
Supplementary Material of
Towards Enabling Meta-Learning

from Target Models

Su Lu Han-Jia Ye Le Gan De-Chuan Zhan
State Key Laboratory for Novel Software Technology

Nanjing University, Nanjing, 210023, China
{lus,yehj}@lamda.nju.edu.cn, {ganl,zhandc}@nju.edu.cn

Abstract

This is the supplementary material of paper “Towards Enabling Meta-Learning
from Target Models”. We give implementation details, more discussions, and more
experiment results in this material.

1 Sinusoid Regression

In Section 4.2 of the main body, we construct a synthetic regression problem to verify the effectiveness
of S/T protocol. In this experiment, we assume that target models for all meta-training tasks are
available, and show that learning from target models can offer more supervision information to the
meta-model. This section gives more details about this experiment.

1.1 Dataset Generation

A sinusoid regression task is defined as T (x) = a sin(bx− c). Here we use symbol T to represent
both the sinusoid function itself and the target model corresponding to each task. In other words, we
assume that “true” target models are accessible in this experiment.

We randomly sample 10000 tasks for meta-training and 10000 tasks for meta-testing. We sample
200 tasks for meta-validation for every 200 meta-training tasks. To get tasks that come from a same
distribution, we uniformly sample a, b, and c from [0.1, 5], [0.5, 2], and [0.5, 2π] respectively. In each
task, we sample 10 support instances for both S/Q and S/T protocol, and sample 30 query instances
for S/Q protocol. The instance sampling procedure is as follows: uniformly sampling x in range
[−5, 5] and set y = T (x) + ε where ε ∼ N (0, 0.5).

1.2 Models and Algorithms

MAML [1] and ProtoNet [5] are two classic meta-learning algorithms. While MAML can be
directly applied in regression problems, ProtoNet is originally designed for classification problems.
In this experiment, we modify ProtoNet slightly to fit regression problem. In detail, we try to
meta-learn an embedding function φ : R → R100, with assistance of which the similarity-based
regression model g(· ; {φ(xi)|(xi, yi) ∈ S}) works well across all tasks. The embedding network φ
is implemented as an MLP, and we illustrate its structure in Figure 1. In this model, for any instance
(x, y), predicted label is given by ŷ = g(x) =

∑
(xi,yi)∈S wiyi and wi = exp{〈φ(xi),φ(x)〉}∑

exp{〈φ(xi),φ(x)〉} .
A same embedding network is used in two algorithms. We train MAML and ProtoNet under
S/Q protocol and S/T protocol. When using S/Q protocol, we minimize MSE loss on 30 query
instances to optimize φ. For S/T protocol, we match the solver to the target model in output

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Figure 1: Structure of embedding network φ used in sinusoid regression. Batch size is set to 64.

space, and set D(T (xi), g(xi)) = ‖T (xi)− g(xi)‖22. Thus, the loss function under S/T protocol is
L(g, T) =

∑
(xi,yi)∈S tr

[
(1− λ)‖g(xi)− yi‖22 + λ‖g(xi)− T (xi)‖22

]
. λ is a hyper-parameter.

1.3 Implementation Details

Hyper-parameter λ is set to 0.5 by default, and Table 2 in the main body is an ablation study about λ.
For both MAML and ProtoNet, we use SGD optimizer to train our network. The initial learning rate
is set to 0.01, which decreases by 0.8 after training on 4000, 6000, and 8000 tasks. The weight decay
and momentum of SGD optimizer is set to 0.0005 and 0.9 respectively.

1.4 Denoising Effect

We can show that the meta-learning loss under S/T protocol (1−λ)‖g(x)−y‖22+λ‖g(x)−T (x)‖22
is an upper bound of ‖g(x) − (y − λε)‖22, which is the standard MSE loss between the output of

2

0 500 1000 2000 5000 10000
of tasks with target models

3.0

3.5

4.0

4.5

5.0

av
er

ag
e

M
SE

 lo
ss

MAML(random)
MAML(heuristic)
ProtoNet(random)
ProtoNet(heuristic)

(a) Hardness metric: a− b.

0 500 1000 2000 5000 10000
of tasks with target models

3.0

3.5

4.0

4.5

5.0

av
er

ag
e

M
SE

 lo
ss

MAML(random)
MAML(heuristic)
ProtoNet(random)
ProtoNet(heuristic)

(b) Hardness metric: a.

0 500 1000 2000 5000 10000
of tasks with target models

3.0

3.5

4.0

4.5

5.0

av
er

ag
e

M
SE

 lo
ss

MAML(random)
MAML(heuristic)
ProtoNet(random)
ProtoNet(heuristic)

(c) Hardness metric: −b.

0 500 1000 2000 5000 10000
of tasks with target models

3.0

3.5

4.0

4.5

5.0

av
er

ag
e

M
SE

 lo
ss

MAML(random)
MAML(heuristic)
ProtoNet(random)
ProtoNet(heuristic)

(d) Hardness metric: a
b

.

Figure 2: Change of MSE loss over number of meta-training tasks that have target models. By
selecting hard tasks heuristically, we are able to obtain an evident performance gain with a small
number of target models.

solver g and cleaner label y − λε (raw label y equals to T (x) + ε). In detail,

(1− λ)‖g(x)− y‖22 + λ‖g(x)− T (x)‖22
= (1− λ)‖g(x)− y‖22 + λ‖g(x)− (y − ε)‖22
= (1− λ)

(
[g(x)]2 + y2 − 2yg(x)

)
+ λ

(
[g(x)]2 + (y − ε)2 − 2(y − ε)g(x)

)
= [g(x)]2 + (1− λ)y2 − 2(1− λ)yg(x) + λ(y2 + ε2 − 2εy)− 2λ(y − ε)g(x)
= [g(x)]2 + y2 − 2yg(x) + 2λyg(x) + λε2 − 2λεy − 2λyg(x) + 2λεg(x)

= [g(x)]2 + y2 − 2yg(x) + λε2 − 2λεy + 2λεg(x)

= [g(x)]2 − 2g(x)(y − λε) + (y2 + λε2 − 2λεy)

≥ [g(x)]2 − 2g(x)(y − λε) + (y2 + λ2ε2 − 2λεy)

= [g(x)]2 − 2g(x)(y − λε) + (y − λε)2

= ‖g(x)− (y − λε)‖22

(1)

The equality holds when λ equals to 0 or 1. In these two cases, the S/T loss degenerates to S/Q loss
or target model loss.

1.5 Hardness Metric

In Figure 2a (same as Figure 4 in the main body), we visualize the change of MSE loss over number
of meta-training tasks that have target models. We can see that only a small number of target models
can benefit model performance. In this part, we further try other hardness metric. We use a, −b, ab as
hardness metrics, and visualize the results in Figure 2b, Figure 2c, and Figure 2d respectively. We
can see that all of these heuristic metrics successfully help the selection of hard tasks to some extent.

1.6 Visualization

We give visualization of more meta-testing tasks in Figure 3. Models trained under S/T protocol can
fit the target curves better than models trained under S/Q protocol.

3

-5 -3 -1 1 3 5-6

-3

0

3

6

target
MAML(S/Q)
MAML(S/T)
ProtoNet(S/Q)
ProtoNet(S/T)
instance in S

(a) Task 1.

-5 -3 -1 1 3 5-6

-3

0

3

6

target
MAML(S/Q)
MAML(S/T)
ProtoNet(S/Q)
ProtoNet(S/T)
instance in S

(b) Task 2.

-5 -3 -1 1 3 5-6

-3

0

3

6

target
MAML(S/Q)
MAML(S/T)
ProtoNet(S/Q)
ProtoNet(S/T)
instance in S

(c) Task 3.

-5 -3 -1 1 3 5-6

-3

0

3

6

target
MAML(S/Q)
MAML(S/T)
ProtoNet(S/Q)
ProtoNet(S/T)
instance in S

(d) Task 4.

Figure 3: Visualization of 4 randomly sampled meta-testing tasks. Dotted lines are used for S/Q
protocol while dashed lines are used for S/T protocol.

-15 0 15-15

0

15

(a) Meta-training split.

-15 0 15-15

0

15

(b) Meta-validation split.

-15 0 15-15

0

15

(c) Meta-testing split of.

Figure 4: Visualization of Gaussian dataset.

2 Gaussian Classification

This section gives more details about the Gaussian classification problem discussed in Section 5.3 of
the main body.

2.1 Dataset Generation

In this experiment, we randomly generate 100 2-d Gaussian distributions. There are 64 classes
for meta-training, 16 classes for meta-validation, and 20 classes for meta-testing. We sample 100
instances for each class to form the whole dataset. For each class, we sample its mean vector
µ ∼ U2[−10, 10] ∈ R2 and covariance matrix Σ = Σ′>Σ′ where Σ′ ∼ U2×2[−2, 2] ∈ R2×2.
Here U means uniform distribution. Meta-training set, meta-validation set, and meta-testing set are
shown in Figure 4a, Figure 4b, and Figure 4c respectively. We then sample 10000 5-way 10-shot
tasks for both meta-training and meta-testing. After every 500 episodes, we sample 500 tasks for
meta-validation.

2.2 Models and Algorithms

In this part, we use a ProtoNet [5] trained under S/Q protocol as our baseline. It meta-learns a shared
embedding function φ : R2 → R100 across tasks, and classifies an instance into the category of its
nearest support class center. The structure of φ is visualized in Figure 5.

4

Figure 5: Structure of embedding network φ used in Gaussian classification. Batch size is set to 64.

Let cn = 1
K

∑
(xi,yi)∈S∧yi=n

φ(xi) be the support class center of the n-th class1, then for instance

x, the model will predict its N -dimensional label ŷ as ŷn = exp{〈cn,φ(x)〉}∑
exp{〈cn,φ(x)〉} , n ∈ [N]. As a

comparison, we also train a ProtoNet under S/T protocol. Here the target model is constructed
by fine-tuning the pre-trained global embedding network on specific tasks. To check whether S/T
protocol can work with only a few target models, we set the ratio the tasks that have target models to
5% and 10%. As presented in last part, we sort all meta-training tasks according to their hardness
and fine-tune the pre-trained backbone on those hardest tasks.

2.3 Implementation Details

Hyper-parameter λ is set to 0.8 by default. For both S/Q protocol and S/T protocol, we use SGD
optimizer to train ProtoNet. The backbone network is pre-trained on the whole meta-training set
using cross-entropy loss. The initial learning rate is set to 0.001, which decreases by 0.8 after training
on 4000, 6000, and 8000 tasks. The weight decay and momentum of SGD optimizer is set to 0.0005
and 0.9 respectively.

2.4 Visualization

We give visualization of more meta-testing tasks in Figure 6. Models trained under S/T protocol
have smooth classification boundaries and are more robust to biased and noisy instances.

1With a bit abuse of notation, we use yi = n to select instances belonging to the n-th class.

5

Table 1: Average accuracy of different models on biased tasks. Models trained under S/T protocol
outperform models trained under S/Q protocol due to the regularization effect.

Protocol φpt S/Q S/T -5% S/T -10%

Accuracy 82.33 87.90 90.32 92.87
Accuracy (<0.7) 81.25 86.47 88.90 91.33
Accuracy (<0.5) 79.69 84.50 87.72 90.58
Accuracy (<0.3) 77.41 81.25 87.66 90.14
Accuracy (<0.1) 65.57 70.10 79.22 84.02

2.5 Biased Sampling

In Table 4 of the main body, we study the influence of S/T protocol when sampled data points are
biased. Specifically, we sample biased tasks only containing data points that have low likelihoods (<
0.3 or < 0.1), and show that models trained under S/T protocol outperform models trained under
S/Q protocol due to the regularization effect of S/T protocol. In this part, we give the experiment
results of different likelihood thresholds in Table 1, and verify our claims again.

3 Benchmark Evaluation

We also study an application case, few-shot learning, on two widely used benchmark datasets. In this
part, we give detailed description of datasets, implementation details, and more experiment results.

3.1 Dataset Description

MiniImageNet [6] and tieredImageNet [3] are two widely used benchmark datasets in few-shot
learning. MiniImageNet dataset was firstly proposed by [6] and it is a subset of ILSVRC-12 [4].
In this dataset, there are 100 classes and 600 images in each class. Each image in miniImageNet
is resized to 84 × 84. We follow [2] to split miniImageNet, which means the total 100 classes are
divided into meta-training set, meta-validating set, and meta-testing set, with 64, 16, and 20 classes
respectively. TieredImageNet is a larger subset of ILSVRC-12. There are 608 classes and 779165
images in total. These classes are divided into 34 categories, with each category containing between
10 to 30 classes. Images in tieredImageNet are also resized to 84 × 84. Following [3], we split
tieredImageNet into meta-training, meta-validating and meta-testing set, with 20, 6, and 8 categories
respectively.

3.2 Implementation Details

In benchmark evaluation, we use ResNet-12 as backbone network for MAML, ProtoNet, and other
comparison algorithms. The structure of ResNet-12 is shown is Figure 7. The backbone network
is pre-trained on meta-training split using cross-entropy loss. We utilize data augmentation in pre-
training phase. In detail, each image is randomly resized and cropped to 84×84, and then horizontally
flipped with a probability 0.5. Finally, images are normalized with mean [0.485, 0.456, 0.406] and
standard deviation [0.229, 0.224, 0.225]. In meta-training and meta-testing phase, we only center
crop and normalize the images. Number of meta-training episodes and meta-testing episodes are
both 10000. We optimize our model using SGD optimizer on 10000 tasks. The momentum and
weight decay of the optimizer are set to 0.9 and 0.0005 respectively. The initial learning rate for
the pre-trained embedding network and other modules are set to 0.001 and 0.01 respectively. Two
learning rates are decreased by 0.8 after every 2000 episodes. Hyper-parameter λ is set to 0.8 by
default. When constructing target model for a specific task, we fine-tune the pre-trained network on
all meta-training instances that belong to the corresponding classes for 3 epochs. The learning rate in
fine-tuning phase is set to 0.0002.

3.3 Other Models Trained under S/T Protocol

In the main body of this paper, we mainly apply S/T protocol to two well-known meta-learning
algorithms, i.e., MAML and ProtoNet, and show that with only a small number of target models,

6

(a) Task 1: Bayesian. (b) Task 1: S/Q. (c) Task 1: S/T .

(d) Task 2: Bayesian. (e) Task 2: S/Q. (f) Task 2: S/T .

(g) Task 3: Bayesian. (h) Task 3: S/Q. (i) Task 3: S/T .

(j) Task 4: Bayesian. (k) Task 4: S/Q. (l) Task 4: S/T .

Figure 6: Decision boundaries of three different models in raw 2-d space. Four tasks are randomly
sampled. Different point colors represent different classes, and different background colors represent
different classification regions.

7

Figure 7: Structure of embedding network φ used in benchmark evaluation. Batch size is set to 64.

Table 2: Average test accuracy with 95% confidence intervals on meta-testing tasks of miniImageNet.
We use ResNet-12 as backbone network. S/T protocol improves the performance of FEAT even
though we only have a small number of target models.

Method miniImageNet
5-way 1-shot 5-way 5-shot

FEAT(S/Q) [7] 66.78 ± 0.20 82.05 ± 0.14
FEAT(S/T -5%) 67.32 ± 0.41 81.60 ± 0.38
FEAT(S/T -10%) 68.23 ± 0.37 82.53 ± 0.42

S/T protocol can improve classic meta-learning algorithms. In this part, we try to train a FEAT [7]
under S/T protocol, and check whether S/T protocol can improve SOTA algorithms like FEAT.
Table 2 shows the results. We can see that S/T protocol also improves the performance of FEAT.
However, the performance gap between ProtoNet and FEAT is decreased when we train them under
S/T protocol. FEAT trained under S/Q protocol outperforms ProtoNet trained under S/Q protocol
by 1.48%, but FEAT trained under S/T protocol gets a similar accuracy to that of ProtoNet trained
under S/T protocol. This is because target models offer more supervision information, so that the
effect of improvement on model and algorithm is weakened.

References
[1] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation

of deep networks. In Proceedings of the 34th International Conference on Machine Learning,
pages 1126–1135, 2017.

[2] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Proceedings
of the 5th International Conference on Learning Representations, 2017.

[3] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenen-
baum, Hugo Larochelle, and WRichard S. Zemel. Meta-learning for semi-supervised few-shot
classification. In Proceedings of the 6th International Conference on Learning Representations,
2018.

[4] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

8

[5] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning.
In Advances in Neural Information Processing Systems 30, pages 4077–4087. 2017.

[6] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. In Advances in Neural Information Processing Systems
29, pages 3630–3638. 2016.

[7] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding
adaptation with set-to-set functions. In Proceedings of the 33rd IEEE Conference on Computer
Vision and Pattern Recognition, pages 8808–8817, 2020.

9

	Sinusoid Regression
	Dataset Generation
	Models and Algorithms
	Implementation Details
	Denoising Effect
	Hardness Metric
	Visualization

	Gaussian Classification
	Dataset Generation
	Models and Algorithms
	Implementation Details
	Visualization
	Biased Sampling

	Benchmark Evaluation
	Dataset Description
	Implementation Details
	Other Models Trained under S/T Protocol

