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Abstract. We study online learning to rank (OL2R), where a param-
eterized ranking model is optimized based on sequential feedback from
users. A natural and popular approach for OL2R is to formulate it as
a multi-armed dueling bandits problem, where each arm corresponds to
a ranker, i.e., the ranking model with a specific parameter configura-
tion. While the dueling bandits and its application to OL2R have been
extensively studied in the literature, existing works focus on static envi-
ronments where the preference order over rankers is assumed to be sta-
tionary. However, this assumption is often violated in real-world OL2R
applications as user preference typically changes with time and so does
the optimal ranker. To address this problem, we propose non-stationary
dueling bandits where the preference order over rankers is modeled by
a time-variant function. We develop an efficient and adaptive method
for non-stationary dueling bandits with strong theoretical guarantees.
The main idea of our method is to run multiple dueling bandits gradient
descent (DBGD) algorithms with different step sizes in parallel and em-
ploy a meta algorithm to dynamically combine these DBGD algorithms
according to their real-time performance. With straightforward exten-
sions, our method can also apply to existing DBGD-type algorithms.
Extensive experiments on public datasets demonstrate that our method
can improve the ranking performance of DBGD-type algorithms in non-
stationary environments with affordable time and space complexities.

Keywords: Online learning to rank · Dueling bandits · Non-Stationary
environments.

1 Introduction

As a powerful ranking optimization paradigm, learning to rank has found appli-
cations in a variety of information retrieval scenarios such as web search, online
advertising, and recommendation systems [12, 14]. In the classical offline learn-
ing to rank, a parameterized ranking model is first trained on collected queries
and documents with relevance labels, and then deployed to respond to users’
queries with predicted relevant documents. A drawback of offline learning to
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rank is that the process of collecting training data with relevance labels is highly
time-consuming and expensive in large-scale applications [6]. Furthermore, as
the ranking model is fixed after being deployed, it cannot track the evolution of
user needs [9].

To address these issues, recent advances in information retrieval have in-
troduced online learning to rank (OL2R), where the ranking model is optimized
based on its interactions with users on the fly [4]. Compared to its offline counter-
part, OL2R has lighter computational overhead and higher updating frequency.
At the heart of OL2R lies the trade-off between exploring new rankers and ex-
ploiting the seemingly optimal ranker. Thus, a natural and popular approach for
OL2R is to formulate it as a dueling bandits problem [27, 26], where each ranker
is viewed as an arm and the ranking model is optimized through sequential
noisy comparisons between rankers. While the dueling bandits based methods
have been widely studied for OL2R, they are limited in that the preference order
over rankers is assumed to follow stationary probability distributions. However,
in real-world scenarios, user preference typically changes with time, making the
stationary assumption invalid.

To better cope with real-world ranking tasks, we investigate dueling bandits
with non-stationary preference probability distributions for OL2R. Specifically,
let w and w′ be two points in the parameter space of the ranking model. We
model the probability that users prefer the ranking results produced by a ranker
with parameter w over those of a ranker with parameter w′ by a composite
function ft(w,w

′) = σ(vt(w) − vt(w′)), where σ is a static link function, and
vt denotes the utility function in round t. Compared to the existing works on
dueling bandits, the novelty of our model is that the utility function can change
with time t, capturing the non-stationarity of user preference. Since vt and vt′ can
be different for t 6= t′, the optimal parameter w∗t that maximizes vt and hence
the optimal ranker can change with time, making the non-stationary dueling
bandits much harder to deal with than its stationary counterpart.

Nevertheless, by drawing inspiration from recent progress in dynamic on-
line optimization [28, 29], we develop an efficient and adaptive method for non-
stationary dueling bandits. Our method follows the prediction with expert ad-
vice framework [1] and has a two layer hierarchical structure: multiple dueling
bandits gradient descent (DBGD)[27] algorithms running parallel in the bottom
and a meta algorithm aggregating the outputs of DBGDs in the top. Generally
speaking, DBGDs aim at balancing the exploration-exploitation tradeoff, which
also exists in the classical stationary dueling bandits, and the meta algorithm is
responsible for tracking the change of utility functions, which is a new task aris-
ing only in our non-stationary setting. Under mild assumptions, we prove that
our method guarantees no-regret learning, indicating that when the number of
rounds goes infinity, the average performance of our method is the same as that
of a clairvoyant who knows the optimal ranker in each round. Furthermore, we
show that our method, while developed in the context of DBGD, can be also
straightforwardly extended to existing variants of DBGD. Finally, we conduct
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extensive experiments on public datasets to demonstrate the effectiveness and
efficiency of our method for OL2R in non-stationary environments.

2 Related Work

In their seminal work [27], Yue and Joachims proposed a dueling bandits for-
mulation for OL2R, where the ranking model is continuously updated based on
noisy comparisons between different rankers. By using an interleaving method
to infer user preference and estimate gradients, they developed an online algo-
rithm termed as Dueling Bandits Gradient Descent (DBGD) and established a
sub-linear regret bound for DBGD, indicating that the average performance of
DBGD converges to that of the best offline ranker.

Due to its simplicity and effectiveness, DBGD has been a popular basis in
OL2R and various extensions of DBGD have been proposed. Hoffman et al.
first investigated the idea of reusing historical data to speed up learning [7].
They designed a method where the exploratory rankers are filtered according
to historical comparisons. While this method enjoys faster learning, it suffers
the bias issue of historical data and thus its ranking quality could degrade over
time [17]. Wang et al. proposed to accelerate learning by reducing exploration
from the whole parameter space to a null space of recently badly performing
gradients and selectively constructing candidate rankers for comparisons [25].
Later, a variance reduction method which projects gradients into the document
space while maintaining the unbiased property of gradients is developed [24]. It is
showed that this method can be combined with existing DBGD-type algorithms
for improving ranking performance [24].

Another way to speed up learning is to simultaneously evaluate multiple
rankers in each round. Schuth et al. extended DBGD to the Multileave Gradi-
ent Descent (MGD) algorithm [20], which replaces the interleaving method in
DBGD with multileaving methods [21] so as to compare multiple exploratory di-
rections. In a subsequent work, Zhao and King proposed the Dual-Point Dueling
Bandits Gradient Descent algorithm [30], which samples two exploratory vectors
with opposite directions for variance reduction. Oosterhuis and Rijke focused on
the trade-off between faster learning and higher ranking quality and developed
a cascade method which initially optimizes a simple model and switches to a
complex model when convergence of the simple model is detected [15]. They
empirically showed that the cascade method can learn user preference faster
without sacrificing the ranking quality.

A common feature of the above works is that they fall into the static dueling
bandits framework. To the best of our knowledge, we are the first to study duel-
ing bandits as well as its application to OL2R in non-stationary environments.
Finally, departing from dueling bandits, there also exist other lines of research
that study OL2R in other bandits frameworks such as cascading bandits [11],
contextual bandits [10], and ranked bandits [22]. However, these works deal with
each query independently and thus are not suitable for large-size OL2R applica-
tions.
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3 Problem Setup

We study non-stationary dueling bandits for online learning to rank, which pro-
ceeds in a sequence of rounds. Let W ⊆ Rd be the parameter space of a ranking
model and T be the number of rounds. Following previous work [16, 25, 24], we
refer to the ranking model with a specific parameter configuration as a ranker.
In each round t ∈ [T ] = {1, . . . , T}, firstly a learner chooses two rankers with
parameters wt ∈ W and w′t ∈ W, respectively. Then, the ranking lists produced
by the rankers are merged by an interleaving method [19, 8]. The merged list
is displayed to a user and a noisy preference order over the rankers is inferred
from the user’s click feedback. Specifically, the ranker whose ranking list receives
more clicks is preferred. Finally, the learner updates the parameter of the ranking
model based on the inferred preference order.

We denote byw � w′ the event that users prefer the ranking list produced by
the ranker w than that of the ranker w′. While the existing works only consider
the setting where the probability of this event is fixed, we allow the probability to
change with time so as to capture the non-stationary nature of user preference.
Specifically, in round t, the probability of the event w � w′ is defined as

Pr(w � w′|t) = ft(w,w
′) = σ(vt(w)− vt(w′)) (1)

where σ is a static link function, and vt denotes the utility function in round t.
Following previous work [27, 24], we make some standard assumptions as follows:
– The parameter space of the ranking model W is bounded

max
w∈W

‖w‖2 ≤ R. (2)

– The link function σ is rotation-symmetric

σ(x) = 1− σ(−x). (3)

– The link function σ is monotonically increasing and satisfies

σ(−∞) = 0, σ(0) = 1/2, σ(∞) = 1.

– The link function σ is Lσ-Lipschitz, and all utility functions vt, t ∈ [T ]
are Lv-Lipschitz. Furthermore, the link function σ is also second order L2-
Lipschitz.3

Denoting L = LσLv, the above assumptions directly imply the functions ft, t ∈
[T ] are L-Lipschitz in both arguments.

Let w∗t = argmaxw∈W vt(w) denote the optimal ranker achieving the maxi-
mum utility in round t. We adopt dynamic regret as performance metric, defined
as

DR(T ) =

T∑
t=1

(
ft(w

∗
t ,wt) + ft(w

∗
t ,w

′
t)− 2ft(w

∗
t ,w

∗
t )
)
.

Our goal is to design an online learning method for minimizing the above dy-
namic regret.
3 In OL2R, a widely used link function is the sigmoid function σ(x) = 1/

(
1+exp(−x)

)
,

which satisfies all of our assumptions.
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4 Method

In this section, we first review the dueling bandits gradient descent (DBGD)
algorithm and derive its dynamic regret bound, then present our method as well
as its theoretical guarantee, and finally discuss the extensions of our method to
existing DBGD-type algorithms.

4.1 Dueling Bandits Gradient Descent

As outlined in Algorithm 1, DBGD has two hyperparameters δ and γ, corre-
sponding to the step sizes of exploration and exploitation, respectively. In each
round t, DBGD first draws a vector ut uniformly at random from the unit sphere
S , {x ∈ Rd : ‖x‖2 = 1} as an exploratory direction. Then, a candidate ranker
is created with parameter

w′t = ΠW [wt + δut] (4)

where wt is the current parameter of the ranking model and ΠW [·] denotes the
operation of projecting a point to the parameter spaceW. Next, the two rankers
wt and w′t are compared by the probabilistic interleaving method [8], which can
merge the ranking lists produced by the two rankers and infer a preference order
over the two rankers from user clicks on the merged ranking list. Finally, based
on the preference order, DBGD updates the parameter of the ranking model
for the next round. Specifically, if w′t wins, which reveals that the exploratory
direction leads to better ranking performance, then the parameter of the ranking
model moves along the exploratory direction with step size γ:

wt+1 = ΠW [wt + γut].

Otherwise, the ranking model remains unchanged.
We rigorously analyze the learning properties of DBGD and derive a sub-

linear dynamic regret bound as follows.

Theorem 1. Let CT be the path length of the optimal rankers over T rounds,
defined as

CT =

T∑
t=2

‖w∗t −w∗t−1‖2. (5)

By setting δ =
√

2λd
(11+2λ)L

√
T
and γ =

√
5R2+2RCT

T , the dynamic regret of DBGD
satisfies

E[DR(T )] ≤
√
2(11 + 2λ)λdL

(
1 +

√
5R2 + 2RCT

)
T

3
4 .
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Algorithm 1 DBGD
Require: step sizes of exploration δ and exploitation γ
1: Initialize a ranker w1 ∈ W arbitrarily
2: for t = 1, 2, . . . , T do
3: Draw a vector ut uniformly at random from S
4: Create an exploratory ranker w′t = ΠW [wt + δut]
5: Compare wt and w′t by probabilistic interleaving
6: if w′t � wt then
7: Set wt+1 = ΠW [wt + γut]
8: else
9: Set wt+1 = wt

10: end if
11: end for

4.2 DBGD Meets Meta Learning

While DBGD can achieve a sub-linear dynamic regret bound for CT = o(
√
T ),

it requires the value of the path-length CT for tuning the step size γ, which is
clearly impossible in practice since CT depends on the unknown optimal rankers
w∗1, . . . ,w

∗
T . To address this issue, we employ the meta learning technique to

automatically tune the step size γ, which has exhibited successes in online convex
optimization [3, 28, 29]. The basic idea is to run multiple DBGDs in parallel,
each of which is configured with a different step size γ and admits the sub-
linear dynamic regret bound for a class of path length. We develop our method
in the prediction with expert advice framework, where each DBGD is viewed
as an expert and the outputs of DBGDs are combined by an expert-tracking
algorithm.

We now describe our method in detail, which is termed as DBGDMeets Meta
Learning (DM2L) and consists of a meta algorithm and an expert algorithm.

Meta Algorithm As outlined in Algorithm 2, at the beginning of the meta algo-
rithm, we invoke the expert algorithm with different step size γ. According to
our theoretical analysis, we maintain

N =
⌈
log2

√
1 + 4T/5

⌉
+ 1 (6)

experts and the step size γ of the i-th expert is configured as

γi = 2i−1R
√

5/T , i = 1, . . . , N. (7)

Each expert i ∈ [N ] is associated with a time-variant weight πit, which is dynam-
ically adjusted according to the real time performance of expert i. For deriving
a tighter dynamic regret bound, we take a nonuniform initialization of weights:

πi1 =
N + 1

i(i+ 1)N
, i = 1, . . . , N. (8)
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In each round t, we first receive a ranker wi
t from each expert i ∈ [N ] and

aggregate these rankers according to the weights of experts πit, i ∈ [N ] as

wt =

N∑
i=1

πitw
i
t.

Then, we sample a vector ut from the unit sphere S uniformly at random and
compare wt with w′t = ΠW [wt + δut] by invoking the probabilistic interleaving
method, which returns a noisy preference order I{w′

t�wt}. Next, we update the
weight of each expert using an exponential scheme

πit+1 =
πit exp(−α`t(wi

t))∑N
j=1 π

j
t exp(−α`t(w

j
t ))

, i = 1, . . . , N (9)

where `t(w) is a surrogate loss function, defined as

`t(w) = −d
δ
〈I{w′

t�wt}ut,w −wt〉

which approximately evaluates the real-time performance of the experts. Finally,
both the preference order I{w′

t�wt} and the exploratory direction ut are sent to
each expert so that they can update their own rankers accordingly.

Expert Algorithm As summarized in Algorithm 3, the expert algorithm is a
variant of DBGD. In each round t, each expert i ∈ [N ] first sends its current
ranker wi

t to the meta algorithm. Then, each expert receives the same preference
order I{w′

t�wt} and exploratory direction ut from the meta algorithm. Finally,
each expert updates its own ranker as

wi
t+1 = ΠW [wi

t + γiI{w′
t�wt}ut], i = 1, . . . , N. (10)

Different from DBGD, we here take the same updating direction I{w′
t�wt}ut

for all experts so that only two rankers wt,w
′
t need to be compared in each

round. While the updating direction is no longer opposite to the gradient of the
smoothed function ∇ht(wi

t), it is the inverse of the gradient of the surrogate loss
function ∇`t(wi

t). Thus, the updating rule of each expert can still be viewed as
gradient descent and the dynamic regret of each expert can be analyzed following
the proof of Theorem 1.

We present the theoretical guarantee of our method DM2L in the follow-
ing theorem. Compared to DBGD, the main advantage of DM2L is that it can
achieve the sub-linear dynamic regret bound without prior knowledge of the path
length CT and thus can adapt to unknown non-stationarity of environments.

Theorem 2. By setting δ =
√

3λd
(11+2λ)L

√
T

and α = 4/
√
T and using the con-

figurations in (6) and (7), DM2L achieves the following dynamic regret bound

E[DR(T )] ≤
√

3(11 + 2λ)λdL
(
1 +

√
5R2 + 2RCT

)
T

3
4 + λ(1 + ln (N + 1))

√
T .
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Algorithm 2 DM2L: Meta Algorithm
Require: number of experts N , step size of exploration δ, step sizes of exploitation

γ1, . . . , γN , learning rate α
1: Invoke Algorithm 3 with γi for each expert i ∈ [N ]
2: Initialize the weights of experts πi

1, i ∈ [N ] by (8)
3: for t = 1, 2, . . . , T do
4: Receive ranker wi

t from each expert i ∈ [N ]
5: Aggregate the rankers as wt =

∑N
i=1 π

i
tw

i
t

6: Draw a vector ut uniformly at random from S
7: Create an exploratory ranker w′t = ΠW [wt + δut]
8: Compare wt and w′t by probabilistic interleaving
9: Update the weight of each expert πi

t, i ∈ [N ] by (9)
10: Send I{w′

t�wt} and ut to each expert i ∈ [N ]
11: end for

Algorithm 3 DM2L: Expert Algorithm
Require: step size of exploitation γi
1: Initialize a ranker wi

1 ∈ W arbitrarily
2: for t = 1, 2, . . . , T do
3: Send ranker wi

t to Algorithm 2
4: Receive I{w′

t�wt} and ut from Algorithm 2
5: Update ranker wi

t+1 = ΠW [wi
t + γiI{w′

t�wt}ut]
6: end for

Remark 1. The above theorem implies that the gap between the average per-
formance of our method and that of the optimal rankers can be bounded by
O
(
T−1/4

√
1 + CT

)
, which converges to zero for CT = o(

√
T ) when T goes to

infinity.

4.3 Extensions to DBGD-type Algorithms

While our meta learning method is developed in the context of DBGD, it be also
straightforwardly extended to existing DBGD-type algorithms such as MGD [20]
and NSGD-DSP [25, 24]. Note that the existing DBGD-type algorithms only
differ in the exploratory direction and the updating direction. Thus, we can
replace Steps 6-8 at Algorithm 2 with the corresponding exploration pseudocodes
of the DBGD-type algorithm and set ut used in Steps 9-10 at Algorithm 2 as
the updating direction in the DBGD-type algorithm, while keeping Algorithm
3 and the other steps of Algorithm 2 unchanged. We termed the algorithms
obtained by applying our meta learning method to MGD and NSGD-DSP as M3L
(MGD Meets Meta Learning) and NM2L (NSGD-DSP Meets Meta Learning),
respectively.
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5 Analysis

In this section, we provide the proofs of Theorem 1 and Theorem 2.

5.1 Proof of Theorem 1

Let I{·} denote the indicator function. We can rewrite the updating rule of DBGD
as

wt+1 = ΠW [wt + γI{w′
t�wt}ut].

It is well known that the above updating rule can be viewed as performing
gradient descent over a smoothed function [27, 24]

ht(w) = Eu∈B[ft(wt, ΠW [w + δu])]

thus accounting for the name of DBGD, where B ⊆ Rd is the unit ball. Formally,
we have the following lemma.

Lemma 1. Let Ft be the learning history up to round t, i.e., the sigma-field
generated by random variables {ws,w

′
s, I{ws�w′

s}}s=1,...,t. For all t = 1, . . . , T ,
we have

E[I{w′
t�wt}ut|Ft−1] = −

δ

d
∇ht(wt).

Proof. By Lemma 2 in [27], we have

∇ht(wt) =
d

δ
Eu∈S[ft(wt, ΠW [wt + δu])u|Ft−1].

On the other hand, by (1), (3), and (4), we get

E[I{w′
t�wt}ut|Ft−1] = Eut∈S[ft(w

′
t,wt)ut|Ft−1]

= Eut∈S[ut|Ft−1]− Eut∈S[ft(wt,w
′
t)ut|Ft−1]

= −Eut∈S[ft(wt, ΠW [wt + δut])ut|Ft−1].

Combing the above two equalities, we finish the proof.

To proceed, we show that the smoothed function ht(w) enjoys nice properties
as follows.

Lemma 2. For δ ∈
(
0, Lσ

LvL2

)
and t = 1, . . . , T ,

– the smoothed function ht(w) is close to ft(wt,w):

|ht(w)− ft(wt,w)| ≤ δL, ∀w ∈ W

– the smoothed function ht(w) is almost convex:

ht(wt)− ht(w∗t ) ≤ λ〈∇ht(wt),wt −w∗t 〉+ (3 + λ)δL

where λ = Lσ
Lσ−δLvL2

.
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Proof. The first inequality follows from the Lipschitz continuity of ft, and the
second inequality is analogous to Theorem 1 in [27], the proof of which is thus
omitted here.

Equipped with the above two lemmas, we are now ready to prove Theorem
1. We first bound the dynamic regret as

DR(T ) =

T∑
t=1

(
ft(w

∗
t ,wt) + ft(w

∗
t ,w

′
t)− 2ft(w

∗
t ,w

∗
t )
)

≤ 2

T∑
t=1

(
ft(w

∗
t ,wt)− ft(w∗t ,w∗t )

)
+ δLT

= 2

T∑
t=1

(
ft(wt,wt)− ft(wt,w

∗
t )
)
+ δLT

≤ 2

T∑
t=1

(
ht(wt)− ht(w∗t )

)
+ 5δLT

≤ 2λ

T∑
t=1

〈∇ht(wt),wt −w∗t 〉+ (11 + 2λ)δLT

(11)

where the first inequality holds since ft is L-Lipschitz in both arguments, the
second equality is due to σ(0) = 1/2, and the last two inequalities follow from
Lemma 2.

Define ŵt+1 = wt + γI{w′
t�wt}ut and Et[·] = E[·|Ft−1]. By Lemma 1, we

have

∇ht(wt) = −
d

δ
Et[I{w′

t�wt}ut] = −
d

δγ
Et[ŵt+1 −wt].

It follows that

〈∇ht(wt),wt −w∗t 〉 =
d

δγ
Et[〈wt − ŵt+1,wt −w∗t 〉]

=
d

2δγ
Et
[
‖wt −w∗t ‖22 − ‖ŵt+1 −w∗t ‖22 + ‖wt − ŵt+1‖22

]
≤ d

2δγ
E
[
‖wt −w∗t ‖22 − ‖wt+1 −w∗t ‖22 + γ2

]
=

d

2δγ
E
[
‖wt‖22 − ‖wt+1‖22 + 2〈wt+1 −wt,w

∗
t 〉+ γ2

]
where the inequality holds since wt+1 = ΠW [ŵt+1] and ut ∈ S. Summing the
above inequality over t = 1, . . . , T and taking expectations in both sides, we get
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E
[∑T

t=1〈∇ht(wt),wt −w∗t 〉
]

≤ d

δ
E

[
‖w1‖22
2γ

+
1

γ

T∑
t=1

〈wt+1 −wt,w
∗
t 〉+

γT

2

]

≤ d

δ
E

[
R2

2γ
+

T∑
t=2

〈w∗t−1 −w∗t ,wt〉
γ

+
〈wT+1,w

∗
T 〉 − 〈w1,w

∗
1〉

γ
+
γT

2

]

≤ 5dR2 + 2dRCT
2δγ

+
dγT

2δ

where the last two inequalities are due to (2) and (5). Substituting the above
inequality into (11) completes the proof.

5.2 Proof of Theorem 2

Following (11), we have

DR(T ) ≤ 2λ

T∑
t=1

〈∇ht(wt),wt −w∗t 〉+ (11 + 2λ)δLT.

Fix an expert i. We divide
∑T
t=1〈∇ht(wt),wt −w∗t 〉 into

T∑
t=1

〈∇ht(wt),wt −wi
t〉+

T∑
t=1

〈∇ht(wt),w
i
t −w∗t 〉.

Following the proof of Theorem 1 and utilizing the updating rule in (10), we can
bound the second term as

E

[
T∑
t=1

〈∇ht(wt),w
i
t −w∗t 〉

]
≤ 5dR2 + 2dRCT

2δγi
+
dγiT

2δ
.

It remains to bound the first term. Let zt , [z1t , . . . , z
N
t ] be a vector with zjt =

`t(w
j
t ), j ∈ [N ]. Then, the weight vectors πt , [π1

t , . . . , π
N
t ], t ∈ [T ] are identical

to the outputs of the Hedge algorithm [1] applied to a prediction with expert
advice problem with loss vectors zt, t ∈ [T ]. Thus, we can apply the theoretical
guarantee of Hedge [1] and get

E

[
T∑
t=1

〈πt, zt〉

]
− E

[
T∑
t=1

zit

]
≤ 2 ln (N + 1)

α
+
αT

8
.

On the other hand, by Lemma 1, we have

E

[
T∑
t=1

〈∇ht(wt),wt −wi
t〉

]
= E

[
T∑
t=1

−`t(wi
t)

]
= −E

[
T∑
t=1

zit

]
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and

E

[
T∑
t=1

〈πt, zt〉

]
= E

 T∑
t=1

N∑
j=1

πjt `t(w
j
t )


= E

 T∑
t=1

N∑
j=1

−πjt
d

δ
〈I{w′

t�wt}ut,w
j
t −wt〉

 = 0

where the last equality is due to wt =
∑N
i=j π

j
tw

j
t .

Putting everything together, we obtain for any expert i,

E[DR(T )] ≤ 2λ

(
5dR2 + 2dRCT

2δγi
+
dγiT

2δ

)
+ (11 + 2λ)δLT +

4λ ln (N + 1)

α
+
αλT

4
.

Define γ∗ =
√

5R2+2RCT
T . Since the assumption in (2) implies 0 ≤ CT ≤ 2RT ,

by (7) there must exist an expert i whose step size γi satisfies γi ≤ γ∗ ≤ 2γi.
Thus, we have

E[DR(T )] ≤ 2λ

(
5dR2 + 2dRCT

δγ∗
+
dγ∗T

2δ

)
+ (11 + 2λ)δLT +

4λ ln (N + 1)

α
+
αλT

4
.

Substituting γ∗ =
√

5R2+2RCT
T , δ =

√
3λd

(11+2λ)L
√
T
, and α = 4/

√
T into the

above inequality finishes the proof.

6 Experiments

In this section, we present experimental results to demonstrate the effectiveness
and efficiency of our meta learning method. We adopt DBGD and the following
OL2R algorithms as baselines:

– MGD [20]: Multiple directions are explored in each round. A multileaving
method is applied to simultaneously evaluate these directions and the pa-
rameter of the ranking model is updated towards the mean of the winning
directions.

– PDGD [16]: Instead of estimating gradients from user clicks on interleaved
lists, PDGD constructs gradients based on the inferred preferences between
document pairs.

– NSGD-DSP [25, 24]: The exploratory directions are sampled from a null
space of recently badly performing gradients rather than the whole unit
sphere. The winning directions are first projected into a space spanned by
the feature vectors of examined documents and then used to update the
parameter of the ranking model.
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Except for PDGD, all the baseline algorithms belong to the class of DBGD-type
algorithms and our meta learning method can apply to them as discussed in
the previous section. We illustrate the efficacy of our meta learning method by
comparing the performance of each DBGD-type algorithms, with and without
our meta learning method applied. The NSGD-DSP and PDGD algorithms are
the two state-of-the-art OL2R algorithms and the latter does not fall into the
DBGD framework. We thus also compare NSGD-DSP with our meta learning
method applied against PDGD to show the superiority of our meta learning
method for OL2R in non-stationary environments.

6.1 Setup

Datasets We perform experiments on five datasets, including NP2003 [13],
MQ2007 [13], MQ2008 [13], MSLR [18], and the Yahoo! Learning to Rank Chal-
lenge dataset [2]. All the datasets are publicly available and have been widely
used in the literature [24].

The NP2003 dataset is constructed based on the the name-page finding task
at TREC 2003 [23]. It contains about 150 queries, each of which is associated
with over 1000 documents that need to be ranked. Each query-document pair
is represented by a feature vector with 64 dimensions and labelled with either 0
(not relevant) or 1 (relevant).

The MQ2007 and MQ2008 datasets originate from the Million Query track of
TREC in 2007 and 2008, consisting of about 1700 and 800 queries, respectively.
Both MQ2007 and MQ2008 represent query-document pairs by 46-dimensional
feature vectors and the relevance of each query-document pair is categorized into
three grades: 0 (not relevant), 1 (relatively relevant), and 2 (very relevant).

The MSLR dataset is collected from the Web search logs of Microsoft Bing.
The number of queries in MSLR is exactly 10000 and the number of associated
documents per query is about 125. Each query-document pair is encoded into a
136-dimensional vector, the components of which represent commonly-used rank-
ing features including TF-IDF, PageRank, etc. The relevance label provided by
MSLR is more fine-grained and ranges from 0 (not relevant) to 4 (very relevant).

The last dataset used in our experiments is the Yahoo! Learning to Rank
Challenge dataset, which is collected from the Web logs of the Yahoo! search
engine. The Yahoo! dataset contains about 36000 queries and 883000 documents.
Each query-document pairs has 700 ranking features and is also labelled with
five-level relevance assessment ranging from 0 (not relevant) to 4 (very relevant).

Experimental Framework We construct an online and non-stationary exper-
imental framework to evaluate the performance of the examined OL2R algo-
rithms. The framework proceeds in a sequence of rounds t = 1, . . . , T . In each
round t, firstly a query is uniformly sampled from the dataset, which, together
with the documents that need to be ranked, is passed to an OL2R algorithm.
Then, the algorithm outputs a ranked list of the documents, which is displayed
to a user. Finally, the user makes click feedback on the displayed documents,
which is revealed to the algorithm for its inner updating.



14 S. Lu et al.

Table 1: Click probability pc(r) and stop probability ps(r) of each type of user
User pc(0) pc(1) pc(2) pc(3) pc(4) ps(0) ps(1) ps(2) ps(3) ps(4)

Perfect 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0
Navigational 0.05 0.3 0.5 0.7 0.95 0.2 0.3 0.5 0.7 0.9
Informational 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

Following previous work [16, 25, 24], we use the cascade click model [5] to
simulate user’s interactions with the displayed documents. This model assumes
that user scans through the list of documents from top to bottom. For each
document, user clicks on it with probability pc(r), where r denotes the relevance
label of the document. To simulate non-stationary environments, we randomly
swap the relevance labels of the documents. Specifically, in each round t, let
yt,i, i = 1, 2, . . . denote the relevance labels of the documents that need to be
ranked. With probability 0.3, we modify each relevance label from yt,i to y′t,i as

y′t,i =


2, yt,i = 1

1, yt,i = 2

4, yt,i = 3

3, yt,i = 4

for all datasets except NP2003 and y′t,i = 1−yt,i for the NP2003 dataset. In this
way, the optimal ranker varies with time and the experimental environments are
hence non-stationary. After clicking and visiting a document, user can either scan
through the remaining documents or stop, and the latter occurs with probability
ps(r). By configuring the cascade click model with different pc(r) and ps(r), we
can simulate different types of user. As outlined in Table 1, we consider three
types of user including: perfect user who clicks on all relevant documents and
never stops until the document list ends, navigational user who often stops when
a relevant document is visited, and informational user who sometimes clicks on
irrelevant documents.

Evaluation Metric Following previous work[16, 25, 24], we use the Normalized
Discounted Cumulative Gain (NDCG) as the ranking metric. For each OL2R
algorithm, we evaluate its overall ranking performance during the T rounds by
the cumulative NDCG@10:

cumulative NDCG@10 =

T∑
t=1

0.995t−1NDCG@10(t)

where NDCG@10(t) corresponds to the algorithm’s ranking performance in round
t and 0.995 is a discount factor. This factor is commonly used in OL2R litera-
ture [25] for better modelling user experience as user may abandon the OL2R
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Table 2: Cumulative NDCG@10 of each OL2R algorithm on the five datasets
with the three user types. The standard deviations are shown in the small font
within parentheses. The relative improvement of each DBGD-type algorithm
after applying our meta learning method is denoted by percentages. The best
performance on each dataset with each user type is indicated in bold.
User Algorithm NP2003 MQ2007 MQ2008 MSLR Yahoo!

Per.

DBGD 100.3 (2.8) 59.2 (4.3) 75.2 (5.2) 46.3 (3.6) 105.3 (3.2)
DM2L 118.1 (2.5) 63.3 (5.4) 80.3 (4.7) 50.3 (3.9) 111.1 (3.8)

+17.7% +6.9% +6.8% +8.6% +5.5%
MGD 107.7 (3.6) 57.7 (3.8) 73.7 (4.9) 47.0 (3.4) 103.8 (3.8)
M3L 127.8 (4.5) 64.9 (3.9) 81.1 (5.1) 52.0 (3.2) 113.4 (2.6)

+18.7% +12.5% +10.0% +10.6% +9.2%
NSGD-DSP 126.1 (3.0) 61.3 (3.1) 78.9 (4.2) 49.9 (2.5) 112.9 (2.8)
NM2L 139.5 (2.5) 69.1 (3.4) 87.1 (5.3) 55.2 (3.1) 126.9 (2.1)

+10.6% +12.7% +10.4% +10.6% +12.4%
PDGD 131.8 (3.9) 64.9 (2.8) 82.5 (5.5) 52.8 (4.7) 120.3 (3.0)

Nav.

DBGD 94.1 (7.4) 55.7 (5.2) 72.4 (5.6) 45.1 (3.7) 103.1 (4.8)
DM2L 98.2 (6.1) 61.3 (6.1) 77.3 (4.4) 48.7 (3.6) 108.5 (5.3)

+4.4% +10.1% +6.8% +8.0% +5.2%
MGD 102.3 (5.3) 56.5 (4.3) 73.6 (4.9) 46.7 (3.3) 103.3 (4.6)
M3L 116.9 (6.3) 62.5 (3.9) 80.6 (4.2) 50.3 (5.2) 109.8 (3.4)

+14.3% +10.6% +9.5% +7.7% +6.3%
NSGD-DSP 119.9 (4.9) 61.6 (2.8) 77.2 (5.0) 48.6 (2.9) 112.0 (4.0)
NM2L 134.4 (5.6) 68.9 (3.1) 85.0 (4.5) 53.9 (3.4) 123.1 (3.7)

+12.1% +11.9% +10.1% +10.9% +9.9%
PDGD 112.6 (5.0) 59.7 (3.6) 80.1 (4.1) 47.8 (5.1) 113.6 (5.7)

Inf.

DBGD 79.5 (12.4) 53.8 (5.1) 69.4 (6.2) 43.9 (3.8) 100.6 (4.7)
DM2L 86.6 (14.2) 57.9 (4.8) 73.7 (4.9) 46.7 (5.3) 105.8 (5.1)

+8.9% +7.6% +6.2% +6.4% +5.2%
MGD 95.3 (10.4) 52.8 (4.7) 70.6 (5.4) 44.6 (5.1) 101.7 (5.3)
M3L 105.3 (11.6) 58.6 (5.3) 76.4 (6.3) 47.3 (4.7) 107.7 (4.6)

+10.5% +11.0% +8.2% +6.1% +5.9%
NSGD-DSP 113.5 (7.1) 60.7 (4.0) 75.5 (5.0) 48.3 (3.4) 110.9 (4.9)
NM2L 122.0 (7.9) 65.4 (3.2) 82.1 (4.1) 52.1 (3.8) 120.4 (5.2)

+7.5% +7.7% +8.7% +7.9% +8.6%
PDGD 100.1 (9.3) 58.9 (4.4) 74.6 (5.4) 46.2 (6.0) 108.4 (6.3)
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Fig. 1: Total time consumption and memory usage of each OL2R algorithm over
the five datasets and three user types.

algorithm after observing bad ranking results. Since 0.9951000 ≤ 1%, we set the
number of online rounds as T = 1000.

Another popular evaluation metric for OL2R algorithms is the offline NDCG,
which is obtained by applying OL2R algorithms iterated after T rounds to held-
out testing datasets. While in stationary environments studied by previous work
[16, 25, 24], the offline NDCG can measure the final convergence of OL2R al-
gorithms, it is meaningless for non-stationary environments investigated in this
work, as the optimal ranker varies with time and there does not exist a global
optimal ranker to which OL2R algorithms should converge.

6.2 Results and Analysis

We configure the hyperparameters of the baseline algorithms according to the
suggestions in their original papers. The step size of exploration in our meta
learning method is set as δ = 1 in order to be consistent with the baseline
algorithms and the other hyperparameters of our meta learning method are con-
figured according to Theorem 2. We run each OL2R algorithm ten times and
report the average cumulative NDCG over the ten runs in Table 2. Recall that
the DM2L, M3L, and NM2L algorithms are yielded by applying our meta learn-
ing method to DBGD, MGD, and NSGD-DSP, respectively. As can be seen from
Table 2, our meta learning method consistently improves the cumulative NDCG
of each DBGD-type algorithm. This ie expected as the existing DBGD-type
algorithms are designed for stationary environments with the aim of learning
the static optimal ranker, and our meta learning method enables them to track
the time-varying optimal rankers in non-stationary environments, as shown by
Theorem 2. While MGD is a refined variant of DBGD, its cumulative NDCG
is smaller than that of DBGD in several cases, implying that in non-stationary
environments only simultaneously exploring multiple directions does not neces-
sarily boost the performance. This is distinct from the empirical observations in
stationary environments [25, 24], where MGD dominates DBGD. By contrast,
as the state-of-the-art DBGD-type algorithm, NSGD-DSP always outperforms
MGD and DBGD, suggesting that the null space exploration and the document
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space projection techniques, although originally designed for stationary envi-
ronments [25, 24], can also lead to performance improvement in non-stationary
environments.

Further comparing NSGD-DSP with PDGD, it can be seen that on all the
five datasets, PDGD behaves better than NSGD-DSP for perfect user, while
inferior to NSGD-DSP for informational user. Thus, we can conclude that these
two state-of-the-art OL2R algorithms are generally not comparable and each
has its own advantage in non-stationary environments, depending on the user
type. Nevertheless, by equipping NSGD-DSP with our meta learning method,
the NM2L algorithm achieves the largest cumulative NDCG on all datasets for
all user types, demonstrating the superiority of NM2L and the value of our our
meta learning method for non-stationary OL2R applications. We also observe
that the standard deviation of the cumulative NDCG of NM2L is comparable
to that of NSGD-DSP, which implies that our meta learning method does not
hinder the effect of NSGD-DSP in variance reduction.

Finally, we investigate the time and space complexities of our meta learning
method when applied to DBGD-type algorithms. Theoretically, according to the
pseudocodes in Algorithm 1, 2, 3 and the discussion in the previous section, the
additional time and space complexities introduced by our meta learning method
are both O(dN) = O(d log T ) per round, where d is the dimension of feature
vector and T is the time horizon. Since the complexities of each DBGD-type
algorithm are at least O(d) per round and log T grows very slowly with T , we
can conclude that the complexities of our meta learning method are affordable.
Empirically, we compare the actual time consumption and memory usage on
the five datasets of each DBGD-type algorithm, with and without our meta
learning method applied. As can be seen from Figure 1, the time and memory
consumed by our meta learning method are ignorable compared to those used
by each DBGD-type algorithm, which validates the time and space efficiency of
our meta learning method.

7 Conclusion and Future Work

We have formulated a new bandits model for OL2R, termed as non-stationary
dueling bandits, where the preference order over rankers can change with time.
For this bandits model, we developed a meta learning method, which dynami-
cally aggregates multiple DBGD algorithms with different step sizes. Theoretical
analysis showed that under mild assumptions, our meta learning method enjoys
a sub-linear dynamic regret bound. We also discuss the extensions of our meta
learning method to existing DBGD-type algorithms. Extensive experiments on
public datasets demonstrate the effectiveness and efficiency of our meta learning
method for OL2R in non-stationary environments.

Currently, we only focus on the dueling bandits approach and our meta learn-
ing method can only apply to DBGD-type algorithms. As shown in the experi-
ments, the PDGD algorithm, which is also designed for stationary environments
but does not fall into the DBGD framework, outperforms the state-of-the-art



18 S. Lu et al.

DBGD-type algorithm in several cases. Thus, it would be interesting to investi-
gate whether PDGD can be extended to non-stationary environments for boost-
ing performance, which we leave as a future work.
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