65 ± 0.92 83.40 ± 0.65
ProtoNet (S/Q, re-implement) 65.30 ± 0.30 79.93 ± 0.39 70.34 ± 0.45 84.68 ± 0.55

ProtoNet (S/T -5%) 67.35 ± 0.49 81.67 ± 0.62 71.25 ± 0.37 85.80 ± 0.31
ProtoNet (S/T -10%) 68.03 ± 0.52 82.53 ± 0.47 72.41 ± 0.39 86.91 ± 0.47

Table 6: Ablation study. “Random” means selecting tasks randomly rather than according to their hardness.
“φpt” means using the pre-trained network as target model for all tasks. Best results are in bold. We can see that
our proposed heuristic hardness metric and the fine-tuning strategy improve model performance.

Model miniImageNet tieredImageNet
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MAML (S/Q) 58.84 74.62 63.02 67.26
MAML (S/T -10%-random) 59.66 74.90 65.11 68.63

MAML (S/T -10%-φpt) 59.35 75.88 64.78 69.26
MAML (S/T -10%-hardness-φft) 60.06 76.34 65.23 70.02

ProtoNet (S/Q) 65.30 79.93 70.34 84.68
ProtoNet (S/T -10%-random) 66.72 81.05 71.22 85.37

ProtoNet (S/T -10%-φpt) 67.47 81.70 71.55 86.04
ProtoNet (S/T -10%-hardness-φft) 68.03 82.53 72.41 86.91

5.4 Empirical Study: Benchmark Evaluation

In this part, we evaluate our S/T protocol on two benchmark datasets, i.e., miniImageNet [24] and
tieredImageNet [17]. Refer to supplementary material for dataset details.5 We try to answer four
questions: (1) Can we achieve SOTA performance with a classic meta-learning model trained under
S/T protocol? (2) How does each component influence model’s performance? (3) How does the
hyper-parameter λ influence model’s performance? (4) How much time does S/T protocol cost?

Algorithms. We implement two classic meta-learning algorithms, MAML and ProtoNet, under
S/T protocol. We use ResNet-12 as the backbone network, which is pre-trained on the meta-training
set. For a fair comparison, we only include other algorithms that also use ResNet-12 as backbone
network in Table 5. More implementation details can be found in the supplementary material.

Competitive Results against SOTA. We show in Table 5 that MAML or ProtoNet can be improved
a lot when trained under S/T protocol with only 5% or 10% target models. Note that vanilla ProtoNet
does not use pre-training trick, and we re-implement it with pre-training. ProtoNet is proposed in
2017, but we can obtain SOTA performance by retraining it under S/T protocol with only a few
target models. This verifies the superiority of S/T protocol. In fact, S/T protocol is a generic training
protocol that can be applied to any meta-learning algorithm, and we apply S/T protocol to more
meta-learning algorithms in the supplementary material to show the effectiveness of our method.

5Our code is available at https://github.com/njulus/ST.
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Table 7: Time consumption for fine-tuning target models on miniImageNet.

Number of Target Models Time Consumption (min)

500 (5%) 224.3
1000 (10%) 420.6
2000 (20%) 851.7
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Figure 7: Performance change over λ. We can see
that larger λ tends to benefit model accuracy. We
set λ to 0.8, a relatively large value.

Ablation Study. In this part, we check the ef-
fectiveness of each component. Table 6 shows
that our proposed hardness metric and fine-
tuning strategy help to improve performance.
Randomly sampling 10% tasks and constructing
target models for these tasks improves model
performance. The third row and the seventh row
in Table 6 verify that learning from target mod-
els is beneficial even though the target models
are not optimal. With only 10% locally fine-
tuned target models and our heuristic hardness
metric, we can achieve nearly state-of-the-art
performance by ProtoNet.

Hyper-Parameter. We check the influence of
hyper-parameter λ in Equ (7). We sample 5-way
tasks from miniImageNet, and try different λ values. Figure 7 shows that larger λ tends to benefit
model performance. We set λ to 0.8, a relatively large value, in most of experiments.

Time Consumption. In S/T protocol for few-shot learning, we need to construct target models
through fine-tuning the globally pre-trained network. This will cost extra time to train a model. In
this part, we try to answer the following question: how much time does S/T protocol cost in few-shot
learning? We range the ratio of tasks that have target models in {5%, 10%, 20%}, and report the time
consumption of fine-tuning target models on miniImageNet. Results are shown in Table 7. We run
the experiment on an Nvidia GeForce RTX 2080ti GPU and Intel(R) Xeon(R) Silver 4110 CPU. We
can see that about 4 hours are needed to fine-tune target models for 5% meta-training tasks, and time
consumption for fine-tuning 2000 target models is still acceptable.

6 Conclusion

In this paper, we study S/T meta-learning protocol that evaluates a task-specific solver by comparing
it to a target model. S/T protocol offers a more informative supervision signal for meta-learning, but
is difficult to use in practice owing to its high computational cost. We find that by only deploying
target models for those hardest tasks, we can improve existing meta-learning algorithms while
maintaining efficiency. We propose a heuristic task hardness metric and a convenient target model
construction method for few-shot learning. Experiments on synthetic datasets and benchmark datasets
demonstrate the superiority of S/T protocol and effectiveness of our proposed method.
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