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Abstract

We study a variant of stochastic bandits where the feedback
model is specified by a graph. In this setting, after playing
an arm, one can observe rewards of not only the played arm
but also other arms that are adjacent to the played arm in the
graph. Most of the existing work assumes the reward distri-
butions are stationary over time, which, however, is often vio-
lated in common scenarios such as recommendation systems
and online advertising. To address this limitation, we study
stochastic bandits with graph feedback in non-stationary en-
vironments and propose algorithms with graph-dependent dy-
namic regret bounds. When the number of reward distribu-
tion changes L is known in advance, one of our algorithms
achieves an Õ(

√
αLT ) dynamic regret bound. We also de-

velop an adaptive algorithm that can adapt to unknown L and
attain an Õ(

√
θLT ) dynamic regret. Here, α and θ are some

graph-dependent quantities and T is the time horizon.

1 Introduction
Stochastic bandits are a powerful learning paradigm for se-
quential decision-making under uncertainty and have been
applied in a variety of real-world scenarios such as online
advertising (Chen, Wang, and Yuan 2013), news recommen-
dation (Li et al. 2010), and social networks (Bnaya et al.
2013). A canonical model for studying this paradigm is the
stochastic multi-armed bandits (MAB). In each round of
MAB, a learner has to choose one of K arms to play. Af-
ter playing an arm, the learner observes a stochastic reward
drawn from the distribution associated with the played arm,
while rewards of other arms remain unknown. The learner’s
goal is to minimize the regret, which is the difference be-
tween the cumulative reward of arms chosen by the learner
and that of the best arm in hindsight. To accomplish this
goal, the learner needs to balance the trade-off between ex-
ploration (choosing less played arms to gain more infor-
mation) and exploitation (selecting seemingly optimal arms
to accumulate more reward). Since the pioneering work of
Thompson (1933) and Robbins (1952), the stochastic MAB
has been widely studied and it is known that the minimax
regret bound is Θ(K log T ) (Lai and Robbins 1985; Auer,
Cesa-Bianchi, and Fischer 2002).
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While this bound is logarithmic in T , it becomes vacuous
when K is large, revealing that MAB is not suitable for ap-
plications with too many arms. Another limitation of MAB
is that the learner is assumed to observe reward of only the
chosen arm, which is too pessimistic as in some applica-
tions including recommendation systems and online adver-
tising, side observations on rewards of other arms are avail-
able (Alon et al. 2017). To address these limitations, Mannor
and Shamir (2011) and Caron et al. (2012) introduced a vari-
ant of MAB—bandits with graph feedback.1 In this setting,
there exists an undirected graph G = (V,E), where V is the
vertex set consisting of all arms, and E is the edge set. An
edge e = (u, v) in E indicates that after playing arm u, the
learner can observe reward of not only arm u but also arm v,
and vice versa. For stochastic bandits with graph feedback,
Caron et al. (2012) proposed algorithms that enjoy regret
bounds of O(θ log T ), where θ ≤ K is the clique covering
number of the feedback graph G, and can be much smaller
than K for benign graphs.

Stochastic bandits with graph feedback were further ex-
tensively studied by a line of research (Buccapatnam, Ery-
ilmaz, and Shroff 2014; Cohen, Hazan, and Koren 2016;
Tossou, Dimitrakakis, and Dubhashi 2017; Liu, Buccapat-
nam, and Shroff 2018; Liu, Zheng, and Shroff 2018; Hu,
Mehta, and Pan 2019; Lykouris, Tardos, and Wali 2019).
However, most of the existing work assumes the reward dis-
tribution of each arm is stationary over time and thus does
not apply to non-stationary rewards arising in the aforemen-
tioned real-world scenarios. For example, in recommenda-
tion systems, users’ preference changes with time (Min and
Han 2005). In online advertising, the click-through-rate of
an advertisement is also time-variant (Zeng et al. 2016). Till
now, we have very limited knowledge on stochastic bandits
with graph feedback in non-stationary environments. One
result was given by Alami (2019), who studied a rather lim-
ited setting of this problem, where the reward of each arm
follows the Bernoulli distribution and in each round with a
fixed probability, reward distributions of all arms change si-
multaneously. While Alami (2019) proposed a Thompson
sampling algorithm for this setting, there is no theoretical
guarantee of the proposed algorithm. In this paper, we inves-

1Mannor and Shamir (2011) considered adversarial bandits,
while Caron et al. (2012) studied stochastic bandits.



tigate this problem under a much more general setting in the
sense that the assumption on reward distributions is relaxed
to allow any distribution with bounded support, and the re-
ward distribution of each arm can change in an arbitrary
manner. We adopt the dynamic regret (Jadbabaie et al. 2015;
Auer, Gajane, and Ortner 2019), which compares the learner
against an omniscient policy that in each round chooses the
arm with the maximal mean reward, as performance metric,
and develop three algorithms with different flavors.

As a warm-up, our first algorithm is a variant of the UCB-
NE algorithm (Hu, Mehta, and Pan 2019) using the sliding-
window mean estimator (Garivier and Moulines 2011), for
which we prove an Õ(θ

√
LT ) dynamic regret bound.2

While this algorithm is simple to understand, its regret
bound is sub-optimal with respect to θ in the worst case
(θ = K), in light of the state-of-the-art Õ(

√
KLT ) dy-

namic regret bound (Auer et al. 2002; Allesiardo, Féraud,
and Maillard 2017; Auer, Gajane, and Ortner 2019) for the
multi-armed bandits setting. To overcome this limitation,
we then develop the second algorithm called SEASIDE.
Built upon the successive elimination framework (Even-Dar,
Mannor, and Mansour 2006), SEASIDE exploits the struc-
ture of the feedback graph to reduce the exploration cost,
and randomly restarts itself to handle non-stationary envi-
ronments. Theoretical analysis shows that SEASIDE attains
an Õ(

√
αLT ) dynamic regret, where α ≤ K is the inde-

pendence number of the feedback graph and is not more
than the clique covering number θ. A common issue of our
first and second algorithms is that they need to know the
number of reward distribution changes L in advance. With-
out such prior knowledge, their regret bounds scale with L
instead of

√
L. In the setting of multi-armed bandits, this

issue was solved by a recent milestone, the AdSwitch al-
gorithm (Auer, Gajane, and Ortner 2019), the basic idea
of which is to actively detect changes of reward distribu-
tions and restart itself once a change is detected. We ex-
tend AdSwitch to the graph feedback setting by designing
a novel sampling scheme and a corresponding arm selection
strategy that can utilize graph feedback. The resulting algo-
rithm, called AdSwitch for Graph feedback (ASG), does not
require prior knowledge of L and enjoys an Õ(

√
θLT ) dy-

namic regret bound.
The regret bounds of both SEASIDE and ASG are optimal

in terms of α, θ, L, and T up to logarithmic factors, since for
any value of θ we can always construct a graph with θ = α
and the matching lower bounds of Ω(

√
αT ) and Ω(

√
LT )

have been established (Mannor and Shamir 2011; Garivier
and Moulines 2011; Zhou et al. 2020).

2 Related Work
In the pioneering papers (Kocsis, Szepesvári, and Willem-
son 2006; Hartland et al. 2006; Koulouriotis and Xan-
thopoulos 2008), the non-stationary stochastic MAB were
investigated under some special settings. For general non-
stationary stochastic MAB, Garivier and Moulines (2011)
proved that the Discounted UCB algorithm introduced by

2We use Õ(·) to hide logarithmic factors.

Kocsis and Szepesvári (2006) attains an O(K
√
LT log T )

dynamic regret. They also proposed a new algorithm called
Sliding Window UCB, for which they derived a slightly bet-
ter regret bound of O(K

√
LT log T ). A further improved

bound of O(
√
KLT log (KT )) was achieved by an succes-

sive elimination method with randomized resets (Allesiardo,
Féraud, and Maillard 2017). This bound is also attainable
for change-detection based algorithms (Liu, Lee, and Shroff
2018; Cao et al. 2019). While these bounds are optimal in
terms of L and T up to logarithmic factors, they hold only
when the algorithms are tuned with the number of reward
distribution changes L. Recently, this issue was solved by
two papers (Auer, Gajane, and Ortner 2019; Chen et al.
2019), which developed algorithms that can achieve optimal
regret bounds without prior knowledge ofL. A common fea-
ture of the above work except for Chen et al. (2019) is that
the derived regret bounds are in terms of the number of dis-
tribution changes. In the literature, there also exists another
line of research (Besbes, Gur, and Zeevi 2014; Karnin and
Anava 2016) that focuses on bounding regret with respect to
the total variation of reward distributions.

Departing from multi-armed bandits, several work inves-
tigates non-stationary stochastic bandits with other formula-
tions including bandits with queries (Yu and Mannor 2009),
unimodal bandits (Combes and Proutiere 2014), contextual
bandits (Luo et al. 2018; Chen et al. 2019), linear bandits
(Cheung, Simchi-Levi, and Zhu 2019; Russac, Vernade, and
Cappé 2019; Kim and Tewari 2019; Zhao et al. 2020b),
combinatorial bandits (Zhou et al. 2020), and convex ban-
dits (Zhao et al. 2020a). Among them, the work of Yu and
Mannor (2009) is closely related to this paper in the sense
that they also consider side observations on rewards of un-
selected arms. The difference is that in their work, under a
total query budget the learner can actively query some uns-
elected arms to observe the corresponding rewards, while in
this paper, whether an unselected arm’s reward is observable
is determined by the feedback graph rather than the learner.

Finally, there exists a large body of work on adversar-
ial bandits with graph feedback (Mannor and Shamir 2011;
Kocák et al. 2014; Neu 2015; Alon et al. 2017), where the
reward of each arm is determined by an adversary and can
be thus almost arbitrary. While this reward model is more
general, these work define regret with respect to a fixed arm,
which is different from the regret used in our non-stationary
model that compares the learner against a dynamic sequence
of arms.

3 Preliminary
We study stochastic bandits with graph feedback, where
a learner interacts with K arms {1, . . . ,K}. For an arm
a ∈ [K],3 we denote by Na the union of a and its neighbors
arms, i.e., Na = {a} ∪ {b ∈ [K] : (a, b) ∈ E}, where E is
the edge set of the undirected feedback graph G. The learn-
ing protocol proceeds over T rounds. In each round t ∈ [T ],
the learner first selects an arm at. Then, the learner receives
a reward of the chosen arm rt(at) and additionally observes
rewards of its neighbors {rt(a) : a ∈ Nat , a 6= at}. For

3We use the common notation [n] = {1, . . . , n} for n ∈ N.



each arm a ∈ Nat , its reward rt(a) is drawn from a distri-
bution Dt(a) with mean µt(a), i.e., E[rt(a)] = µt(a). We
assume the rewards are all bounded in [0, 1] and the reward
distributions are independent across arms and rounds. Let
A∗t =

{
a ∈ [K] : µt(a) = maxa′∈[K] µt(a

′)
}

and a∗t ∈ A∗t
denote the set consisting of all optimal arms and an optimal
arm in round t, respectively. The learner’s performance is
evaluated by the dynamic regret:

DR(T ) =

T∑
t=1

(
µt(a

∗
t )− µt(at)

)
.

The hardness of the problem is affected by both the non-
stationarity of reward distributions and the structure of the
feedback graph. The former is captured by L, the number of
distribution changes:

L = |{t ∈ [T ] : ∃a ∈ [K],Dt(a) 6= Dt−1(a)}|
where for notational convenience we define D0(a) to be any
distribution that is different fromD1(a) for a ∈ [K]. The lat-
ter is characterized by two alternative quantities: the clique
covering number θ and the independence number α, which
satisfy α ≤ θ and are defined as follows (West et al. 2001).
Definition 1 (Clique Covering Number). A clique C in a
graph G = (V,E) is a subset of V such that every two dis-
tinct vertices in C are adjacent. A clique covering in G is a
set of cliques {C1, . . . , Cn} such that ∀i, j ∈ [n], Ci∩Cj =
∅ and ∪ni=1Ci = V . The clique covering number θ is de-
fined as the minimum cardinality of a clique covering in G.
Definition 2 (Independence Number). An independent set I
in a graphG = (V,E) is a subset of V such that for any two
distinct vertices in I , there is no edge between them. The in-
dependence number α is defined as the maximum cardinality
of an independent set in G.

4 Warm-up: UCB-NEW
As a warm up, we present a simple extension of the UCB-NE
algorithm (Hu, Mehta, and Pan 2019). We first review UCB-
NE: In each round t, following the principle of “optimism
in the face of uncertainty”, UCB-NE selects the arm with
the highest sum of empirical mean reward and a confidence
term (with ties broken arbitrarily):

at = arg max
a∈[K]

µ̂t−1(a) + ct−1(a).

Here, µ̂t−1(a) is the empirical mean reward of arm a over
the first t− 1 rounds4

µ̂t−1(a) =

t−1∑
s=1

rs(a)1{a ∈ Nas}

Ot−1(a)
=

t−1∑
s=1

rs(a)1{as ∈ Na}

Ot−1(a)

with Ot−1(a) denoting the number of times that the reward
of arm a is observed up to round t− 1

Ot−1(a) =

t−1∑
s=1

1{as ∈ Na}

4We use the convention x/0 = +∞ for x ≥ 0 and denote by
1{·} an indicator random variable associated with event {·}.

Algorithm 1 UCB-NEW

Input: time horizon T , window length ρ
1: Set µ̂0(ρ, a) = 0 and c0(ρ, a) = +∞ for each a ∈ [K]
2: for t = 1, . . . , T do
3: Play at = arg maxa∈[K] µ̂t−1(ρ, a) + ct−1(ρ, a)
4: end for

and ct−1(a) is the confidence term defined as

ct−1(a) =

√
2 log

(
|Na|1/4(t− 1)

)
Ot−1(a)

.

While for stationary reward distributions, UCB-NE en-
joys sublinear regret bounds, it fails to achieve meaning-
ful dynamic regret bounds in non-stationary environments,
since the reward distributions change with time and the mean
estimator µ̂t−1(a) can be far away from the true mean µt(a)
for large t. A simple and elegant solution to this issue is the
sliding-window mean estimator, which was first introduced
by Garivier and Moulines (2011) for multi-armed bandits
and has been applied to other bandits problems (Combes
and Proutiere 2014; Cheung, Simchi-Levi, and Zhu 2019).
Its main idea is to use only the most recent ρ observations
when computing the empirical mean reward. We apply it to
UCB-NE and replace µ̂t−1(a) with

µ̂t−1(ρ, a) =
1

Ot−1(ρ, a)

t−1∑
s=t−ρ∨1

rs(a)1{as ∈ Na}

where t−ρ∨1 = max(t−ρ, 1), andOt−1(ρ, a) denotes the
number of times that the reward of arm a is observed during
the sliding window interval [t− ρ ∨ 1, t− 1]:

Ot−1(ρ, a) =

t−1∑
s=t−ρ∨1

1{as ∈ Na}.

The confidence term is correspondingly modified to

ct−1(ρ, a) =

√
3 log

(
|Na|1/3(t− 1 ∧ ρ)

)
2Ot−1(ρ, a)

with t − 1 ∧ ρ = min(t − 1, ρ). Here, we also change the
order of |Na| and the constant factor, the reason for which
will become clear in the theoretical analysis.

The above procedure is summarized in Algorithm 1,
which is named as UCB-NE with sliding Window (UCB-
NEW) and has the following theoretical guarantee.5

Theorem 1. The dynamic regret of UCB-NEW satisfies

E[DR(T )] ≤
9θ log

(
ρ · d1/3

max + 2
)

∆2
min

·
(
T

ρ
+ Lρ+ 1

)
+ 1

where dmax = maxa∈[K] |Na| is the maximum degree plus 1
and ∆min = mint∈[T ],a6∈A∗t µt(a

∗
t )− µt(a) is the minimum

5All proofs are postponed to the appendices.



reward gap. Furthermore, when the number of reward dis-
tribution changes L is known in advance,6 by setting ρ opti-
mally as ρ =

⌈√
T/L

⌉
, UCB-NEW achieves an Õ

(
θ
√
LT
)

dynamic regret bound.

5 Improved Algorithm: SEASIDE
While UCB-NEW is simple, its dynamic regret bound is
sub-optimal with respect to θ. In this section, we propose
an improved algorithm that attains an Õ(

√
αLT ) dynamic

regret, which matches the Ω
(√
αLT

)
lower bound (Mannor

and Shamir 2011; Garivier and Moulines 2011; Zhou et al.
2020), up to logarithmic factors. Different from UCB-NEW,
the proposed algorithm is built upon the Successive Elim-
ination (SE) framework (Even-Dar, Mannor, and Mansour
2006; Allesiardo, Féraud, and Maillard 2017).

In SE, rounds are divided into epochs:

[1, T ] = [e1, e2) ∪ [e2, e3) ∪ · · · ∪ [em, em+1)

where eτ , τ ∈ [m] denotes the beginning of the τ -th epoch
and em+1 is defined to be T + 1. The basic idea of SE is
to maintain an epoch-variant subset of arms Aτ and only
play arms in Aτ during epoch τ . Aτ is initialized to be the
arm set [K] and gradually shrinks to contain only optimal
arms. Specifically, in the τ -th epoch, all arms in Aτ are
firstly played once to update their empirical mean rewards
µ̂τ (a), a ∈ Aτ . Let ã∗τ be an arm with the highest empirical
mean reward: ã∗τ ∈ arg maxa∈Aτ µ̂τ (a). Then, only arms
that are statistically indistinguishable from ã∗τ are preserved
and the other arms are eliminated from Aτ :

Aτ+1 =
{
a ∈ Aτ : µ̂τ (a) > µ̂τ (ã∗τ )− 2

√
log (KTτ)

τ

}
.

In stationary environments where reward distributions re-
main fixed, it can be shown that with probability 1 − 1/T ,
after O(log T ) epochs, all sub-optimal arms are eliminated.
As in each epoch, every arm is only played once, the
length of each epoch is upper bounded by K. This im-
plies that after O(K log T ) rounds, only optimal arms can
be played. Thus, the expected regret can be bounded as
O
(
(1 − 1/T ) · K log T + 1/T · T

)
= O(K log T ), which

is optimal for multi-armed bandits. However, when com-
ing to non-stationary environments, the above analysis be-
comes invalid. The reason is that in non-stationary environ-
ments, the reward distribution of each arm varies with time
and thus an eliminated arm can become uniquely optimal at
some time, causing linear regrets. We address this problem
by using randomized resets (Allesiardo, Féraud, and Mail-
lard 2017): In the end of each round, with a proper probabil-
ity p, reset SE. In this way, the unique optimal arm that is not
in Aτ has the chance of returning to Aτ and being played.

On the other hand, while under bandit feedback it is nec-
essary to play each arm in Aτ once in order to observe re-
wards of arms in Aτ , it is inefficient for graph feedback.
To mitigate this inefficiency, we employ the AlphaSample

6Otherwise, we can set ρ = d
√
T e and obtain a dynamic regret

bound of Õ(θL
√
T ), which is still sublinear in T .

Algorithm 2 SEASIDE

Input: time horizon T , reset probability p
1: Initialize t = 1, τ = 1, e1 = 1, τ̃ = 0,A1 = [K]
2: Set µ̂τ̃ (a) = 0 for each arm a ∈ [K]
3: while t ≤ T do
4: Set S = Aτ
5: repeat
6: Choose an arm a ∈ S uniformly at random to play
7: Collect observations oτ (a′) = rt(a

′), a′ ∈ Na ∩ S
8: Set S = S −Na and t = t+ 1
9: with probability p do

10: τ̃ = τ, τ = τ + 1, eτ = t,Aτ = [K]
11: Goto Step 2
12: end with probability
13: until S is empty or t > T
14: if t > T then
15: Terminate
16: end if
17: Compute empirical mean rewards as

µ̂τ (a) =
(τ − τ̃ − 1) · µ̂τ−1(a) + oτ (a)

τ − τ̃
,∀a ∈ Aτ

18: Find ã∗τ ∈ arg max
a∈Aτ

µ̂τ (a) and update Aτ+1 =

{
a ∈ Aτ : µ̂τ (a) > µ̂τ (ã∗τ )−2

√
log (KT (τ − τ̃))

τ − τ̃

}
19: Set τ = τ + 1 and eτ = t
20: end while

strategy (Cohen, Hazan, and Koren 2016). Let S be the set
of arms whose rewards need to be observed. AlphaSample
repeats the following three steps until S is empty: choos-
ing an arm from S uniformly at random to play, collecting
observations of rewards for the chosen arm and its neigh-
bors in S, and removing the chosen arm and its neighbors
from S. As the feedback graph is undirected, the arms cho-
sen by AlphaSample constitute an independence set of G.
Thus, the number of rounds before AlphaSample terminates
is not more than independence number α, which implies an
upper bound of α on the length of each epoch, improving
the aforementioned bound of K.

We combine randomized resets with AlphaSample to
yield Algorithm 2. We termed it as Successive Elimination
with AlphaSample and ranDomized rEsets (SEASIDE) and
prove an optimal dynamic regret bound for it.
Theorem 2. The dynamic regret of SEASIDE satisfies

E[DR(T )] ≤
(

10

∆2
min

log
7KT

∆min
+

1

2

)(
L

4p
+ 4αpT

)
+ 2.

Furthermore, when the number of reward distribution
changes L is known in advance,7 by setting p optimally as
p =

√
L/(16αT ), SEASIDE achieves an Õ(

√
αLT ) dy-

namic regret bound.
7Otherwise, we can set p =

√
1/(16αT ) and obtain a dynamic

regret bound of Õ(L
√
αT ), which is still sublinear in T .



Algorithm 3 ASG

Input: time horizon T
1: t = 1, τ = 1
2: eτ = t,Gt = [K],Bt =Wt = ∅,St(a) = ∅,∀a∈ [K]
3: while t ≤ T do . In epoch τ
4: for each a ∈ Wt do . Add sampling obligations
5: for each ε = 2−g ≥ ∆̃τ (a)/16, g ∈ N+ do
6: with probability ε

√
τ/ (|Wt|T log (KT )) do

7: nε = d1.5ε−2 log (KT )e
8: St(a) = St(a) ∪ {(ε, nε, t)}
9: end with probability

10: end for
11: end for
12: Play at = arg mina∈Et ζt(a)
13: Observe rewards of arms in Nat
14: for each a ∈ Bt do . Update St(a)
15: St+1(a) = {(ε, nε, s) ∈ St(a) : n[s,t](a) < nε}
16: end for
17: for each a ∈ Gt do . Detect changes for good arms
18: if there is s1,s2,s∈ [eτ , t] such that (5) holds then
19: t = t+ 1, τ = τ + 1, goto Step 2
20: end if
21: end for
22: for each a ∈ Bt do . Detect changes for bad arms
23: if there is s ∈ [eτ , t] such that (4) holds then
24: t = t+ 1, τ = τ + 1, goto Step 2
25: end if
26: end for
27: for each a ∈ Gt do . Eliminate some good arms
28: if there is s ∈ [eτ , t] such that (3) holds then
29: Bt = Bt ∪ {a}, store µ̃τ (a) and ∆̃τ (a)
30: end if
31: end for
32: Bt+1 = Bt,Gt+1 = [K]− Bt+1

33: Wt+1 = ComputeW(Bt+1,Gt+1), t = t+ 1
34: end while

Remark 1. While in this paper we assume undirected feed-
back graphs, by leveraging the analysis of AlphaSample
(Cohen, Hazan, and Koren 2016), we can derive a high prob-
ability bound on the length of each epoch under the more
general setting where the feedback graph is directed. Based
on this bound, we will prove a variant of Theorem 2 for gen-
eral directed feedback graphs at Appendix C.

6 Adaptive Algorithm: ASG
To achieve the Õ

(√
αLT

)
dynamic regret bound, SEASIDE

needs to know the number of reward distribution changes L
in advance. Without such prior knowledge, the regret bound
of SEASIDE will scale with L instead of

√
L. In this sec-

tion, we develop an adaptive algorithm called ASG that can
achieve an Õ(

√
θLT ) dynamic regret bound without prior

knowledge of L. ASG follows the algorithmic framework of
Auer, Gajane, and Ortner (2019), but with a novel sampling
scheme and a corresponding arm selection strategy that can
exploit the graph feedback.

Algorithm 4 ComputeW

Input: bar arm set Bt+1, good arm set Gt+1, epoch index τ
1: B̃ = Bt+1, W̃ = ∅
2: while B̃ 6= ∅ do
3: Find a ∈ arg mina′∈B̃ ∆̃τ (a′)

4: Update W̃ = W̃ ∪ {a}, B̃ = B̃ − Na
5: end while
6: return W̃

Before presenting ASG, we introduce some definitions.
LetO[s,t](a) be the number of times that the reward of arm a

is observed during [s, t]: O[s,t](a) =
∑t
i=s 1{ai ∈ N (a)}.

We denote the empirical mean reward of a over [s, t] by

µ̂[s,t](a) =

∑t
i=s ri(a)1{ai ∈ N (a)}

O[s,t](a)
.

With a slight abuse of notation, for a set of arms A ⊆ [K],
we define O[s,t](A) as the maximum o such that for any arm
in A, its reward is observed at least o times during [s, t]

O[s,t](A) = max{o ∈ N : ∀a ∈ A,O[s,t](a) ≥ o}. (1)

An equivalent definition is O[s,t](A) = mina∈AO[s,t](a).
Finally, we denote by n[s,t](a) the number of times that arm
a is played during [s, t].

We are now ready to present ASG, which is outlined in
Algorithm 3. To handle non-stationary reward distributions
with unknown number of changes, ASG performs change
detection test for reward distributions in each round and
restarts once it detects a change. Let e1 < · · · < em de-
note the rounds when ASG restarts, i.e., Step 2 is executed.
We can divide [1, T ] into epochs as follows

[1, T ] = [e1, e2) ∪ [e2, e3) ∪ · · · ∪ [em, em+1) (2)

where we define em+1 = T + 1 and [eτ , eτ+1) is the τ -
th epoch. In each epoch, ASG splits the arm set [K] into
two time-variant subsets: a good arm set Gt and a bad arm
set Bt. In the beginning of epoch τ , all arms are good, i.e.,
Geτ = [K], Beτ = ∅. During epoch τ , as time goes, arms
whose empirical mean rewards are significantly worse than
that of the seemingly optimal arm are eliminated from the
good arm set and added into the bad arm set. More precisely,
in round t ∈ [eτ , eτ+1 − 1], for an arm a ∈ Gt, if there is
s ∈ [eτ , t] such that

max
a′∈Gt

µ̂[s,t](a
′)− µ̂[s,t](a) >

(√
2 + 1

)√6 log (KT )

O[s,t](Gt)
. (3)

Then, it is removed from Gt and added into Bt. Further-
more, its empirical mean reward and the gap to the seem-
ingly optimal arm are stored as µ̃τ (a) = µ̂[s,t](a) and
∆̃τ (a) = maxa′∈Gt µ̂[s,t](a

′)− µ̂[s,t](a), which will be used
in the subsequent rounds for detecting changes of its reward
distribution.



Specifically, in each round t ∈ [eτ , eτ+1 − 1], for every
bad arm a ∈ Bt, ASG performs the following change detec-
tion test: whether there is s ∈ [eτ , t] such that the inequality

|µ̂[s,t](a)− µ̃τ (a)| > ∆̃τ (a)

4
+

√
3 log (KT )

2O[s,t](a)
(4)

holds.8 If yes, ASG concludes that the reward distribution
of a has changed and consequently enters into a new epoch
where everything is reset. On the other hand, it is also neces-
sary to detect changes for good arms. For a good arm a ∈ Gt,
its reward distribution is detected to have changed if there is
s1, s2, s ∈ [eτ , t] such that the following inequality holds

|µ̂[s1,s2](a)− µ̂[s,t](a)| >

√
3 log (KT )

2O[s1,s2](Gs2)

+

√
3 log (KT )

2O[s,t](Gt)
.

(5)

Intuitively, for an arm a, to quickly detect the change of its
reward distribution, we should collect many recent observa-
tions of its reward by playing arms inN (a) often. However,
if arms inN (a) are all bad arms, i.e.,N (a) ⊆ Bt, and the re-
ward distributions do not change, doing so may cause large
regret. A solution to this dilemma is the consecutive sam-
pling policy proposed by Auer, Gajane, and Ortner (2019).
The main idea is to maintain a time-variant set St(a) for
each bad arm a ∈ Bt, and in round t choose the arm from
{a : a ∈ Gt OR St(a) 6= ∅} in a round-robin fashion.
Each item in St(a) is a triple (ε, nε, s) called sampling obli-
gation, where ε ∈ {1/2, 1/4, 1/8, . . .} is the magnitude of
reward distribution change that we aim to detect for arm a,
nε = d1.5ε−2 log (KT )e is the number of samples required
to detect such change, and s is the time that the sampling
obligation is added into St(a).

The set St(a) is initialized to be empty and is updated
in each round after a becomes bad. Specifically, in round t
when a ∈ Bt, for every ε = 2−g ≥ ∆̃τ (a)/16, g ∈ N+, with
probability ε

√
τ/(KT log (KT )), we add (ε, nε, t) into

St(a). For a bad arm a with sampling obligation (ε, nε, s), if
a has been played n times during [s, t], we remove (ε, nε, s)
from St(a). The advantage of the above policy, as stated by
Auer, Gajane, and Ortner (2019), is as follows. First, when
the reward distribution of bad arm a has changed, if the
change is small, it causes small regret. If the change is large,
it will be detected in time and the expected regret can be
bounded, as the probability of adding sampling obligations
scales linearly with ε. Second, when the reward distribution
of a does not change, the expected regret caused by playing
a can be also controlled, since nε is on the order of 1/ε2.

While in multi-armed bandits setting, the policy of Auer,
Gajane, and Ortner (2019) leads to an optimal Õ(

√
KLT )

dynamic regret bound without knowing L, to achieve an im-
proved Õ(

√
θLT ) bound for the setting considered in this

paper, it has to be extended to exploit graph feedback.
8We use the convention that for B = +∞, A > B is false and

A ≤ B is true regardless the value of A.

We here propose a non-trivial extension of Auer, Gajane,
and Ortner (2019) that can utilize graph feedback. The basic
idea is to maintain a subsetWt of bad arms and to apply con-
secutive sampling on this subset: In each round t, we only
add sampling obligations for arms inWt. The specific mech-
anism of adding sampling obligations into St(a) for a ∈ Wt

is similar to that in the aforementioned consecutive sampling
policy, with the main difference of modifying the probability
from ε

√
τ/(KT log (KT )) to ε

√
τ/ (|Wt|T log (KT )).

The set Wt is initialized to be empty at the beginning of
an epoch. At each time when new arms are added into the
bad arm set, i.e., Bt+1 6= Bt, we update Wt by invoking
Algorithm 4, which proceeds as follows. First, Algorithm 4
creates two auxiliary sets B̃, W̃ and sets B̃ = Bt+1, W̃ = ∅.
Then, the algorithm repeats the following three steps until
B̃ is empty: choosing an arm a from B with the minimum
gap ∆̃τ (a), adding a into W̃ , and removing a as well as its
neighbors from B̃. Finally, Algorithm 4 returns W̃ , which
is used to set Wt+1 = W̃ . The intuition behind the design
of Algorithm 4 is two folds. First, Algorithm 4 ensures that
any two arms inWt+1 are not adjacent. So the size ofWt+1

never exceeds the independence number α. Second, for any
bad arm a ∈ Bt+1−Wt+1, by Algorithm 4, there must be an
arm a′ ∈ Na∩Wt+1 with ∆̃τ (a′) ≤ ∆̃τ (a). Thus, for every
magnitude ε ≥ ∆̃τ (a)/16 of reward distribution change that
we aim to detect for a, it holds that ε ≥ ∆̃τ (a′)/16, which
implies that for s < t+1 the sampling obligation (ε, nε, s) is
added into Ss(a′) with some probability. From the perspec-
tive of collecting reward observations for a, adding (ε, nε, s)
into Ss(a′) can be viewed as adding (ε, nε, s) into Ss(a),
since reward of a can be observed by playing a′.

It remains to describe the arm selection strategy. In each
round t, only good arms and bad arms with nonempty St(a)
can be played. We denote by Et the set comprised of these
arms: Et = {a ∈ [K] : a ∈ Gt OR St(a) 6= ∅}. Follow-
ing Auer, Gajane, and Ortner (2019), we call arms in Et as
eligible arms. For an eligible arm a ∈ Et, let ζt(a) be the
last time when reward of a is observed: ζt(a) = min{s ∈
N : Na ∩ {as+1, as+2, . . . , at−1} = ∅}. ASG plays the eli-
gible arm with the minimum ζt(a): at = arg mina∈Et ζt(a),
where ties are broken by giving priority to arms with sam-
pling obligations. In other words, at is the eligible arm
whose reward is observed least recently. The advantages of
this arm selection rule are summarized in Lemmas 4 and 5
at Appendix E, which play a key role in the regret analysis.

Finally, we present the theoretical guarantee of ASG.
Theorem 3. Without knowing the number of reward distri-
bution changes L, ASG achieves the following dynamic re-
gret bound

E[DR(T )] ≤ Õ
(√
θLT

)
.

Remark 2. Following the suggestion in Auer, Gajane, and
Ortner (2019), in practice we can reduce the time com-
plexity of ASG to O(K log2 T ) per step by checking (3),
(4), and (5) for only intervals of certain length (2h, h =
1, . . . , blog2 T c). To check (3) and (4) for each length 2h,
we only need to compute, for each arm a, the cumulative



(a) L = 10 (b) L = 20

Figure 1: Dynamic regret of the examined algorithms

observed rewards of a during [t − 2h + 1, t] and the total
times that the reward of a is observed during [t− 2h + 1, t].
This computation can be performed in an online manner
with O(1) time complexity by maintaining two queues of
length 2h: one for storing the observed reward ri(a) and
the other for storing the indicator variable 1{ai ∈ Na}.
To check (5) for each interval length 2h, we only need to
additionally keep 2K variables µ̂+

h (a) and µ̂−h (a) for a =
1, . . . ,K that store the minimum value of µ̂[s−2h+1,s](a) +√

3 log (KT )/(2O[s−2h+1,s](Gs)) and the maximum value

of µ̂[s−2h+1,s](a)−
√

3 log (KT )/(2O[s−2h+1,s](Gs)) over

all intervals of length 2h, respectively. These 2K variables
can be also updated together with O(K) time complexity in
each round t based on the cumulative observed rewards dur-
ing [t − 2h + 1, t] of each arm and the total times that the
reward is observed during [t− 2h + 1, t] of each arm.

7 Experiment
In this section, we present experimental results to illustrate
the empirical performance of our proposed algorithms. For
UCB-NEW and SEASIDE which require prior knowledge
ofL to achieve the regret bounds scaling with

√
L, we exam-

ine two versions, i.e., one with and the other without tuning
parameters in terms of L. For ASG, we reduce its computa-
tional cost according to Remark 2. We adopt UCB-NE (Hu,
Mehta, and Pan 2019), Exp3-SET (Alon et al. 2017), EAS
(Elimination with AlphaSample, Cohen, Hazan, and Koren
2016), Greedy-LP and UCB-LP (Buccapatnam, Eryilmaz,
and Shroff 2014) as baseline algorithms.

We use a synthetic dataset constructed as follows. Let
K = 30, T = 1000000 and pick L from {10, 20}. We first
randomly choose L − 1 breakpoints from {2, . . . , T − 1}
to partition [1, T ] into L stationary intervals. Then, in each
stationary interval, we choose 2 arms uniformly at random
from [K] as optimal arms and set their mean rewards to be
0.9. For suboptimal arms, their mean rewards are sampled
from a uniform distribution with support [0, 0.7]. For each
arm, we generate its rewards by drawing samples from trun-
cated normal distributions with support [0, 1] and variance
0.01. Finally, inspired by Brigham and Dutton (1983), we

construct a feedback graph illustrated at Appendix A with
α = 10 and θ = 14.

We run each algorithm 10 times and report the average
performance in Fig. 1, where “-w/o” stands for “without
prior knowledge of L”. As can be seen, our proposed al-
gorithms significantly outperform the baseline algorithms,
which is expected since the baseline algorithms assume the
reward of each arm is either drawn from a stationary distri-
bution or determined by an adversary. Furthermore, without
prior knowledge of L, UCB-NEW and SEASIDE still be-
have well and achieve much smaller regrets than the baseline
algorithms, demonstrating their practicality. Finally, while
SEASIDE attains the smallest regret with prior knowledge
of L, it becomes inferior to ASG when L is unknown, which
validates the advantage of ASG’s adaptivity.

8 Conclusion and Future Work
We have presented three algorithms for stochastic bandits
with graph feedback in non-stationary environments. The
first algorithm is simple but only achieves a sub-optimal
regret bound. The second and the third algorithms, though
much more complicated, enjoy regret bounds matching the
lower bounds and each has its own advantage: The second
algorithm enjoys a better regret bound which depends on the
independence number α and holds for general directed feed-
back graphs, but it needs to know the number of reward dis-
tribution changes L in advance. By contrast, the third algo-
rithm requires no prior knowledge of L, but its regret bound
is in terms of the clique covering number θ ≥ α and only ap-
plies to the setting where the feedback graph is undirected.

Thus, a natural and challenging open problem is to design
a parameter-free algorithm with Õ

(√
αLT

)
regret bounds

for directed feedback graphs, which we leave as a future
work. While we currently assume bounded rewards, in the
future we will study unbounded and even heavy-tailed re-
ward distributions (Bubeck, Cesa-Bianchi, and Lugosi 2013;
Lu et al. 2019). Finally, it is also worthy of pursing to inves-
tigate whether the undesired

√
θ factor in the regret bound

of UCB policy can be removed and whether UCB policy can
be extended to directed feedback graphs, since compared to
elimination based algorithms, UCB policy is simpler to un-
derstand and easier to implement.
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Kocsis, L.; and Szepesvári, C. 2006. Discounted ucb. In
Proceedings of the 2nd PASCAL Challenges Workshop.
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A Illustration of the Feedback Graph Used in the Experiment

B Proof of Theorem 1
While UCB-NEW is a variant of UCB-NE, its proof follows the analysis framework of sliding-window estimator (Garivier and
Moulines 2011). The novelty of our analysis is that we partition the arms set into cliques and bound the regret for each clique,
which is different from the analysis in Garivier and Moulines (2011), where the regret is bounded separately for each arm.
Furthermore, our analysis is easier to follow in the sense that we use standard Hoeffding’s inequality (Hoeffding 1963) instead
of the complicated concentration inequality proposed by Garivier and Moulines (2011). Finally, we would like to remark that
UCB-NE is a variant of UCB-N (Caron et al. 2012), with the main difference being the extra exploration term log |Na|. While
Hu, Mehta, and Pan (2019) showed that this extra term can remove the linear dependence on K in the static regret bound of
UCB-N, our analysis reveals that it is also essential in obtaining a dynamic regret bound irrespective ofK. In fact, if one applies
sliding-window to UCB-N rather than UCB-NE, one can only get a worse dynamic regret bound of Õ(θ

√
KLT ).

Let C = {C1, C2, . . . , Cθ} be a minimum clique covering of the feedback graph G and recall that A∗t denotes the set
consisting of all optimal arms in round t

A∗t =

{
a ∈ [K] : µt(a) = max

a′∈[K]
µt(a

′)

}
.

Since rewards are all bounded in [0, 1], we have

DR(T ) =

T∑
t=1

(
µt(a

∗
t )− µt(at)

)
= 1 +

T∑
t=2

(
µt(a

∗
t )− µt(at)

)
≤ 1 +

T∑
t=2

1{at /∈ A∗t }

≤ 1 +

T∑
t=2

∑
C∈C

1{at ∈ C −A∗t } = 1 +
∑
C∈C

T∑
t=2

1{at ∈ C −A∗t }.

(6)

Below we bound the term
∑T
t=2 1{at ∈ C −A∗t } for each clique C ∈ C.

Fix C ∈ C. Let nt−1(ρ, C) denote the number of times that an arm in C is played during rounds [t− ρ ∨ 1, t− 1]

nt−1(ρ, C) =

t−1∑
s=t−ρ∨1

1{as ∈ C}

and define

Γ(ρ) =
6 log

(
ρ · d1/3

max + 2
)

∆2
min

where recall that ∆min denotes the minimum gap of expected reward between the optimal arm and sub-optimal arms

∆min = min
t∈[T ],a/∈A∗t

µt(a
∗
t )− µt(a)



and dmax denotes the maximum degree of G plus 1

dmax = max
a∈[K]

|Na|.

Then, we can split the term
∑T
t=2 1{at ∈ C −A∗t } as

T∑
t=2

1{at ∈ C −A∗t } =

T∑
t=2

1{at ∈ C −A∗t , nt−1(ρ, C) < Γ(ρ)}︸ ︷︷ ︸
B1

+

T∑
t=2

1{at ∈ C −A∗t , nt−1(ρ, C) ≥ Γ(ρ)}︸ ︷︷ ︸
B2

.
(7)

We first analyze B1:

B1 ≤
T∑
t=2

1{at ∈ C, nt−1(ρ, C) < Γ(ρ)} ≤
dT/ρe∑
i=1

iρ∧T∑
t=(i−1)ρ+1∨2

1{at ∈ C, nt−1(ρ, C) < Γ(ρ)}. (8)

For i ∈ {1, . . . , dT/ρe}, suppose that there exists t ∈ [(i−1)ρ+1∨2, iρ∧T ] such that the event {at ∈ C, nt−1(ρ, C) < Γ(ρ)}
occurs and define νi as the maximum of such t

νi = max{t ∈ [(i− 1)ρ+ 1 ∨ 2, iρ ∧ T ] : at ∈ C, nt−1(ρ, C) < Γ(ρ)}.
We have

iρ∧T∑
t=(i−1)ρ+1∨2

1{at ∈ C, nt−1(ρ, C) < Γ(ρ)} =

νi∑
t=(i−1)ρ+1∨2

1{at ∈ C, nt−1(ρ, C) < Γ(ρ)}

≤
νi∑

t=(νi−ρ+1)∨2

1{at ∈ C, nt−1(ρ, C) < Γ(ρ)}

≤
νi∑

t=(νi−ρ+1)∨1

1{at ∈ C}

= nνi(ρ, C) ≤ nνi−1(ρ, C) + 1 < Γ(ρ) + 1.

On the other hand, the above inequality also trivially holds for the case that no t ∈ [(i − 1)ρ + 1 ∨ 2, iρ ∧ T ] satisfies
at ∈ C, nt−1(ρ, C) < Γ(ρ). Substituting the above inequality into (8) gives

B1 ≤
dT/ρe∑
i=1

(
Γ(ρ) + 1

)
=

⌈
T

ρ

⌉ (
Γ(ρ) + 1

)
≤
(
T

ρ
+ 1

)
·

(
6 log

(
ρ · d1/3

max + 2
)

∆2
min

+ 1

)
(9)

where the last inequality follows from the definition of Γ(ρ).
We now turn to boundB2 and start with introducing S(ρ), which is the set consisting of all rounds t ∈ [2, T ] such that during

[t− ρ ∨ 1, t], reward distributions of all arms remain fixed

S(ρ) = {t ∈ [2, T ] : ∀i, j ∈ [t− ρ ∨ 1, t],∀a ∈ [K],Di(a) = Dj(a)}.

We also define S̄(ρ) = {t ∈ [2, T ] : t /∈ S(ρ)} as the complementary set of S(ρ). The reason for introducing S(ρ) and S̄(ρ) is
to analyze B2 for stationary rounds and non-stationary rounds separately:

B2 =

T∑
t=2

1{at ∈ C −A∗t , nt−1(ρ, C) ≥ Γ(ρ)}

≤
∑
t∈S(ρ)

1{at ∈ C −A∗t , nt−1(ρ, C) ≥ Γ(ρ)}+
∑
t∈S̄(ρ)

1{at ∈ C −A∗t , nt−1(ρ, C) ≥ Γ(ρ)}.
(10)

Recall that the number of reward distribution changes is L and note that only the first ρ rounds after a change-point can belong
to the set S̄(ρ). Thus, we have |S̄(ρ)| ≤ Lρ and∑

t∈S̄(ρ)

1{at ∈ C −A∗t , nt−1(ρ, C) ≥ Γ(ρ)} ≤
∑
t∈S̄(ρ)

1 ≤ Lρ. (11)

It remains to bound the summation over S(ρ). To this end, we propose the following lemma.



Lemma 1. Let C ∈ C be a clique. For t ∈ S(ρ), the four events E1, E2, E3, E4 defined below cannot occur simultaneously.
• E1 = {∀a ∈ C −A∗t , µ̂t−1(ρ, a) ≤ µt−1(a) + ct−1(ρ, a)}
• E2 = {µ̂t−1(ρ, a∗t ) > µt−1(a∗t )− ct−1(ρ, a∗t )}
• E3 = {∀a ∈ C −A∗t , µt−1(a∗t )− µt−1(a) ≥ 2ct−1(ρ, a)} ∪ {nt−1(ρ, C) < Γ(ρ)}
• E4 = {at ∈ C −A∗t , nt−1(ρ, C) ≥ Γ(ρ)}
Proof of Lemma 1. We prove the lemma by contradiction. Suppose the four events occur simultaneously. We have

µ̂t−1(ρ, at) ≤ µt−1(at) + ct−1(ρ, at)

µ̂t−1(ρ, a∗t ) > µt−1(a∗t )− ct−1(ρ, a∗t )

µt−1(a∗t )− µt−1(at) ≥ 2ct−1(ρ, at)

which implies

µ̂t−1(ρ, a∗t ) + ct−1(ρ, a∗t ) > µt−1(a∗t ) ≥ µt−1(at) + 2ct−1(ρ, at) ≥ µ̂t−1(ρ, at) + ct−1(ρ, at). (12)

On the other hand, the arm selection rule of Algorithm 1 indicates

µ̂t−1(ρ, a∗t ) + ct−1(ρ, a∗t ) ≤ µ̂t−1(ρ, at) + ct−1(ρ, at). (13)

Combining (12) and (13) leads to a contradiction and thus finishes the proof. �
Lemma 1 immediately implies that for t ∈ S(ρ),

E[1{at ∈ C −A∗t , nt−1(ρ, C) ≥ Γ(ρ)}] = Pr{at ∈ C −A∗t , nt−1(ρ, C) ≥ Γ(ρ)}
= Pr(E4) ≤ Pr

(
¬(E1 ∩ E2 ∩ E3)

)
≤ Pr(¬E1) + Pr(¬E2) + Pr(¬E3).

(14)

We first show that Pr(¬E3) = 0 for t ∈ S(ρ) by contradiction. Suppose ¬E3 occurs for t ∈ S(ρ). Then nt−1(ρ, C) ≥ Γ(ρ) and
there exists an arm a ∈ C −A∗t such that

µt−1(a∗t )− µt−1(a) < 2ct−1(ρ, a) =

√
6 log

(
|Na|1/3(t− 1 ∧ ρ)

)
Ot−1(ρ, a)

≤

√
6 log

(
|Na|1/3(t− 1 ∧ ρ)

)
nt−1(ρ, C)

≤

√
6 log

(
|Na|1/3(t− 1 ∧ ρ)

)
Γ(ρ)

=

√
6 log

(
|Na|1/3(t− 1 ∧ ρ)

)
·∆2

min

6 log (ρ · d1/3
max + 2)

≤ ∆min

(15)

where the first and the second equalities follow from the definitions of ct−1(ρ, a) and Γ(ρ), respectively, the second inequality
holds since a ∈ C and in each round when an arm in C is played, the reward of a is observed, and the last inequality is due to
t− 1 ∧ ρ = min(t− 1, ρ) ≤ ρ and dmax = maxa′∈[K] |Na′ | ≥ |Na|. On the other hand, since t ∈ S(ρ) and a /∈ A∗t , we have

µt−1(a∗t )− µt−1(a) = µt(a
∗
t )− µt(a) ≥ ∆min. (16)

Combining (15) and (16) leads to a contradiction.
Then, we turn to analyze Pr(¬E2):

Pr(¬E2) = Pr{µ̂t−1(ρ, a∗t ) ≤ µt−1(a∗t )− ct−1(ρ, a∗t )}

= Pr

µt−1(a∗t )−
1

Ot−1(ρ, a∗t )

t−1∑
s=t−ρ∨1

rs(a
∗
t )1{as ∈ Na∗t } ≥

√
3 log

(
|Na∗t |1/3(t− 1 ∧ ρ)

)
2Ot−1(ρ, a∗t )

 .
(17)

Since t ∈ S(ρ), the reward distribution of a∗t remains fixed during rounds [t − ρ ∨ 1, t]. Applying Hoeffding’s inequality and
taking the union bound over Ot−1(ρ, a∗t ) ∈ [1, t− 1 ∧ ρ] gives

Pr(¬E2) ≤ (t− 1 ∧ ρ) · 1

|Na∗t |(t− 1 ∧ ρ)3
=

1

|Na∗t |(t− 1 ∧ ρ)2
≤ 1

(t− 1 ∧ ρ)2
.

Similarly, we can bound Pr(¬E1) as

Pr(¬E1) = Pr{∃a ∈ C −A∗t , µ̂t−1(ρ, a) > µt−1(a) + ct−1(ρ, a)}

≤
∑
a∈C

Pr{µ̂t−1(ρ, a)− µt−1(a) > ct−1(ρ, a)}

≤
∑
a∈C

1

|Na|(t− 1 ∧ ρ)2
≤
∑
a∈C

1

|C|(t− 1 ∧ ρ)2
=

1

(t− 1 ∧ ρ)2

(18)



where the second inequality follows from Hoeffding’s inequality and the union bound, and the last inequality holds since for an
arm a ∈ C, all other arms in C are neighbors of a, i.e., C ⊆ Na.

Finally, we combine all together. Substituting (17) and (18) into (14) gives

E[1{at ∈ C −A∗t , nt−1(ρ, C) ≥ Γ(ρ)}] ≤ 2

(t− 1 ∧ ρ)2

which implies

E

 ∑
t∈S(ρ)

1{at ∈ C −A∗t , nt−1(ρ, C) ≥ Γ(ρ)}

 ≤ T∑
t=2

2

(t− 1 ∧ ρ)2
≤

T∑
t=1

2

t2
+

T∑
t=1

2

ρ2
≤ π2

3
+

2T

ρ2
.

Combining this inequality with (10) and (11), we have

E[B2] ≤ Lρ+
π2

3
+

2T

ρ2
.

which, together with (7) and (9), implies

E

[
T∑
t=2

1{at ∈ C −A∗t }

]
≤
(
T

ρ
+ 1

)
·

(
6 log

(
ρ · d1/3

max + 2
)

∆2
min

+ 1

)
+ Lρ+

π2

3
+

2T

ρ2

≤
6 log

(
ρ · d1/3

max + 2
)

∆2
min

·
(
T

ρ
+ Lρ+ 1

)
+
T

ρ
+

2T

ρ2
+
π2

3
+ 1

≤
9 log

(
ρ · d1/3

max + 2
)

∆2
min

·
(
T

ρ
+ Lρ+ 1

)
.

Substituting this inequality into (6) and using the equality |C| = θ, we get

E[DR(T )] ≤ 1 +
∑
C∈C

9 log
(
ρ · d1/3

max + 2
)

∆2
min

·
(
T

ρ
+ Lρ+ 1

)
=

9θ log
(
ρ · d1/3

max + 2
)

∆2
min

·
(
T

ρ
+ Lρ+ 1

)
+ 1.

Picking ρ =
⌈√

T/L
⌉

leads to

E[DR(T )] ≤
18θ log

(
ρ · d1/3

max + 2
)

∆2
min

·
(√

LT + L+ 1
)

+ 1 = Õ
(
θ
√
LT
)
.

C Proof of a Variant of Theorem 2 for Directed Feedback Graphs
As mentioned in Remark 1, we also establish a dynamic regret bound of SEASIDE for directed feedback graphs as follows.

Theorem 4. The expected dynamic regret of SEASIDE for directed feedback graphs is upper bounded as

E[DR(T )] ≤
(

20

∆2
min

log
7KT

∆min
+ 2

)(
L

8p
+ 8αpT

)
log (KT 2) + 3.

Furthermore, when the number of reward distribution changes L is known in advance,9 by setting p optimally as p =√
L/(64αT ), SEASIDE achieves an Õ(

√
αLT ) dynamic regret bound for directed feedback graphs.

Proof of Theorem 4 We start with two inequalities that hold with high probability and will be used in the analysis. First, by
the following lemma

Lemma 2 (Cohen, Hazan, and Koren 2016). For directed feedback graphs, with probability 1−1/T 2, AlphaSample terminates
after at most 4α log (KT 2) rounds.

and the union bound, with probability 1− 1/T , the length of each epoch in Algorithm 2 is not more than 4α log (KT 2), i.e.,

eτ+1 − eτ ≤ 4α log (KT 2), τ = 1, 2, . . . ,m (19)

where m denotes the number of epochs, and em+1 is defined to be T + 1.

9Otherwise, we can set p =
√

1/(64αT ) and obtain a dynamic regret bound of Õ(L
√
αT ), which is still sublinear in T .



Define ξL+1 = T + 1 and let 1 = ξ1 < ξ2 < . . . < ξL < T + 1 be the change-points such that for ` = 1, . . . , L, there exists
an arm whose reward distributions are different between ξ` and ξ` − 1:

∃a ∈ [K], Dξ`(a) 6= Dξ`−1(a)

and reward distributions of all arms remain fixed during [ξ`, ξ`+1 − 1]:

∀a ∈ [K],∀s, t ∈ [ξ`, ξ`+1 − 1], Ds(a) = Dt(a).

Then, we decompose the T rounds as

[1, T ] = [ξ1, ξ2) ∪ [ξ2, ξ3) ∪ · · · ∪ [ξL, ξL+1). (20)

Let f < g be any two rounds such that

• there exists l ∈ [L] with [f, g − 1] ⊆ [ξl, ξl+1 − 1];

• Algorithm 2 is reset in round f or f = 1;

• Algorithm 2 is reset in round g or g = ξ`+1;

• Algorithm 2 is not reset during (f, g).

Let τ1, τ2 = τ1 + 1, . . . , τn = τ1 + n − 1 be all epochs whose beginnings are in [f, g − 1], i.e., f ≤ eτi ≤ g − 1, i ∈ [n]. It
can be shown that eτ1 = f and for i ∈ [n − 1], when computing µ̂τi in Step 17 of Algorithm 2, τ̃ = τ1 − 1. Note that during
[eτ1 , eτn − 1] ⊆ [f, g− 1] ⊆ [ξl, ξl+1− 1], reward distributions of all arms do not change. Applying Hoeffding’s inequality and
taking the union bound gives

Pr

{
∃f, ∃i ∈ [n− 1],∃a ∈ Aτi , |µ̂τi(a)− µf (a)| ≥

√
log (KTi)

i

}
≤ KT

+∞∑
i=1

2

(KTi)2
≤ π2

3KT
≤ 2

T

where we have used the equality τi − τ̃ = τi − τ1 + 1 = i. The above inequality implies that with probability 1− 2/T ,

∀f, ∀i ∈ [n− 1],∀a ∈ Aτi , µ̂τi(a)−
√

log (KTi)

i
≤ µf (a) ≤ µ̂τi(a) +

√
log (KTi)

i
. (21)

Since in (19) and (21), the error probability 1/T and 2/T cause only T/T = 1 and 2T/T = 2 expected regrets over T rounds
respectively, we assume in all the following that (19) and (21) hold, and add 3 to the expected regret bound in the end of the
proof.

Fix f, g. We now analyze the regret over [f, g − 1], which can be split into two parts:

g−1∑
t=f

(
µt(a

∗
t )− µt(at)

)
=

n−1∑
i=1

eτi+1
−1∑

t=eτi

(
µt(a

∗
t )− µt(at)

)
+

g−1∑
t=eτn

(
µt(a

∗
t )− µt(at)

)

≤
n−1∑
i=1

eτi+1
−1∑

t=eτi

1{at /∈ A∗f}+

g−1∑
t=eτn

1{at /∈ A∗f}

≤ (g − eτn) +

n−1∑
i=1

eτi+1
−1∑

t=eτi

1{at /∈ A∗f}

≤ 4α log (KT 2) +

n−1∑
i=1

eτi+1
−1∑

t=eτi

1{at /∈ A∗f}

(22)

where recall that A∗f denotes the set of all optimal arms in round f , and the last inequality follows from (19) and the fact that
τn is the last epoch that begins in [f, g − 1]. To bound the last summation, we propose the following lemma.

Lemma 3. Suppose (21) hold. We have

1. ∀i ∈ [n− 1], Aτi contains at least one optimal arm, i.e., Aτi ∩ A∗f 6= ∅.

2. If n−1 ≥
⌈

40
∆2

min
log 7KT

∆min

⌉
+1, then for n−1 ≥ i ≥

⌈
40

∆2
min

log 7KT
∆min

⌉
+1,Aτi contains only optimal arms, i.e.,Aτi ⊆ A∗f .

where recall that ∆min denotes the minimum gap of expected reward between the optimal arm and sub-optimal arms.



Proof of Lemma 3. We first prove by induction that ∀i ∈ [n− 1],

Aτi ∩ A∗f 6= ∅. (23)

For i = 1, the above equality trivially holds since by Steps 1 and 10 in Algorithm 2, Aτ1 = [K]. Suppose for some i ∈ [n− 2],
the above equality holds. Let a∗τi ∈ Aτi ∩ A

∗
f be an optimal arm and ã∗τi ∈ arg maxa∈Aτi

µ̂τi(a) be an arm with the highest
empirical mean reward. According to Step 18 in Algorithm 2, ã∗τi ∈ Aτi+1

. If ã∗τi ∈ A
∗
f , then ã∗τi ∈ Aτi+1

∩ A∗f . Otherwise,
µf (a∗τi)− µf (ã∗τi) > 0. By (21), we have

µ̂τi(a
∗
τi)− µ̂τi(ã

∗
τi) ≥ µf (a∗τi)− µf (ã∗τi)− 2

√
log (KTi)

i
> −2

√
log (KTi)

i

which, together with Step 18 in Algorithm 2, implies a∗τi ∈ Aτi+1
∩ A∗f . Thus, (23) holds for any i ∈ [n− 1].

We now turn to prove the second statement in Lemma 3. For i ∈ [n− 1] with Aτi 6⊆ A∗f , let a ∈ Aτi −A∗f be a sub-optimal
arm and ∆a be the gap of expected reward between arm a and the optimal arm a∗τi , i.e., ∆a = µf (a∗τi)− µf (a). According to
Step 18 in Algorithm 2, arm a is removed from Aτi if (but not only if)

µ̂τi(a) ≤ µ̂τi(a∗τi)− 2

√
log (KTi)

i
.

By (21), the above inequality holds if (but not only if)

∆a = µf (a∗τi)− µf (a) ≥ 4

√
log (KTi)

i
.

As ∆min ≤ ∆a, we conclude that for i ∈ [n− 1] satisfying

4

√
log (KTi)

i
≤ ∆min (24)

all sub-optimal arms a ∈ [K]−A∗f are not in Aτi+1 . Following the analysis in Allesiardo, Féraud, and Maillard (2017), it can
be shown that when

i ≥
⌈

40

∆2
min

log
7KT

∆min

⌉
the inequality (24) holds. Thus, for n− 1 ≥ i ≥

⌈
40

∆2
min

log 7KT
∆min

⌉
+ 1, Aτi contains no sub-optimal arms, or equivalently, only

optimal arms. �
Lemma 3, together with (19) and the fact that ∀t ∈ [eτi , eτi+1−1], at ∈ Aτi , leads to

n−1∑
i=1

eτi+1
−1∑

t=eτi

1{at /∈ A∗f} =

n−1∑
i=1

eτi+1
−1∑

t=eτi

1{at ∈ Aτi , at /∈ A∗f}

≤
n−1∑
i=1

eτi+1
−1∑

t=eτi

1{Aτi 6⊆ A∗f} ≤ 4α log (KT 2)

n−1∑
i=1

1{Aτi 6⊆ A∗f}

≤ 4α

⌈
40

∆2
min

log
7KT

∆min

⌉
log (KT 2) ≤ 4α

(
40

∆2
min

log
7KT

∆min
+ 1

)
log (KT 2).

Substituting the above inequality into (22), we get
g−1∑
t=f

(
µt(a

∗
t )− µt(at)

)
≤ 4α

(
40

∆2
min

log
7KT

∆min
+ 2

)
log (KT 2). (25)

To proceed, we decompose the regret by using (20):

DR(T ) =

T∑
t=1

(
µt(a

∗
t )− µt(at)

)
=

L∑
`=1

ξ`+1−1∑
t=ξ`

(
µt(a

∗
t )− µt(at)

)
. (26)

Fix ` ∈ L. Let Rt, t ∈ [T ] denote the event that in round t, Steps 10-11 of Algorithm 2 are executed and λ` denote the first
round t ∈ [ξl, ξl+1 − 1] when event Rt occurs

λ` = min{t ∈ [ξl, ξl+1 − 1] : 1{Rt} = 1}.



If no such t exists, we define λ` = ξ`+1. Then, we have

ξ`+1−1∑
t=ξ`

(
µt(a

∗
t )− µt(at)

)
=

λ`−1∑
t=ξ`

(
µt(a

∗
t )− µt(at)

)
+

ξ`+1−1∑
t=λ`

(
µt(a

∗
t )− µt(at)

)
≤ λl − ξl +

ξ`+1−1∑
t=λ`

(
µt(a

∗
t )− µt(at)

)
≤ λl − ξl +

ξ`+1−1∑
t=λ`

1{Rt} · 4α
(

40

∆2
min

log
7KT

∆min
+ 2

)
log (KT 2)

where the last inequality is due to (25). Taking expectation on both sides gives

E

ξ`+1−1∑
t=ξ`

(
µt(a

∗
t )− µt(at)

) ≤ 1

p
+ 4αp(ξl+1 − ξl)

(
40

∆2
min

log
7KT

∆min
+ 2

)
log (KT 2)

where we have used the fact that 1{Rt}, t ∈ [T ] is a sequence of i.i.d. Bernoulli random variables with parameter p. Substituting
the above inequality into (26) and noting that ξL+1 − ξ1 = T , we have

E [DR(T )] ≤ L

p
+ 4αpT

(
40

∆2
min

log
7KT

∆min
+ 2

)
log (KT 2) + 3 ≤

(
20

∆2
min

log
7KT

∆min
+ 1

)(
L

8p
+ 8αpT

)
log (KT 2) + 3

where the term 3 bounds the expected regret for the violation of (19) and (21).
Finally, by setting p =

√
L/(64αT ), we get

E [DR(T )] ≤
(

40

∆2
min

log
7KT

∆min
+ 2

)√
αLT log (KT 2) + 3 = Õ

(√
αLT

)
.

D Proof of Theorem 2
For undirected feedback graphs, the arms chosen by AlphaSample constitute an independence set. Thus, we can replace Lemma
2 in the proof of Theorem 4 at Appendix C with the following fact: For undirected feedback graphs, AlphaSample terminates
after at most α rounds. Then, following the proof of Theorem 4, we can bound the dynamic regret of SEASIDE as

E [DR(T )] ≤ L

p
+ αpT

(
40

∆2
min

log
7KT

∆min
+ 2

)
+ 2 ≤

(
10

∆2
min

log
7KT

∆min
+

1

2

)(
L

4p
+ 4αpT

)
+ 2.

Finally, by setting p =
√
L/(16αT ), we get

E [DR(T )] ≤
(

20

∆2
min

log
7KT

∆min
+ 1

)√
αLT + 2 = Õ

(√
αLT

)
.

E Proof of Theorem 3
Our proof is an adaptation of that of Auer, Gajane, and Ortner (2019) to the graph feedback setting. The main novelty of our
proof is listed below.
• We propose Lemma 4 and Lemma 5, which are new and illustrate the advantages of the arm selection strategy in Algorithm

3. By utilizing these two lemmas, instead of bounding the regret for each arm separately, we can bound the regret for each
clique so as to obtain a regret bound that depends on the number of cliques rather than the number of arms.

• In the analysis of the cost of playing bad arms, we decompose each epoch into time intervals where the set Wt does not
change, and bound the cost for each interval. This decomposition is novel and crucial to deriving a bound that scales with√
|Wt| ≤

√
θ rather than

√
K.

• In the analysis of the case that a bad arm inWt becomes optimal due to the improvement of its mean reward, we utilize the
properties of our proposed Algorithm 4 to bound the expected number of rounds before such improvement is detected.
We begin the proof with some lemmas that will be used. Fix a minimum clique covering C = {C1, C2, . . . , Cθ} of the

feedback graph G throughout the proof. Our first two lemmas are consequences of the arm selection strategy in Algorithm 3.
Lemma 4. For any epoch τ ∈ [m], any time interval [s, t] ⊆ [eτ , eτ+1 − 1], and any arm a that is eligible during [s, t], i.e.,
∀i ∈ [s, t], a ∈ Ei, we have

O[s,t](a) ≥ b(t− s+ 1)/θc. (27)



Lemma 5. For any epoch τ ∈ [m], any time interval [s, t] ⊆ [eτ , eτ+1 − 1], and any two arms u, v that are eligible during
[s, t], i.e., ∀i ∈ [s, t], u, v ∈ Ei, we have

O[s,t](u) ≥ n[s,t](C(v))− 1 (28)

where C(v) ∈ C denotes the clique that contains v and n[s,t](C) denotes the number of times that the played arm is in clique
C during [s, t]

n[s,t](C) =

t∑
i=s

1{ai ∈ C}.

Proof of Lemma 4. If (t − s + 1)/θ < 1 or θ = 1, (27) holds trivially. Thus, below we only consider the case that
(t− s+ 1)/θ ≥ 1 and θ ≥ 2. Let N = b(t− s+ 1)/θc and ij = s+ jθ, j = 0, . . . , N . We show that for any j ∈ [N ] during
[ij−1, ij − 1], reward of arm a is observed at least once

O[ij−1,ij−1](a) ≥ 1. (29)

We prove this by contradiction. Suppose there exists j ∈ [N ] such that

O[ij−1,ij−1](a) = 0.

Let us say that a clique C is played in round t if and only if at ∈ C. Since the minimum clique covering C is comprised of θ
cliques and during [ij−1, ij − 1] with length ij − ij−1 = θ the clique C(a) is never played, there must exist a clique C ′ 6= C
that are played more than once during [ij−1, ij − 1]. Let t1, t2 ∈ [ij−1, ij − 1] with t1 < t2 be any two rounds when C ′ is
played. Then, at1 ∈ C ′ and at2 ∈ C ′. By the arm selection strategy in Algorithm 3, we have

ζt2(at2) ≤ ζt2(a) < ij−1. (30)

On the other hand, at1 ∈ C ′ implies
ζt2(at2) ≥ t1 ≥ ij−1

which contradicts with (30). Thus, (29) holds and

O[s,t](a) ≥
N∑
j=1

O[ij−1,ij−1](a) ≥ N.

Substituting N = b(t− s+ 1)/θc into the above inequality finishes the proof. �
Proof of Lemma 5. If n[s,t](C(v)) ≤ 1 or u ∈ C(v), (28) trivially holds. Thus, in the following we only consider the case
that n[s,t](C(v)) > 1 and u 6∈ C(v). Let N = n[s,t](C(v)) and s ≤ i1 < i2 < . . . < iN ≤ t be the N rounds when the played
arm is in C(v): ∀j ∈ [N ], aij ∈ C(v). We show that for any j ∈ [N − 1], during [ij , ij+1 − 1], reward of arm u is observed at
least once

∀j ∈ [N − 1], O[ij ,ij+1−1](u) ≥ 1. (31)

We prove the above inequality by contradiction. Suppose there exists j ∈ [N − 1] such that O[ij ,ij+1−1](u) = 0. This implies
that the last round before ij+1 when reward of arm u is observed is not in [ij , ij+1 − 1]

ζij+1
(u) < ij .

By the arm selection strategy in Algorithm 3, we have

ζij+1(aij+1) ≤ ζij+1(u) < ij .

On the other hand, aij ∈ C(v) implies
ζij+1(aij+1) ≥ ij .

Combining the above two inequalities, we obtain a contradiction and thus prove (31), which immediately implies

O[s,t](u) ≥
N−1∑
j=1

O[ij ,ij+1−1](u) ≥ N − 1.

Substituting N = n[s,t](C(v)) into the above inequality completes the proof. �
We proceed to propose the third lemma. Let L[s, t] be the number of reward distribution changes in [s, t]

L[s, t] = |{s+ 1 ≤ i ≤ t : ∃a ∈ [K],Di(a) 6= Di−1(a)}|.
If L[s, t] = 0, then during [s, t], reward distributions of all arms are stationary and thus distance between the empirical mean
reward and the expected reward of each arm can be bounded by concentration inequalities and the union bound. Formally, we
introduce the following lemma, the proof of which is a simple variant of that of Lemma 5 in Auer, Gajane, and Ortner (2019)
and thus omitted here.



Lemma 6. With probability 1− 2/T , for any [s, t] ⊆ [1, T ] with L[s, t] = 0 and any arm a ∈ [K],

|µ̂[s,t](a)− µs(a)| ≤

√
3 log (KT )

2O[s,t](a)
. (32)

Since the error probability 2/T causes only T ·2/T = 2 regret over T rounds, we assume in all the following that (32) holds,
and add 2 to the obtained regret bound in the end of the proof.

Based on Lemma 6, the next lemma shows that in ASG, an epoch ends and a new epoch begins only if there is an arm whose
reward distribution has changed.
Lemma 7. For all epochs τ ∈ [m− 1], we have L[eτ , eτ+1 − 1] ≥ 1.
Proof of Lemma 7. We prove the lemma by contradiction. Suppose there is an epoch τ ∈ [m− 1] with L[eτ , eτ+1 − 1] = 0.
Let t = eτ+1 − 1. Then, τ ≤ m− 1 implies t = eτ+1 − 1 ≤ em − 1 ≤ T . Thus, in round t, either Step 19 or 24 of Algorithm
3 is executed. Below we analyze the two cases separately.

1) Step 19 is executed. In this case, there is a good arm a ∈ Gt such that for some s1, s2, s ∈ [eτ , t],

|µ̂[s1,s2](a)− µ̂[s,t](a)| >

√
3 log (KT )

2O[s1,s2](Gs2)
+

√
3 log (KT )

2O[s,t](Gt)
. (33)

On the other hand, since L[eτ , t] = 0 and s1, s2, s ∈ [eτ , t], we can apply (32) and get

|µ̂[s1,s2](a)− µt(a)| ≤

√
3 log (KT )

2O[s1,s2](a)
, |µ̂[s,t](a)− µt(a)| ≤

√
3 log (KT )

2O[s,t](a)

where we have used the fact that Ds1(a) = Ds(a) = Dt(a). The above inequalities imply

|µ̂[s1,s2](a)− µ̂[s,t](a)| ≤ |µ̂[s1,s2](a)− µt(a)|+ |µt(a)− µ̂[s,t](a)| ≤

√
3 log (KT )

2O[s1,s2](a)
+

√
3 log (KT )

2O[s,t](a)
. (34)

Since a ∈ Gt and s2 ≤ t, the construction of Algorithm 3 implies a ∈ Gs2 . By the definition in (1), we have

O[s1,s2](a) ≥ O[s1,s2](Gs2), O[s,t](a) ≥ O[s,t](Gt)
which, together with (33) and (34), leads to a contradiction.

2) Step 24 is executed. In this case, there is a bad arm a ∈ Bt such that for some s ∈ [eτ , t],

|µ̂[s,t](a)− µ̃τ (a)| > ∆̃τ (a)

4
+

√
3 log (KT )

2O[s,t](a)
. (35)

Since a is a bad arm in round t, it must be eliminated from the good arm set in some previous round t′ ∈ [eτ , t). By Step 28 of
Algorithm 3, there exists s′ ∈ [eτ , t

′] such that (3) holds and

max
a′∈Gt′

µ̂[s′,t′](a
′)− µ̂[s′,t′](a) >

(√
2 + 1

)√ 6 log (KT )

O[s′,t′](Gt′)
, µ̃τ (a) = µ̂[s′,t′](a), ∆̃τ (a) = max

a′∈Gt′
µ̂[s′,t′](a

′)− µ̂[s′,t′](a).

Substituting this inequality into (35) gives

|µ̂[s,t](a)− µ̂[s′,t′](a)| >
√

2 + 1

2

√
3 log (KT )

2O[s′,t′](Gt′)
+

√
3 log (KT )

2O[s,t](a)
≥
√

2 + 1

2

√
3 log (KT )

2O[s′,t′](a)
+

√
3 log (KT )

2O[s,t](a)
(36)

where the last inequality holds since a ∈ Gt′ . On the other hand, by Ds′(a) = Ds(a) = Dt(a) and (32), we have

|µ̂[s,t](a)− µ̂[s′,t′](a)| = |µ̂[s,t](a)− µs(a) + µs′(a)− µ̂[s′,t′](a)| ≤

√
3 log (KT )

2O[s,t](a)
+

√
3 log (KT )

2O[s′,t′](a)
. (37)

Combining (36) and (37) yields a contradiction. �
Lemma 7 immediately implies that the number of epochs can not exceed the number of reward distribution changes

m ≤ L. (38)

While in (2) we only partition [1, T ] into epochs according to the execution of ASG, to analyze the regret of ASG, we
further split each epoch into time intervals where the reward distributions do not change. Specifically, for epoch τ ∈ [m],



let zτ = L[eτ , eτ+1 − 1] be the number of distribution changes during epoch τ . We define βτ,0 = eτ , βτ,zτ+1 = eτ+1

and denote by βτ,1 < . . . < βτ,zτ the change-points of reward distributions in [eτ , eτ+1 − 1] such that for i = 1, . . . , zτ ,
L[βτ,i − 1, βτ,i] = 1 and for i = 0, . . . , zτ , L[βτ,i, βτ,i+1 − 1] = 0. We further denote these time intervals with no distribution
change by Iτ,i = [βτ,i, βτ,i+1 − 1], i = 0, . . . , zτ . Then epoch τ can be decomposed as

[eτ , eτ+1 − 1] = [βτ,0, βτ,1) ∪ [βτ,1, βτ,2) ∪ · · · ∪ [βτ,zτ , βτ,zτ+1) =

zτ⋃
i=0

Iτ,i. (39)

We also define βm+1,0 = βm,zm+1. The reason for introducing the above decomposition is that in the proof we will often
analyze the regret in an interval Iτ,i and then sum the derived bound over i = 0, . . . , zτ and τ = 1, . . . ,m. The number of
items in this summation is no more than 2L, since we have

m∑
τ=1

zτ∑
i=0

1 =

m∑
τ=1

(zτ + 1) =

m∑
τ=1

zτ +m ≤ L+m ≤ 2L (40)

where the last inequality is due to (38).
With the above notations, definitions, and lemmas, we are now ready to prove Theorem 3. Following Auer, Gajane, and

Ortner (2019), we split the regret into two parts

DR(T ) =

T∑
t=1

(
µt(a

∗
t )− µt(at)

)
=

T∑
t=1

(
µt(a

g
t )− µt(at)

)
+

T∑
t=1

(
µt(a

∗
t )− µt(a

g
t )
)

(41)

with agt ∈ arg maxa∈Gt µt(a) denoting the best good arm in round t. Here, the first part is the regret of the played arm with
respect to the best good arm and the second part is the regret of the best good arm with respect to the optimal arm. Below, we
bound the two parts separately.

We start with bounding the first part. For each epoch τ , we partition the rounds [eτ , eτ+1 − 1] into 4 sets as follows

[eτ , eτ+1 − 1] = Γτ,1 ∪ Γτ,2 ∪ Γτ,3 ∪ Γτ,4, ∀i 6= j ∈ [4],Γτ,i ∩ Γτ,j = ∅. (42)

where Γτ,i, i ∈ [4] is defined as follows.

• Γτ,1 consists of all rounds when the played arm is a good arm

Γτ,1 = {t ∈ [eτ , eτ+1 − 1] : at ∈ Gt} .

• Γτ,2 is comprised of all rounds in which the played arm is a bad arm and its regret with respect to the best good arm is not
large

Γτ,2 =
{
t ∈ [eτ , eτ+1 − 1] : at ∈ Bt, µt(agt )− µt(at) ≤ 4∆̃τ (at)

}
.

• Γτ,3 consists of all rounds when the the played arm is a bad arm with large regret to the best good arm and its expected
reward is far away from its stored empirical mean reward

Γτ,3 =
{
t ∈ [eτ , eτ+1 − 1] : at ∈ Bt, µt(agt )− µt(at) > 4∆̃τ (at), µ̃τ (at)− µt(at) >

(
µt(a

g
t )− µt(at)

)
/2
}
.

• Γτ,4 is comprised of all rounds in which the the played arm is a bad arm with large regret to the best good arm but its expected
reward is relatively close to its stored empirical mean reward

Γτ,4 =
{
t ∈ [eτ , eτ+1 − 1] : at ∈ Bt, µt(agt )− µt(at) > 4∆̃τ (at), µ̃τ (at)− µt(at) ≤

(
µt(a

g
t )− µt(at)

)
/2
}
.

Based on the above definitions, we have

T∑
t=1

(
µt(a

g
t )− µt(at)

)
=

m∑
τ=1

eτ+1−1∑
t=eτ

(
µt(a

g
t )− µt(at)

)
=

m∑
τ=1

4∑
i=1

∑
t∈Γτ,i

(
µt(a

g
t )− µt(at)

)
=

4∑
i=1

m∑
τ=1

∑
t∈Γτ,i

(
µt(a

g
t )− µt(at)

)
︸ ︷︷ ︸

Bi

.
(43)

In the following, we bound Bi for each i = 1, 2, 3, 4.



We first analyze B1. For τ ∈ [m], by (39) and the definition of Γτ,1, we have∑
t∈Γτ,1

(
µt(a

g
t )− µt(at)

)
=

zτ∑
i=0

∑
t∈Γτ,1∩Iτ,i

(
µt(a

g
t )− µt(at)

)
=

zτ∑
i=0

∑
C∈C

∑
t∈Γτ,1∩Iτ,i : at∈C

(
µt(a

g
t )− µt(at)

)
(44)

=

zτ∑
i=0

∑
C∈C

 ∑
t∈Γτ,1∩Iτ,i : at∈C,n[βτ,i,t]

(C)≤2

(
µt(a

g
t )− µt(at)

)
+

∑
t∈Γτ,1∩Iτ,i : at∈C,n[βτ,i,t]

(C)≥3

(
µt(a

g
t )− µt(at)

)
≤

zτ∑
i=0

∑
C∈C

2 +
∑

t∈Γτ,1∩Iτ,i : at∈C,n[βτ,i,t]
(C)≥3

(
µt(a

g
t )− µt(at)

)
where the inequality is due to |{t ∈ Γτ,1 ∩ Iτ,i : at ∈ C, n[βτ,i,t](C) ≤ 2}| ≤ |{t ≥ βτ,i : at ∈ C, n[βτ,i,t](C) ≤ 2}| ≤ 2 and
the fact that all rewards are bounded in [0, 1].

For i ∈ {0, . . . , zτ}, C ∈ C and t ∈ Γτ,1 ∩ Iτ,i with at ∈ C, n[βτ,i,t](C) ≥ 3, we have at ∈ Gt and n[βτ,i,t−1](C) ≥ 2. Thus,
in round t− 1 for a = at and s = βτ,i, (3) does not hold:

max
a′∈Gt−1

µ̂[βτ,i,t−1](a
′)− µ̂[βτ,i,t−1](at) ≤

(√
2 + 1

)√ 6 log (KT )

O[βτ,i,t−1](Gt−1)
. (45)

For every arm a ∈ Gt−1, it is eligible during [βτ,i, t − 1]. Since at ∈ Gt ⊆ Gt−1 and at ∈ C, we can apply Lemma 5 and get
O[βτ,i,t−1](a) ≥ n[βτ,i,t−1](C)− 1 ≥ 1. So µ̂[βτ,i,t−1](a) is finite for every a ∈ Gt−1, and we have

µ̂[βτ,i,t−1](a
g
t )− µ̂[βτ,i,t−1](at) ≤ max

a′∈Gt−1

µ̂[βτ,i,t−1](a
′)− µ̂[βτ,i,t−1](at) ≤

(√
2 + 1

)√ 6 log (KT )

O[βτ,i,t−1](Gt−1)
. (46)

On the other hand, since t ≤ βτ,i+1 − 1 and L[βτ,i, βτ,i+1 − 1] = 0, by (32) we get

µt(a
g
t )− µ̂[βτ,i,t−1](a

g
t ) ≤

√
3 log (KT )

2O[βτ,i,t−1](a
g
t )
, µ̂[βτ,i,t−1](at)− µt(at) ≤

√
3 log (KT )

2O[βτ,i,t−1](at)

where we have used the fact that ∀a ∈ [K],Dβτ,i(a) = Dt(a). Adding the above inequalities to (46), we obtain

µt(a
g
t )−µt(at) ≤

√
3 log (KT )

2O[βτ,i,t−1](a
g
t )

+

√
3 log (KT )

2O[βτ,i,t−1](at)
+
(√

2 + 1
)√ 6 log (KT )

O[βτ,i,t−1](Gt−1)
≤
(√

2 + 2
)√ 6 log (KT )

O[βτ,i,t−1](Gt−1)

(47)
where the last inequality holds since by (1), we have ∀a ∈ Gt−1, O[βτ,i,t−1](a) ≥ O[βτ,i,t−1](Gt−1).

Since any arm in Gt−1 is eligible during [βτ,i, t − 1] and O[βτ,i,t−1](Gt−1) = mina∈Gt−1
O[βτ,i,t−1](a), we have

O[βτ,i,t−1](Gt−1) ≥ n[βτ,i,t−1](C)− 1, which, together with (47), implies∑
t∈Γτ,1∩Iτ,i : at∈C,n[βτ,i,t]

(C)≥3

(
µt(a

g
t )− µt(at)

)
=

∑
t∈Γτ,1∩Iτ,i : at∈C,n[βτ,i,t−1](C)≥2

(
µt(a

g
t )− µt(at)

)

≤
∑

t∈Γτ,1∩Iτ,i : at∈C,n[βτ,i,t−1](C)≥2

(√
2 + 2

)√ 6 log (KT )

n[βτ,i,t−1](C)− 1

≤
n[βτ,i,βτ,i+1−1](C)∑

h=1

(√
2 + 2

)√6 log (KT )

h

≤ 2
(√

2 + 2
)√

6n[βτ,i,βτ,i+1−1](C) log (KT )



where the last inequality follows from

∀H ∈ N,
H∑
h=1

√
1

h
≤ 2
√
H. (48)

Substituting the above inequality into (44) gives∑
t∈Γτ,1

(
µt(a

g
t )− µt(at)

)
≤

zτ∑
i=0

∑
C∈C

(
2 + 2

(√
2 + 2

)√
6n[βτ,i,βτ,i+1−1](C) log (KT )

)
≤

zτ∑
i=0

(
2θ + 2

(√
2 + 2

)√
6θ(βτ,i+1 − βτ,i) log (KT )

) (49)

where the second inequality is due to |C| = θ,
∑
C∈C n[βτ,i,βτ,i+1−1](C) = βτ,i+1 − βτ,i, and

∀F ∈ N,∀x1, . . . , xF ≥ 0,

F∑
f=1

√
xf ≤

√√√√F

F∑
f=1

xf . (50)

Summing (49) over τ = 1, . . . ,m leads to

B1 =
m∑
τ=1

∑
t∈Γτ,1

(
µt(a

g
t )− µt(at)

)
≤

m∑
τ=1

zτ∑
i=0

(
2θ + 2

(√
2 + 2

)√
6θ(βτ,i+1 − βτ,i) log (KT )

)
≤ 4θL+ 4

(√
2 + 2

)√
3θLT log (KT )

(51)

where the second inequality follows from (40), (50), and
m∑
τ=1

zτ∑
i=0

(βτ,i+1 − βτ,i) =

m∑
τ=1

(βτ,zτ+1 − βτ,0)
(39)
=

m∑
τ=1

(eτ+1 − eτ ) = em+1 − e1
(2)
= (T + 1)− 1 = T. (52)

We now turn to bound B2. For τ ∈ [m], by the definition of Γτ,2, we have∑
t∈Γτ,2

(
µt(a

g
t )− µt(at)

)
=

∑
t∈[eτ ,eτ+1−1]

1{at ∈ Bt, µt(agt )− µt(at) ≤ 4∆̃τ (at)}
(
µt(a

g
t )− µt(at)

)
=
∑
a∈[K]

∑
t∈[eτ ,eτ+1−1]

1{at = a, a ∈ Bt, µt(agt )− µt(a) ≤ 4∆̃τ (a)}
(
µt(a

g
t )− µt(a)

)
≤
∑
a∈[K]

∑
t∈[eτ ,eτ+1−1] : a∈Bt

1{at = a, µt(a
g
t )− µt(a) ≤ 4∆̃τ (a)} · 4∆̃τ (a)

≤
∑
a∈[K]

∑
t∈[eτ ,eτ+1−1] : a∈Bt

1{at = a} · 4∆̃τ (a).

(53)

Let ν be the number of times that the set Wt changes during epoch τ . We define η0 = eτ , ην+1 = eτ+1 and denote by
eτ < η1 < · · · < ην < eτ+1 the change points such that

∀i ∈ [ν],Wηi 6=Wηi−1;

∀i ∈ {0, . . . , ν},∀s, t ∈ [ηi, ηi+1 − 1],Ws =Wt.
(54)

For a ∈ [K] and t ∈ [eτ , eτ+1 − 1] with a ∈ Bt, by the arm selection strategy and Step 5 in Algorithm 3, a is selected in
round t, i.e., at = a, only if there is a sampling obligation (ε, nε, s) ∈ St(a) with ε = 2−g ≥ ∆̃τ (a)/16, g ∈ N+, s ≤ t and
O[s,t](a) ≤ nε = d1.5ε−2 log (KT )e. Furthermore, by Step 4 of Algorithm 3, (ε, nε, s) is added into Ss(a) only if a ∈ Ws.
Thus, we have

1{at = a} ≤
ν∑
i=0

∑
s∈[ηi,ηi+1−1]

∑
ε=2−g≥∆̃τ (a)/16,g∈N+

1{at = a, s ≤ t, O[s,t](a) ≤ nε, a ∈ Wηi , (ε, nε, s)→ Ss(a)}

≤
∑

i∈[ν] : a∈Wηi

∑
s∈[ηi,ηi+1−1]

∑
ε=2−g≥∆̃τ (a)/16,g∈N+

1{at = a, s ≤ t, O[s,t](a) ≤ nε, (ε, nε, s)→ Ss(a)}



where (ε, nε, s) → Ss(a) denotes that (ε, nε, s) is added into Ss(a) in round s, and the second inequality is due to Wη0 =
Weτ = ∅. Summing the above inequality over t ∈ [eτ , eτ+1 − 1] : a ∈ Bt gives∑

t∈[eτ ,eτ+1−1] : a∈Bt

1{at = a}

≤
∑

t∈[eτ ,eτ+1−1] : a∈Bt

∑
i∈[ν] : a∈Wηi

∑
s∈[ηi,ηi+1−1]

∑
ε=2−g≥∆̃τ (a)/16,g∈N+

1{at = a, s ≤ t, O[s,t](a) ≤ nε, (ε, nε, s)→ Ss(a)}

≤
∑

i∈[ν] : a∈Wηi

∑
s∈[ηi,ηi+1−1]

∑
ε=2−g≥∆̃τ (a)/16,g∈N+

∑
t∈[eτ ,eτ+1−1] : t≥s,a∈Bt

1{at = a,O[s,t](a) ≤ nε, (ε, nε, s)→ Ss(a)}

=
∑

i∈[ν] : a∈Wηi

∑
s∈[ηi,ηi+1−1]

∑
ε=2−g≥∆̃τ (a)/16,g∈N+

1{(ε, nε, s)→ Ss(a)}
∑

t∈[eτ ,eτ+1−1] : t≥s,a∈Bt

1{at = a,O[s,t](a) ≤ nε}

≤
∑

i∈[ν] : a∈Wηi

∑
s∈[ηi,ηi+1−1]

∑
ε=2−g≥∆̃τ (a)/16,g∈N+

1{(ε, nε, s)→ Ss(a)}nε.

Taking expectation with respect to the randomness in Step 6 of Algorithm 3, we get

E

 ∑
t∈[eτ ,eτ+1−1] : a∈Bt

1{at = a}


≤

∑
i∈[ν] : a∈Wηi

∑
s∈[ηi,ηi+1−1]

∑
ε=2−g≥∆̃τ (a)/16,g∈N+

E [1{(ε, nε, s)→ Ss(a)}]nε

=
∑

i∈[ν] : a∈Wηi

∑
s∈[ηi,ηi+1−1]

∑
ε=2−g≥∆̃τ (a)/16,g∈N+

ε

√
τ

|Ws|T log (KT )

⌈
3 log(KT )

2ε2

⌉

≤
∑

i∈[ν] : a∈Wηi

∑
s∈[ηi,ηi+1−1]

√
τ

|Ws|T log (KT )

∑
ε=2−g≥∆̃τ (a)/16,g∈N+

(
3 log (KT )

2ε
+ ε

)

≤
∑

i∈[ν] : a∈Wηi

∑
s∈[ηi,ηi+1−1]

√
τ

|Ws|T log (KT )
· 48 log (KT )

∆̃τ (a)

=
∑

i∈[ν] : a∈Wηi

√
τ log (KT )

|Wηi |T
· 48(ηi+1 − ηi)

∆̃τ (a)

where the last equality is due to (54). Substituting the above inequality into (53) gives

E

 ∑
t∈Γτ,2

(
µt(a

g
t )− µt(at)

) ≤ ∑
a∈[K]

∑
i∈[ν] : a∈Wηi

√
τ log (KT )

|Wηi |T
· 192(ηi+1 − ηi)

=
∑
i∈[ν]

∑
a∈Wηi

√
τ log (KT )

|Wηi |T
· 192(ηi+1 − ηi)

=
∑
i∈[ν]

√
τ log (KT ) |Wηi |

T
· 192(ηi+1 − ηi)

≤
∑
i∈[ν]

√
αL log (KT )

T
· 192(ηi+1 − ηi)

≤ 192(eτ+1 − eτ )

√
αL log (KT )

T

(55)

where the second inequality holds since τ ≤ m ≤ L and ∀t ∈ [T ], |Wt| ≤ α. Summing (55) over τ ∈ [m], we get an expected
bound on B2

E[B2] =

m∑
τ=1

E

 ∑
t∈Γτ,2

(
µt(a

g
t )− µt(at)

) ≤ m∑
τ=1

192(eτ+1 − eτ )

√
αL log (KT )

T
= 192

√
αLT log (KT ). (56)



We proceed to analyze B3:

B3 =

m∑
τ=1

∑
t∈Γτ,3

(
µt(a

g
t )− µt(at)

)
=

m∑
τ=1

zτ∑
i=0

∑
t∈Γτ,3∩Iτ,i

(
µt(a

g
t )− µt(at)

)
≤ 2L+

m∑
τ=1

zτ∑
i=0

∑
t∈Γτ,3∩Iτ,i : t<βτ,i+1−1

(
µt(a

g
t )− µt(at)

) (57)

where the inequality is due to (40) and the fact that rewards are all bounded in [0, 1]. For τ ∈ [m], i ∈ {0, . . . , zτ}, and
t ∈ Γτ,3 ∩ Iτ,i with t < βτ,i+1 − 1, by the definition of Γτ,3, we have at ∈ Bt and

µt(a
g
t )− µt(at) > 4∆̃τ (at), µ̃τ (at)− µt(at) >

(
µt(a

g
t )− µt(at)

)
/2. (58)

Since at ∈ Bt and in round t < βτ,i+1 − 1 ≤ eτ+1 − 1 epoch τ does not end, by Step 23 of Algorithm 3, for a = at and
s = βτ,i, (4) does not hold:

|µ̂[βτ,i,t](at)− µ̃τ (at)| ≤
∆̃τ (at)

4
+

√
3 log (KT )

2O[βτ,i,t](at)
. (59)

On the other hand, since t ∈ Iτ,i and during the time interval Iτ,i the reward distributions remain fixed, by (32) we get

|µ̂[βτ,i,t](at)− µt(at)| = |µ̂[βτ,i,t](at)− µβτ,i(at)| ≤

√
3 log (KT )

2O[βτ,i,t](at)
(60)

Combining (58), (59), and (60) gives

µt(a
g
t )− µt(at)

(58)
< 2

(
µ̃τ (at)− µt(at)

)
≤ 2|µ̃τ (at)− µt(at)|

(59,60)

≤ ∆̃τ (at)

2
+ 4

√
3 log (KT )

2O[βτ,i,t](at)

(58)

≤ µt(a
g
t )− µt(at)

8
+ 2

√
6 log (KT )

O[βτ,i,t](at)

which implies µt(a
g
t )− µt(at) < 16

7

√
6 log (KT )
O[βτ,i,t]

(at)
. Summing this inequality over t ∈ Γτ,3 ∩ Iτ,i : t < βτ,i+1 − 1 leads to

∑
t∈Γτ,3∩Iτ,i : t<βτ,i+1−1

(
µt(a

g
t )− µt(at)

)
≤ 16

7

∑
t∈Γτ,3∩Iτ,i : t<βτ,i+1−1

√
6 log (KT )

O[βτ,i,t](at)

=
16

7

∑
C∈C

∑
t∈Γτ,3∩Iτ,i : t<βτ,i+1−1,at∈C

√
6 log (KT )

O[βτ,i,t](at)

≤ 16

7

∑
C∈C

∑
t∈Γτ,3∩Iτ,i : t<βτ,i+1−1,at∈C

√
6 log (KT )

n[βτ,i,t](C)

≤ 16

7

∑
C∈C

n[βτ,i,βτ,i+1−1](C)∑
h=1

√
6 log (KT )

h

(48)

≤
∑
C∈C

32

7

√
6n[βτ,i,βτ,i+1−1](C) log (KT )

(50)

≤ 5
√

6θ(βτ,i+1 − βτ,i) log (KT ).

Substituting the above inequality into (57) leads to

B3 ≤ 2L+

m∑
τ=1

zτ∑
i=0

5
√

6θ(βτ,i+1 − βτ,i) log (KT )
(40,50,52)

≤ 2L+ 10
√

3θLT log (KT ). (61)



Finally, we bound B4. Similarly to (57), we decompose B4 as

B4 =

m∑
τ=1

∑
t∈Γτ,4

(
µt(a

g
t )− µt(at)

)
=

m∑
τ=1

zτ∑
i=0

∑
t∈Γτ,4∩Iτ,i

(
µt(a

g
t )− µt(at)

)
≤ 2L+

m∑
τ=1

zτ∑
i=0

∑
t∈Γτ,4∩Iτ,i : t<βτ,i+1−1

(
µt(a

g
t )− µt(at)

)
≤ 2θL+

m∑
τ=1

zτ∑
i=0

∑
t∈Γτ,4∩Iτ,i : βτ,i+θ−1≤t<βτ,i+1−1

(
µt(a

g
t )− µt(at)

)
.

(62)

For τ ∈ [m], i ∈ {0, . . . , zτ}, and t ∈ Γτ,4 ∩ Iτ,i with βτ,i + θ− 1 ≤ t < βτ,i+1− 1, by the definition of Γτ,4, we have at ∈ Bt
and

µt(a
g
t )− µt(at) > 4∆̃τ (at), µ̃τ (at)− µt(at) ≤

(
µt(a

g
t )− µt(at)

)
/2. (63)

Since at is a bad arm in round t, it must be eliminated from the good arm set in some previous round t′ ∈ [eτ , t). By Step 28 of
Algorithm 3, there exists s′ ∈ [eτ , t

′] such that (3) holds for a = at and s = s′, and

µ̂[s′,t′](a
′)− µ̂[s′,t′](at) >

(√
2 + 1

)√ 6 log (KT )

O[s′,t′](Gt′)
, µ̃τ (at) = µ̂[s′,t′](at), ∆̃τ (at) = µ̂[s′,t′](a

′)− µ̂[s′,t′](at) (64)

with a′ ∈ arg maxã∈Gt′ µ̂[s′,t′](ã). Since during [βτ,i, t] the reward distributions do not change, by (32) we get

|µ̂[βτ,i,t](a
g
t )− µt(a

g
t )| = |µ̂[βτ,i,t](a

g
t )− µβτ,i(a

g
t )| ≤

√
3 log (KT )

2O[βτ,i,t](a
g
t )
.

Combining this inequality with (63) and (64) gives

µ̂[βτ,i,t](a
g
t )− µ̂[s′,t′](a

g
t ) ≥ µ̂[βτ,i,t](a

g
t )− µ̂[s′,t′](a

′)

≥ µt(agt )−

√
3 log (KT )

2O[βτ,i,t](a
g
t )
− µ̂[s′,t′](a

′)

(64)
= µt(a

g
t )−

√
3 log (KT )

2O[βτ,i,t](a
g
t )
− ∆̃τ (at)− µ̃τ (at)

= µt(a
g
t )− µt(at)−

√
3 log (KT )

2O[βτ,i,t](a
g
t )
− ∆̃τ (at)−

(
µ̃τ (at)− µt(at)

)
(63)

≥ µt(a
g
t )− µt(at)

4
−

√
3 log (KT )

2O[βτ,i,t](a
g
t )

(65)

where the first inequality holds since agt ∈ Gt ⊆ Gt′ .
On the other hand, since in round t < βτ,i+1 − 1 ≤ eτ+1 − 1, epoch τ does not end, by Step 18 of Algorithm 3, for s1 = s′,

s2 = t′, s = βτ,i, and a = agt , (5) does not hold. Thus, we have

µ̂[βτ,i,t](a
g
t )− µ̂[s′,t′](a

g
t ) ≤ |µ̂[s′,t′](a

g
t )− µ̂[βτ,i,t](a

g
t )| ≤

√
3 log (KT )

2O[s′,t′](Gt′)
+

√
3 log (KT )

2O[βτ,i,t](Gt)

(64)

≤ ∆̃τ (at)

2
(√

2 + 1
) +

√
3 log (KT )

2O[βτ,i,t](Gt)

(63)

≤ µt(a
g
t )− µt(at)

8
(√

2 + 1
) +

√
3 log (KT )

2O[βτ,i,t](Gt)
.

(66)

Since arms in Gt are all eligible during [βτ,i, t], by Lemma 4 and (1), we have O[βτ,i,t](Gt) = mina∈Gt O[βτ,i,t](a) ≥ b(t −

βτ,i + 1)/θc ≥ 1, which implies that both
√

3 log (KT )
2O[βτ,i,t]

(agt )
and

√
3 log (KT )

2O[βτ,i,t]
(Gt) are finite. Thus, we can combine (65) with (66)



and get

µt(a
g
t )− µt(at) ≤

8
(
3 +
√

2
)

7

(√
3 log (KT )

2O[βτ,i,t](a
g
t )

+

√
3 log (KT )

2O[βτ,i,t](Gt)

)
(1)

≤
16
(
3 +
√

2
)

7

√
3 log (KT )

2O[βτ,i,t](Gt)
≤

16
(
3 +
√

2
)

7

√
3 log (KT )

2b(t− βτ,i + 1)/θc
.

(67)

Summing (67) over t ∈ Γτ,4 ∩ Iτ,i : βτ,i + θ − 1 ≤ t < βτ,i+1 − 1 gives∑
t∈Γτ,4∩Iτ,i : βτ,i+θ−1≤t<βτ,i+1−1

(
µt(a

g
t )− µt(at)

)
≤

16
(
3 +
√

2
)

7

∑
t∈Γτ,4∩Iτ,i : βτ,i+θ−1≤t<βτ,i+1−1

√
3 log (KT )

2b t−βτ,i+1
θ c

≤
16
(
3 +
√

2
)

7

βτ,i+1−2∑
t=βτ,i+θ−1

√
3 log (KT )

2b(t− βτ,i + 1)/θc

=
16
(
3 +
√

2
)

7

βτ,i+1−βτ,i−1∑
h=θ

√
3 log (KT )

2bh/θc

≤
16
(
3 +
√

2
)

7

d(βτ,i+1−βτ,i)/θe−1∑
j=1

(j+1)θ−1∑
h=jθ

√
3 log (KT )

2bh/θc

=
16
(
3 +
√

2
)

7

d(βτ,i+1−βτ,i)/θe−1∑
j=1

θ

√
3 log (KT )

2j

(48)

≤
16
(
3 +
√

2
)
θ

7

√
6
(
d(βτ,i+1 − βτ,i)/θe − 1

)
log (KT )

≤
16
(
3 +
√

2
)

7

√
6θ(βτ,i+1 − βτ,i) log (KT ).

(68)

Substituting the above inequality into (62) leads to

B4 ≤ 2θL+

m∑
τ=1

zτ∑
i=0

16
(
3 +
√

2
)

7

√
6θ(βτ,i+1 − βτ,i) log (KT )

(40,50,52)

≤ 2θL+
32
(
3 +
√

2
)

7

√
3θLT log (KT ). (69)

By substituting (51), (56), (61), and (69) into (43), we have

E

[
T∑
t=1

(
µt(a

g
t )− µt(at)

)]
≤ 4θL+ 4

(√
2 + 2

)√
3θLT log (KT ) + 192

√
αLT log (KT )

+ 2L+ 10
√

3θLT log (KT ) + 2θL+
32
(
3 +
√

2
)

7

√
3θLT log (KT )

≤ 8θL+
60
(
4 +
√

2
)

7

√
3θLT log (KT ) + 192

√
θLT log (KT ).

(70)

Recalling the decomposition in (41), it remains to bound
∑T
t=1

(
µt(a

∗
t ) − µt(a

g
t )
)
. While in each round t, there may be

multiple arms that are optimal and each of them can be chosen as a∗t , in all the following a∗t is chosen in such way that during
any interval Iτ,i, a∗t remains fixed

∀τ ∈ [m], i ∈ {0, . . . , zτ},∀s, t ∈ Iτ,i, a∗s = a∗t . (71)
Note that this choice of a∗t is only for regret analysis and our algorithm does not rely on it. Similarly to (42), for each epoch
τ ∈ [m], we partition the rounds [eτ , eτ+1 − 1] into 3 sets:

[eτ , eτ+1 − 1] = Ψτ,1 ∪Ψτ,2 ∪Ψτ,3, ∀i 6= j ∈ [3],Ψτ,i ∩Ψτ,j = ∅. (72)

where Ψτ,i, i ∈ [3] is defined as follows.
• Ψτ,1 consists of all rounds when the optimal arm is a good arm

Ψτ,1 = {t ∈ [eτ , eτ+1 − 1] : a∗t ∈ Gt} .



• Ψτ,2 is comprised of all rounds in which the optimal arm is a bad arm and its expected reward is close to its stored empirical
mean reward

Ψτ,2 =
{
t ∈ [eτ , eτ+1 − 1] : a∗t ∈ Bt, µt(a∗t )− µ̃τ (a∗t ) ≤ ∆̃τ (a∗t )/2

}
.

• Ψτ,3 consists of all rounds when the optimal arm is a bad arm and its expected reward is far away from its stored empirical
mean reward

Ψτ,3 =
{
t ∈ [eτ , eτ+1 − 1] : a∗t ∈ Bt, µt(a∗t )− µ̃τ (a∗t ) > ∆̃τ (a∗t )/2

}
.

Similarly to (43), we propose the following decomposition

T∑
t=1

(
µt(a

∗
t )− µt(a

g
t )
)

=

m∑
τ=1

3∑
i=1

∑
t∈Ψτ,i

(
µt(a

∗
t )− µt(a

g
t )
)

=

3∑
i=1

m∑
τ=1

∑
t∈Ψτ,i

(
µt(a

∗
t )− µt(a

g
t )
)

︸ ︷︷ ︸
Di

. (73)

It can be shown that D1 = 0 since µt(a∗t ) ≥ µt(a
g
t ) trivially holds and for t ∈ Ψτ,1, we have a∗t ∈ Gt and µt(a

g
t ) =

maxa∈Gt µt(a) ≥ µt(a∗t ). In the following, we bound D2 and D3 separately.
We first analyze D2. Similarly to (62), we have

D2 =

m∑
τ=1

∑
t∈Ψτ,2

(
µt(a

∗
t )− µt(a

g
t )
)

=

m∑
τ=1

zτ∑
i=0

∑
t∈Ψτ,2∩Iτ,i

(
µt(a

∗
t )− µt(a

g
t )
)

≤ 2θL+

m∑
τ=1

zτ∑
i=0

∑
t∈Ψτ,2∩Iτ,i : βτ,i+θ−1≤t<βτ,i+1−1

(
µt(a

∗
t )− µt(a

g
t )
)
.

(74)

For τ ∈ [m], i ∈ {0, . . . , zτ}, and t ∈ Ψτ,2 ∩ Iτ,i with βτ,i + θ − 1 ≤ t < βτ,i+1 − 1, by the definition of Ψτ,2, a∗t is a bad
arm in round t. So it must be eliminated from the good arm set in some previous round t′ ∈ [eτ , t). By Step 28 of Algorithm 3,
there exists s′ ∈ [eτ , t

′] such that (3) holds for a = a∗t and s = s′, and

µ̂[s′,t′](a
′)− µ̂[s′,t′](a

∗
t ) >

(√
2 + 1

)√ 6 log (KT )

O[s′,t′](Gt′)
, µ̃τ (a∗t ) = µ̂[s′,t′](a

∗
t ), ∆̃τ (a∗t ) = µ̂[s′,t′](a

′)− µ̂[s′,t′](a
∗
t ) (75)

with a′ ∈ arg maxã∈Gt′ µ̂[s′,t′](ã). Below we consider two cases: a′ ∈ Bt and a′ ∈ Gt.
(i) a′ ∈ Bt. In this case, a′ is eliminated from the good arm set in some previous round t′′ ∈ [eτ , t) and there exists

s′′ ∈ [eτ , t
′′] such that

µ̂[s′′,t′′](a
′′)− µ̂[s′′,t′′](a

′) >
(√

2 + 1
)√ 6 log (KT )

O[s′′,t′′](Gt′′)
, µ̃τ (a′) = µ̂[s′′,t′′](a

′), ∆̃τ (a′) = µ̂[s′′,t′′](a
′′)− µ̂[s′′,t′′](a

′) (76)

with a′′ ∈ arg maxã∈Gt′′ µ̂[s′′,t′′](ã). Since in round t′′ < t < eτ+1−1, epoch τ does not end, by (5) and noticing that a′ ∈ Gt′
and a′ 6∈ Gt′′+1 imply t′ ≤ t′′, we have

|µ̂[s′′,t′′](a
′)− µ̂[s′,t′](a

′)| ≤

√
3 log (KT )

2O[s′,t′](Gt′)
+

√
3 log (KT )

2O[s′′,t′′](Gt′′)
;

|µ̂[s′′,t′′](a
′′)− µ̂[s′,t′](a

′′)| ≤

√
3 log (KT )

2O[s′,t′](Gt′)
+

√
3 log (KT )

2O[s′′,t′′](Gt′′)
.

(77)

Combining the above inequalities with (76) gives

(√
2 + 1

)√ 6 log (KT )

O[s′′,t′′](Gt′′)
< µ̂[s′,t′](a

′′)− µ̂[s′,t′](a
′) +

√
6 log (KT )

O[s′,t′](Gt′)
+

√
6 log (KT )

O[s′′,t′′](Gt′′)

≤

√
6 log (KT )

O[s′,t′](Gt′)
+

√
6 log (KT )

O[s′′,t′′](Gt′′)

where the second inequality follows from the definition of a′ and the fact that a′′ ∈ Gt′′ ⊆ Gt′ . The above inequality immediately
implies

O[s′′,t′′](Gt′′) ≥ 2O[s′,t′](Gt′). (78)



On the other hand, since in round t′′, agt is not eliminated from the good arm set, we have

µ̂[s′′,t′′](a
g
t ) ≥ µ̂[s′′,t′′](a

′). (79)

Furthermore, in round t < eτ+1 − 1, epoch τ does not end, which implies that for s = βτ,i, s1 = s′′, s2 = t′′ and a = agt , (5)
does not hold

|µ̂[s′′,t′′](a
g
t )− µ̂[βτ,i,t](a

g
t )| ≤

√
3 log (KT )

2O[s′′,t′′](Gt′′)
+

√
3 log (KT )

2O[βτ,i,t](Gt)
. (80)

Finally, during [βτ,i, t], the reward distributions remain fixed. Thus, we can apply (32) and get

|µ̂[βτ,i,t](a
g
t )− µt(a

g
t )| = |µ̂[βτ,i,t](a

g
t )− µβτ,i(a

g
t )| ≤

√
3 log (KT )

2O[βτ,i,t](a
g
t )
. (81)

Combining the above inequalities together, we have

µt(a
g
t )

(81)

≥ µ̂[βτ,i,t](a
g
t )−

√
3 log (KT )

2O[βτ,i,t](a
g
t )

(1,80)

≥ µ̂[s′′,t′′](a
g
t )−

√
3 log (KT )

2O[s′′,t′′](Gt′′)
−

√
6 log (KT )

O[βτ,i,t](Gt)

(79)

≥ µ̂[s′′,t′′](a
′)−

√
3 log (KT )

2O[s′′,t′′](Gt′′)
−

√
6 log (KT )

O[βτ,i,t](Gt)

(77)

≥ µ̂[s′,t′](a
′)−

√
3 log (KT )

2O[s′,t′](Gt′)
−

√
6 log (KT )

O[s′′,t′′](Gt′′)
−

√
6 log (KT )

O[βτ,i,t](Gt)

(78)

≥ µ̂[s′,t′](a
′)−

(√
2 + 1

)√ 3 log (KT )

2O[s′,t′](Gt′)
−

√
6 log (KT )

O[βτ,i,t](Gt)
.

(ii) a′ ∈ Gt. In this case, we have the following inequality since in round t < eτ+1 − 1, epoch τ does not end.

|µ̂[s′,t′](a
′)− µ̂[βτ,i,t](a

′)| ≤

√
3 log (KT )

2O[s′,t′](Gt′)
+

√
3 log (KT )

2O[βτ,i,t](Gt)
. (82)

On the other hand, applying Lemma 6 leads to

|µ̂[βτ,i,t](a
′)− µt(a′)| = |µ̂[βτ,i,t](a

′)− µβτ,i(a′)| ≤

√
3 log (KT )

2O[βτ,i,t](a
′)

(83)

Combining the above two inequalities gives

µt(a
g
t ) ≥ µt(a′)

(83)

≥ µ̂[βτ,i,t](a
′)−

√
3 log (KT )

2O[βτ,i,t](a
′)

(1,82)

≥ µ̂[s′,t′](a
′)−

√
3 log (KT )

2O[s′,t′](Gt′)
−

√
6 log (KT )

O[βτ,i,t](Gt)

where the first inequality holds since agt ∈ arg maxa∈Gt µt(a) and a′ ∈ Gt.
Thus, in both cases we have

µt(a
g
t ) ≥ µ̂[s′,t′](a

′)−
(√

2 + 1
)√ 3 log (KT )

2O[s′,t′](Gt′)
−

√
6 log (KT )

O[βτ,i,t](Gt)
. (84)

On the other hand, by the definition of Ψτ,2, we have

µt(a
∗
t )− µ̃τ (a∗t ) ≤ ∆̃τ (a∗t )/2.

Combining this inequality with (75) gives

µ̂[s′,t′](a
′)

(75)
= ∆̃τ (a∗t ) + µ̃τ (a∗t ) ≥ µt(a∗t ) +

∆̃τ (a∗t )

2

(75)

≥ µt(a
∗
t ) +

(√
2 + 1

)√ 3 log (KT )

2O[s′,t′](Gt′)
.

By the above inequality and (84), we get

µt(a
∗
t )− µt(a

g
t ) ≤

√
6 log (KT )

O[βτ,i,t](Gt)
.



Substituting this inequality into (74) and following the analysis in (67), (68), and (69), it is easy to show that

D2 ≤ 2θL+ 4
√

3θLT log (KT ). (85)

We proceed to bound D3:

D3 =

m∑
τ=1

∑
t∈Ψτ,3

(
µt(a

∗
t )− µt(a

g
t )
)

=

m∑
τ=1

zτ∑
i=0

∑
t∈Ψτ,3∩Iτ,i

(
µt(a

∗
t )− µt(a

g
t )
)

≤ 2θL+

m∑
τ=1

zτ∑
i=0

∑
t∈Ψτ,3∩Iτ,i : βτ,i+θ−1≤t<βτ,i+1−1

(
µt(a

∗
t )− µt(a

g
t )
)
.

(86)

For τ ∈ [m], i ∈ {0, . . . , zτ}, and t ∈ Ψτ,3 ∩ Iτ,i with βτ,i + θ − 1 ≤ t < βτ,i+1 − 1, by the definition of Ψτ,3, we have

a∗t ∈ Bt, µt(a
∗
t )− µ̃τ (a∗t ) > ∆̃τ (a∗t )/2. (87)

Since a∗t is a bad arm in round t, it must be eliminated from the good arm set in some previous round t′ ∈ [eτ , t). By Step 28
of Algorithm 3, there exists s′ ∈ [eτ , t

′] such that (3) holds for a = a∗t and s = s′, and

µ̂[s′,t′](a
′)− µ̂[s′,t′](a

∗
t ) >

(√
2 + 1

)√ 6 log (KT )

O[s′,t′](Gt′)
, µ̃τ (a∗t ) = µ̂[s′,t′](a

∗
t ), ∆̃τ (a∗t ) = µ̂[s′,t′](a

′)− µ̂[s′,t′](a
∗
t ) (88)

with a′ ∈ arg maxã∈Gt′ µ̂[s′,t′](ã). On the other hand, since in round t < βτ,i+1 − 1 ≤ eτ+1 − 1, epoch τ does not end, and
during [βτ,i, t] the reward distributions do not change, by Step 18 of Algorithm 3 and Lemma 6, we have

|µ̂[s′,t′](a
g
t )− µ̂[βτ,i,t](a

g
t )| ≤

√
3 log (KT )

2O[s′,t′](Gt′)
+

√
3 log (KT )

2O[βτ,i,t](Gt)
; (89)

|µ̂[βτ,i,t](a
g
t )− µt(a

g
t )| = |µ̂[βτ,i,t](a

g
t )− µβτ,i(a

g
t )| ≤

√
3 log (KT )

2O[βτ,i,t](a
g
t )
. (90)

Combining the above inequalities together gives

µt(a
∗
t )− µt(a

g
t )

(1,90)

≤ µt(a
∗
t )− µ̃τ (a∗t ) + µ̃τ (a∗t )− µ̂[βτ,i,t](a

g
t ) +

√
3 log (KT )

2O[βτ,i,t](Gt)

(88,89)

≤ µt(a
∗
t )− µ̃τ (a∗t ) + µ̂[s′,t′](a

∗
t )− µ̂[s′,t′](a

g
t ) +

√
3 log (KT )

2O[s′,t′](Gt′)
+

√
6 log (KT )

O[βτ,i,t](Gt)

(agt∈Gt,t>t
′)

≤ µt(a
∗
t )− µ̃τ (a∗t ) +

√
3 log (KT )

2O[s′,t′](Gt′)
+

√
6 log (KT )

O[βτ,i,t](Gt)

(88)

≤ µt(a
∗
t )− µ̃τ (a∗t ) +

∆̃τ (a∗t )

2
(√

2 + 1
) +

√
6 log (KT )

O[βτ,i,t](Gt)

(87)

≤
√

2
(
µt(a

∗
t )− µ̃τ (a∗t )

)
+

√
6 log (KT )

O[βτ,i,t](Gt)
.

(91)

Substituting this inequality into (86) leads to

D3 ≤ 2θL+
√

2

m∑
τ=1

zτ∑
i=0

∑
t∈Ψτ,3∩Iτ,i : βτ,i+θ−1≤t<βτ,i+1−1

(
µt(a

∗
t )− µ̃τ (a∗t )

)
+

m∑
τ=1

zτ∑
i=0

∑
t∈Ψτ,3∩Iτ,i : βτ,i+θ−1≤t<βτ,i+1−1

√
6 log (KT )

O[βτ,i,t](Gt)

≤ 2θL+ 4
√

3θLT log (KT ) +
√

2

m∑
τ=1

zτ∑
i=0

∑
t∈Ψτ,3∩Iτ,i

(
µt(a

∗
t )− µ̃τ (a∗t )

)
(92)



where the second inequality can be easily derived by following (67), (68), and (69).
For τ ∈ [m] and i ∈ {0, . . . , zτ}, by our choice of a∗t stated in (71), we can define a∗τ,i and µ∗τ,i such that ∀t ∈ Iτ,i, a∗t = a∗τ,i

and µ∗τ,i = µβτ,i(a
∗
τ,i). For τ ∈ [m] and i ∈ {0, . . . , zτ} with Ψτ,3 ∩ Iτ,i 6= ∅, we can further define

ετ,i = max {ε : ε = 2−g, g ∈ Z; ε ≤
(
µ∗τ,i − µ̃τ (a∗τ,i)

)
/4}, nτ,i = d1.5ε−2

τ,i log (KT )e. (93)

Note that ετ,i ≤ 1/4 since µ∗τ,i − µ̃τ (a∗τ,i) ≤ 1. By the above definition, for any t ∈ Ψτ,3 ∩ Iτ,i, we have 2ετ,i >
(
µt(a

∗
t ) −

µ̃τ (a∗t )
)
/4, which implies

m∑
τ=1

zτ∑
i=0

∑
t∈Ψτ,3∩Iτ,i

(
µt(a

∗
t )− µ̃τ (a∗t )

)
≤ 8

m∑
τ=1

zτ∑
i=0

∑
t∈Ψτ,3∩Iτ,i

ετ,i = 8

m∑
τ=1

∑
i∈{0,...,zτ} : Ψτ,3∩Iτ,i 6=∅,ετ,i≤

√
3θ(log (KT ))/|Iτ,i|

∑
t∈Ψτ,3∩Iτ,i

ετ,i

+ 8

m∑
τ=1

∑
i∈{0,...,zτ} : Ψτ,3∩Iτ,i 6=∅,ετ,i>

√
3θ(log (KT ))/|Iτ,i|

∑
t∈Ψτ,3∩Iτ,i

ετ,i

≤ 8

m∑
τ=1

zτ∑
i=0

√
3θ|Iτ,i| log (KT ) + 8

m∑
τ=1

∑
i∈{0,...,zτ} : Ψτ,3∩Iτ,i 6=∅,ετ,i>

√
3θ(log (KT ))/|Iτ,i|

∑
t∈Ψτ,3∩Iτ,i

ετ,i

(50)

≤ 8
√

6θLT log (KT ) + 8

m∑
τ=1

∑
i∈{0,...,zτ} : Ψτ,3∩Iτ,i 6=∅,ετ,i>

√
3θ(log (KT ))/|Iτ,i|,|Iτ,i|≤2θnτ,i

2θnτ,iετ,i (94)

+ 8

m∑
τ=1

∑
i∈{0,...,zτ} : Ψτ,3∩Iτ,i 6=∅,ετ,i>

√
3θ(log (KT ))/|Iτ,i|,|Iτ,i|>2θnτ,i

∑
t∈Ψτ,3∩Iτ,i

ετ,i

(93)

≤ 8
√

6θLT log (KT ) + 8

m∑
τ=1

∑
i∈{0,...,zτ} : Ψτ,3∩Iτ,i 6=∅,ετ,i>

√
3θ(log (KT ))/|Iτ,i|,|Iτ,i|≤2θnτ,i

(3θ log (KT )

ετ,i
+ 2θετ,i

)

+ 8

m∑
τ=1

∑
i∈{0,...,zτ} : Ψτ,3∩Iτ,i 6=∅,ετ,i>

√
3θ(log (KT ))/|Iτ,i|,|Iτ,i|>2θnτ,i

∑
t∈Ψτ,3∩Iτ,i

ετ,i

≤ 8
√

6θLT log (KT ) + 8

m∑
τ=1

zτ∑
i=0

√
3θ|Iτ,i| log (KT ) + 16θ

m∑
τ=1

zτ∑
i=0

1

4

+ 8

m∑
τ=1

∑
i∈{0,...,zτ} : Ψτ,3∩Iτ,i 6=∅,ετ,i>

√
3θ(log (KT ))/|Iτ,i|,|Iτ,i|>2θnτ,i

∑
t∈Ψτ,3∩Iτ,i

ετ,i

(50)

≤ 16
√

6θLT log (KT ) + 8θL+ 8

m∑
τ=1

∑
i∈{0,...,zτ} : Ψτ,3∩Iτ,i 6=∅,ετ,i>

√
3θ(log (KT ))/|Iτ,i|,|Iτ,i|>2θnτ,i

∑
t∈Ψτ,3∩Iτ,i

ετ,i.

It remains to bound the last summation in the above inequality. To this end, we introduce Rτ,i, which is defined as the total
future expected contributions of ετ ′,i′ starting from βτ,i, i.e., the expectation of summation of contributions over τ ′, i′, and
t ∈ Ψτ ′,3 ∩ Iτ ′,i′ such that t ≥ βτ,i,Ψτ ′,3 ∩ Iτ ′,i′ 6= ∅, ετ ′,i′ >

√
3θ(log (KT ))/|Iτ ′,i′ |, |Iτ ′,i′ | > 2θnτ ′,i′ :

Rτ,i = E

 m∑
τ ′=1

∑
i′∈{0,...,zτ′} : Ψτ′,3∩Iτ′,i′ 6=∅,ετ′,i′>

√
3θ(log (KT ))/|Iτ′,i′ |,|Iτ′,i′ |>2θnτ′,i′

∑
t∈Ψτ′,3∩Iτ′,i′ : t≥βτ,i

ετ ′,i′
∣∣∣ βτ,i

 .
Since β1,0 = 1, we have

E

 m∑
τ=1

∑
i∈{0,...,zτ} : Ψτ,3∩Iτ,i 6=∅,ετ,i>

√
3θ(log (KT ))/|Iτ,i|,|Iτ,i|>2θnτ,i

∑
t∈Ψτ,3∩Iτ,i

ετ,i

 = R1,0. (95)



To proceed, we introduce some notations. Let 1 = ξ1 < . . . < ξL be all rounds when there is an arm whose reward distribution
changes and define ξL+1 = T + 1. Then, [1, T ] can be divided into intervals J` = [ξ`, ξ`+1 − 1], ` ∈ [L]:

[1, T ] =

L⋃
`=1

J`.

It can be shown that each Iτ,i = [βτ,i, βτ,i+1 − 1] is a subset of some J`. Let ρ(τ, i) be such that Iτ,i ⊆ Jρ(τ,i) =
[ξρ(τ,i), ξρ(τ,i)+1 − 1]. By the definitions of Iτ,i and J`, ρ(τ, i) is deterministic conditioned on βτ,i.

Below we prove by backward induction that

Rτ,i ≤
L∑
`=τ

√
θT log (KT )

`
+
√

3θ(2L− ρ(τ, i)− τ)(T + 1− βτ,i) log (KT ). (96)

Proof of (96). The inequality trivially holds after all epochs when βτ,i = T + 1.
Consider τ and i such that Ψτ,3 ∩ Iτ,i 6= ∅, ετ,i >

√
3θ(log (KT ))/|Iτ,i|, |Iτ,i| > 2θnτ,i. For t ∈ Ψτ,3 ∩ Iτ,i, if during

[βτ,i, t], the reward of arm a∗τ,i is observed not less than nτ,i times, i.e., O[βτ,i,t](a
∗
τ,i) ≥ nτ,i. Then, by (32), (87), and (93), we

have

µ̂[βτ,i,t](a
∗
τ,i)− µ̃τ (a∗τ,i)

(32)

≥ µβτ,i(a
∗
τ,i)− µ̃τ (a∗τ,i)−

√
3 log (KT )

2O[βτ,i,t](a
∗
τ,i)

≥ µ∗τ,i − µ̃τ (a∗τ,i) +

√
3 log (KT )

2nτ,i
− 2

√
3 log (KT )

2nτ,i

(93)

≥ µ∗τ,i − µ̃τ (a∗τ,i) +

√
3 log (KT )

2nτ,i
− 2ετ,i

(93)

≥
µ∗τ,i − µ̃τ (a∗τ,i)

2
+

√
3 log (KT )

2nτ,i

(87)
>

∆̃τ (a∗τ,i)

4
+

√
3 log (KT )

2nτ,i
≥

∆̃τ (a∗τ,i)

4
+

√
3 log (KT )

2O[βτ,i,t](a
∗
τ,i)

which implies that (4) holds for s = βτ,i, and epoch τ ends.

On the other hand, in round s ∈ Ψτ,3 ∩ Iτ,i, since 1
4 ≥ ετ,i ≥ µs(a

∗
s)−µ̃τ (a∗s)

8 ≥ ∆̃τ (a∗s)
16 =

∆̃τ (a∗τ,i)

16 , by the properties
of Algorithm 4 and Steps 4–8 of Algorithm 3, with probability ετ,i

√
τ/ (|Ws|T log (KT )) ≥ ετ,i

√
τ/ (θT log (KT )), the

sampling obligation (ετ,i, nτ,i, s) is added into Ss(a) for an arm a ∈ Na∗τ,i ∩Ws with ∆̃τ (a∗τ,i) ≥ ∆̃τ (a). Once such sampling
obligation is added into Ss(a), after at most θnτ,i rounds the reward of arm a∗τ,i is observed not less than nτ,i times, which
leads to the ending of epoch τ . Thus, denoting by R′τ,i the expected contributions of ετ,i within Iτ,i when t ∈ Ψτ,3:

R′τ,i = E

 ∑
t∈Ψτ,3∩Iτ,i

ετ,i

∣∣∣ βτ,i


and defining pτ =
√
τ/ (θT log (KT )), we have

R′τ,i ≤ ετ,i

ξρ(τ,i)+1−βτ,i−θnτ,i∑
h=1

(
1− ετ,i

√
τ/ (θT log (KT ))

)h
+ θnτ,i


= ετ,i

 (1− ετ,ipτ )
(

1− (1− ετ,ipτ )ξρ(τ,i)+1−βτ,i−θnτ,i
)

ετ,ipτ
+ θnτ,i


≤ 1− (1− ετ,ipτ )ξρ(τ,i)+1−βτ,i−θnτ,i

pτ
+ θnτ,iετ,i ≤

1− (1− ετ,ipτ )ξρ(τ,i)+1−βτ,i−θnτ,i

pτ
+

3θ log (KT )

ετ,i

where the last inequality holds since by (93), nτ,i ≤ 1.5ε−2
τ,i log (KT ) + 1 ≤ 3ε−2

τ,i log (KT ). Furthermore, denoting by qτ,i the
probability that epoch τ does not end within Iτ,i, we have

qτ,i ≤ (1− ετ,ipτ )ξρ(τ,i)+1−βτ,i−θnτ,i .



Note that ρ(τ, i+ 1) = ρ(τ, i) + 1, |Iτ,i| = βτ,i+1− βτ,i if epoch τ does not end within Iτ,i, and ρ(τ + 1, 0) = ρ(τ, i), |Iτ,i| =
βτ+1,0 − βτ,i otherwise.

By the above two inequalities and induction, we obtain
Rτ,i ≤ R′τ,i + qτ,iRτ,i+1 + (1− qτ,i)Rτ+1,0

≤ 1− qτ,i
pτ

+ qτ,i

√
3θ(βτ,i+1 − βτ,i) log (KT ) + (1− qτ,i)

√
3θ(βτ+1,0 − βτ,i) log (KT )

+ qτ,i

(
L∑
`=τ

√
θT log (KT )

`
+
√

3θ(2L− ρ(τ, i)− 1− τ)(T + 1− βτ,i+1) log (KT )

)

+ (1− qτ,i)

(
L∑

`=τ+1

√
θT log (KT )

`
+
√

3θ(2L− ρ(τ, i)− τ − 1)(T + 1− βτ+1,0) log (KT )

)

= (1− qτ,i)
√
θT log (KT )

τ
+ qτi

L∑
`=τ

√
θT log (KT )

`
+ (1− qτ,i)

L∑
`=τ+1

√
θT log (KT )

`

+ qτ,i

(√
3θ(βτ,i+1 − βτ,i) log (KT ) +

√
3θ(2L− ρ(τ, i)− 1− τ)(T + 1− βτ,i+1) log (KT )

)
+ (1− qτ,i)

(√
3θ(βτ+1,0 − βτ,i) log (KT ) +

√
3θ(2L− ρ(τ, i)− τ − 1)(T + 1− βτ+1,0) log (KT )

)
≤

L∑
`=τ

√
θT log (KT )

`
+ qτi

√
3θ log (KT )

√
(2L− ρ(τ, i)− τ)(T + 1− βτ,i)

+ (1− qτ,i)
√

3θ log (KT )
√

(2L− ρ(τ, i)− τ)(T + 1− βτ,i)

=

L∑
`=τ

√
θT log (KT )

`
+
√

3θ(2L− ρ(τ, i)− τ)(T + 1− βτ,i) log (KT )

where we have used ετ,i >
√

3θ(log (KT ))/|Iτ,i|, and the last inequality is due to
√
x+
√
by ≤

√
(b+ 1)(x+ y). �

(96) immediately implies

R1,0 ≤
L∑
`=1

√(
θT log (KT )

)
/`+

√
6θLT log (KT ) ≤ (2 +

√
6)
√
θLT log (KT ).

Combining this inequality with (92), (94), and (95) gives

E[D3] ≤ 2θL+ 4
√

3θLT log (KT ) +
√

2
(

24
√

6θLT log (KT ) + 8θL+ 16
√
θLT log (KT )

)
= 2θL+ 8

√
2θL+

(
52
√

3 + 16
√

2
)√

θLT log (KT ).

We end the proof with combining all things together. By (73), (85), and the above inequality, we have

E

[
T∑
t=1

(
µt(a

∗
t )− µt(a

g
t )
)]
≤ 4θL+ 8

√
2θL+

(
56
√

3 + 16
√

2
)√

θLT log (KT )

which, together with (41) and (70), leads to

E[DR(T )] ≤ 8θL+
60
(
4 +
√

2
)

7

√
3θLT log (KT ) + 192

√
θLT log (KT )

+ 4θL+ 8
√

2θL+
(
56
√

3 + 16
√

2
)√

θLT log (KT ) + 2

≤ (12 + 8
√

2)θL+
60
√

6 + 632
√

3 + 112
√

2 + 1344

7

√
θLT log (KT ) + 2

≤ 24θL+ 393
√
θLT log (KT ) + 2

where the term 2 is introduced to bound the expected regret for the violation of (32) in Lemma 6. Finally, since rewards are all
bounded in [0, 1], we have E[DR(T )] ≤ T and

E[DR(T )] ≤ min
(
24θL+ 393

√
θLT log (KT ) + 2, T

)
= O

(√
θLT log (KT )

)
where the equality holds since θL =

√
θL
√
θL ≤

√
θLT if θL ≤ T , and T =

√
T
√
T ≤

√
θLT otherwise.


