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Abstract
In this paper, we study the multi-objective bandits
(MOB) problem, where a learner repeatedly selects
one arm to play and then receives a reward vector
consisting of multiple objectives. MOB has found
many real-world applications as varied as online
recommendation and network routing. On the other
hand, these applications typically contain contex-
tual information that can guide the learning pro-
cess which, however, is ignored by most of exist-
ing work. To utilize this information, we associate
each arm with a context vector and assume the re-
ward follows the generalized linear model (GLM).
We adopt the notion of Pareto regret to evaluate
the learner’s performance and develop a novel algo-
rithm for minimizing it. The essential idea is to ap-
ply a variant of the online Newton step to estimate
model parameters, based on which we utilize the
upper confidence bound (UCB) policy to construct
an approximation of the Pareto front, and then uni-
formly at random choose one arm from the ap-
proximate Pareto front. Theoretical analysis shows
that the proposed algorithm achieves an Õ(d

√
T )

Pareto regret, where T is the time horizon and d is
the dimension of contexts, which matches the op-
timal result for single objective contextual bandits
problem. Numerical experiments demonstrate the
effectiveness of our method.

1 Introduction
Online learning under bandit feedback is a powerful paradigm
for modeling sequential decision-making process arising in
various applications such as medical trials, advertisement
placement, and network routing [Bubeck and Cesa-Bianchi,
2012]. In the classic stochastic multi-armed bandits (MAB)
problem, at each round a learner firstly selects one arm to
play and then obtains a reward drawn from a fixed but un-
known probability distribution associated with the selected
arm. The learner’s goal is to minimize the regret, which is
defined as the difference between the cumulative reward of
the learner and that of the best arm in hindsight. Algorithms
designed for this problem need to strike a balance between
exploration and exploitation, i.e., identifying the best arm by

trying different arms while spending as much as possible on
the seemingly optimal arm.

A natural extension of MAB is the multi-objective multi-
armed bandits (MOMAB), proposed by Drugan and Nowe
[2013], where the reward pertaining to an arm is a multi-
dimensional vector instead of a scalar value. In this setting,
different arms are compared according to Pareto order be-
tween their reward vectors, and those arms whose rewards
are not inferior to that of any other arms are called Pareto
optimal arms, all of which constitute the Pareto front. The
standard metric is the Pareto regret, which measures the cu-
mulative gap between the reward of the learner and that of the
Pareto front. The task here is to design online algorithms that
minimize the Pareto regret by judiciously selecting seemingly
Pareto optimal arms based on historical observation, while
ensuring fairness, that is, treating each Pareto optimal arm
as equally as possible. MOMAB is motivated by real-world
applications involved with multiple optimization objectives,
e.g., novelty and diversity in recommendation systems [Ro-
driguez et al., 2012]. On the other hand, the aforementioned
real-world applications typically contain auxiliary informa-
tion (contexts) that can guide the decision-making process,
such as user profiles in recommendation systems [Li et al.,
2010], which is ignored by MOMAB.

To incorporate this information into the decision-making
process, Turgay et al. [2018] extended MOMAB to the multi-
objective contextual bandits (MOCB). In MOCB, the learner
is endowed with contexts before choosing arms and the re-
ward he receives in each round obeys a distribution whose ex-
pectation depends on the contexts and the chosen arm. Turgay
et al. [2018] assumed that the learner has a prior knowledge
of the similarity information that relates distances between
the context-arm pairs to those between the expected rewards.
Under this assumption, they proposed an algorithm called
Pareto contextual zooming which is built upon the contex-
tual zooming method [Slivkins, 2014]. However, the Pareto
regret of their algorithm is Õ(T 1−1/(2+dp)), where dp is the
Pareto zooming dimension, which is almost linear in T when
dp is large (say, dp = 10) and hence hinders the application
of their algorithm to broad domains.

To address this limitation, we formulate the multi-objective
contextual bandits under a different assumption—the param-
eterized realizability assumption, which has been extensively
studied in single objective contextual bandits [Auer, 2002;
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Dani et al., 2008]. Concretely, we model the context asso-
ciated with an arm as a d-dimensional vector x ∈ Rd and for
the sake of clarity denote the arm by x. The reward vector
y pertaining to an arm x consists of m objectives. The value
of each objective is drawn according to the generalized linear
model [Nelder and Wedderburn, 1972] such that

E[yi|x] = µi(θ
>
i x), i = 1, . . . ,m

where yi represents the i-th component of y, θ1, . . . , θm are
vectors of unknown coefficients, and µ1, . . . , µm are link
functions. We refer to this formulation as multi-objective
generalized linear bandits (MOGLB), which is very general
and covers a wide range of problems, such as stochastic linear
bandits [Auer, 2002; Dani et al., 2008] and online stochas-
tic linear optimization under binary feedback [Zhang et al.,
2016], where the link functions are the identity function and
the logistic function respectively.

To the best of our knowledge, this is the first work that
investigates the generalized linear bandits (GLB) in multi-
objective scenarios. Note that a naive application of existing
GLB algorithms to a specific objective does not work, be-
cause it could favor those Pareto optimal arms that achieve
maximal reward in this objective, which harms the fairness.
To resolve this problem, we develop a novel algorithm named
MOGLB-UCB. Specifically, we employ a variant of the on-
line Newton step to estimate unknown coefficients and utilize
the upper confidence bound policy to construct an approx-
imate Pareto front, from which the arm is then pulled uni-
formly at random. Theoretical analysis shows that the pro-
posed algorithm enjoys a Pareto regret bound of Õ(d

√
T ),

where T is the time horizon and d is the dimension of con-
texts. This bound is sublinear in T regardless of the dimen-
sion and matches the optimal regret bound for single objective
contextual bandits problem. Empirical results demonstrate
that our algorithm can not only minimize Pareto regret but
also ensure fairness.

2 Related Work
In this section, we review the related work on stochastic con-
textual bandits, parameterized contextual bandits, and multi-
objective bandits.

2.1 Stochastic Contextual Bandits
In the literature, there exist many formulations of the stochas-
tic contextual bandits, under different assumptions on the
problem structure, i.e., the mechanism of context arrivals and
the relation between contexts and rewards.

One category of assumption says that the context and re-
ward follow a fixed but unknown joint distribution. This
problem is first considered by Langford and Zhang [2008],
who proposed an efficient algorithm named Epoch-Greedy.
However, the regret of their algorithm is O(T 2/3), which is
suboptimal when compared to inefficient algorithms such as
Exp4 [Auer et al., 2002b]. Later on, efficient and optimal al-
gorithms that attain an Õ(T 1/2) regret are developed [Dudik
et al., 2011; Agarwal et al., 2014].

Another line of work [Kleinberg et al., 2008; Bubeck et
al., 2009; Lu et al., 2010; Slivkins, 2014; Lu et al., 2019b]

assume that the relation between the rewards and the contexts
can be modeled by a Lipschitz function. Lu et al. [2010]
established an Ω(T 1−1/(2+dp)) lower bound on regret under
this setting and proposed the Query-Ad-Clustering algorithm,
which attains an Õ(T 1−1/(2+dc)) regret, where dp and dc
are the packing dimension and the covering dimension of the
similarity space respectively. Slivkins [2014] developed the
contextual zooming algorithm, which enjoys a regret bound
of Õ(T 1−1/(2+dz)), where dz is the zooming dimension of
the similarity space.

2.2 Parameterized Contextual Bandits
In this paper, we focus on the parameterized contextual ban-
dits, where each arm is associated with a d-dimensional con-
text vector and the expected reward is modeled as a parame-
terized function of the arm’s context. Auer [2002] considered
the linear case of this problem under the name of stochastic
linear bandits (SLB) and developed a complicated algorithm
called SuperLinRel, which attains an Õ((logK)3/2

√
dT ) re-

gret, assuming the arm set is finite. Later, Dani et al. [2008]
proposed a much simpler algorithm named ConfidenceBall2,
which enjoys a regret bound of Õ(d

√
T ) and can be used for

infinite arm set.
Filippi et al. [2010] extended SLB to the generalized linear

bandits, where the expected reward is a composite function of
the arm’s context. The inside function is linear and the out-
side function is certain link function. The authors proposed a
UCB-type algorithm that enjoys a regret bound of Õ(d

√
T ).

However, their algorithm is not efficient since it needs to store
the whole learning history and perform batch computation to
estimate the function. Zhang et al. [2016] studied a particu-
lar case of GLB in which the reward is generated by the logit
model and developed an efficient algorithm named OL2M,
which attains an Õ(d

√
T ) regret. Later, Jun et al. [2017]

extended OL2M to generic GLB problems.

2.3 Multi-Objective Bandits
The seminal work of Drugan and Nowe [2013] proposed the
standard formulation of the multi-objective multi-armed ban-
dits and introduced the notion of Pareto regret as the perfor-
mance measure. By making use of the UCB technique, they
developed an algorithm that enjoys a Pareto regret bound of
O(log T ). Turgay et al. [2018] extended MOMAB to the
contextual setting with the similarity information assump-
tion. Based on the contextual zooming method [Slivkins,
2014], the authors proposed an algorithm called Pareto con-
textual zooming whose Pareto regret is Õ(T 1−1/(2+dp)),
where dp is the Pareto zooming dimension. Another related
line of the MOMAB researches [Drugan and Nowé, 2014;
Auer et al., 2016] study the best arm identification problem.
The focus of those papers is to identify all Pareto optimal
arms within a fixed budget.

3 Multi-Objective Generalized Linear
Bandits

We first introduce notations used in this paper, next describe
the learning model, then present our algorithm, and finally
state its theoretical guarantees.
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3.1 Notation
Throughout the paper, we use the subscript to distinguish
different objects (e.g., scalars, vectors, functions) and su-
perscript to identify the component of an object. For ex-
ample, yit represents the i-th component of the vector yt.
For the sake of clarity, we denote the `2-norm by ‖ · ‖.
The induced matrix norm associated with a positive defi-
nite matrix A is defined as ‖x‖A :=

√
x>Ax. We use

BR := {x | ‖x‖ ≤ R} to denote a centered ball whose ra-
dius is R. Given a positive semidefinite matrix P , the gen-
eralized projection of a point x onto a convex set W is de-
fined as ΠP

W [x] := arg miny∈W(y − x)>P (y − x). Finally,
[n] := {1, 2, . . . , n}.

3.2 Learning Model
We now give a formal description of the learning model in-
vestigated in this paper.

Problem Formulation
We consider the multi-objective bandits problem under the
GLM realizability assumption. Let m denote the number of
objectives and X ⊂ Rd be the arm set. In each round t, a
learner selects an arm xt ∈ X to play and then receives a
stochastic reward vector yt ∈ Rm consisting of m objectives.
We assume each objective yit is generated according to the
GLM such that for i = 1, 2, . . . ,m,

Pr(yit|xt) = hi(y
i
t, τi) exp

(
yitθ
>
i xt − gi(θ>i xt)

τi

)
where τi is the dispersion parameter, hi is a normalization
function, gi is a convex function, and θi is a vector of un-
known coefficients. Let µi = g′i denote the so-called link
function, which is monotonically increasing due to the con-
vexity of gi. It is easy to show E[yit|xt] = µi(θ

>
i xt).

A remarkable member of the GLM family is the logit
model in which the reward is one-bit, i.e., y ∈ {0, 1} [Zhang
et al., 2016], and satisfies

Pr(y = 1|x) =
1

1 + exp (−θ>x)
.

Another well-known binary model belonging to the GLM is
the probit model, which takes the following form

Pr(y = 1|x) = Φ(θ>x)

where Φ(·) is the cumulative distribution function of the stan-
dard normal distribution.

Following previous studies [Filippi et al., 2010; Jun et al.,
2017], we make standard assumptions as follows.
Assumption 1 The coefficients θ1, . . . , θm are bounded by
D, i.e., ‖θi‖ ≤ D, ∀i ∈ [m].
Assumption 2 The radius of the arm set X is bounded by 1,
i.e., ‖x‖ ≤ 1, ∀x ∈ X .
Assumption 3 For each i ∈ [m], the link function µi is
L-Lipschitz on [−D,D] and continuously differentiable on
(−D,D). Furthermore, we assume that µ′i(z) ≥ κ > 0, z ∈
(−D,D) and |µi(z)| ≤ U, z ∈ [−D,D].
Assumption 4 There exists a positive constant R such that
|yit| ≤ R, ∀t ∈ [T ], i ∈ [m] holds almost surely.

Performance Metric
According to the properties of the GLM, for any arm
x ∈ X that is played, its expected reward is a vector of
[µ1(θ>1 x), µ2(θ>2 x), . . . , µm(θ>mx)] ∈ Rm. With a slight
abuse of notation, we denote it by µx. We compare differ-
ent arms by their expected rewards and adopt the notion of
Pareto order.

Definition 1 (Pareto order) Let u, v ∈ Rm be two vectors.

• u dominates v, denoted by v ≺ u, if and only if ∀i ∈
[m], vi ≤ ui and ∃j ∈ [m], uj > vj .

• v is not dominated by u, denoted by v ⊀ u, if and only if
v = u or ∃i ∈ [m], vi > ui.

• u and v are incomparable, denoted by u‖v, if and only
if either vector is not dominated by the other, i.e., u ⊀ v
and v ⊀ u.

Equipped with the Pareto order, we can now define the
Pareto optimal arm.

Definition 2 (Pareto optimality) Let x ∈ X be an arm.

• x is Pareto optimal if and only if its expected reward
is not dominated by that of any arm in X , i.e., ∀x′ ∈
X , µx ⊀ µ′x.

• The set comprised of all Pareto optimal arms is called
Pareto front, denoted by O∗.

It is clear that all arms in the Pareto front are incomparable. In
single objective bandits problem, the standard metric to mea-
sure the learner’s performance is regret defined as the differ-
ence between the cumulative reward of the learner and that of
the optimal arm in hindsight. In order to extend such metric
to multi-objective setting, we introduce the notion of Pareto
suboptimality gap [Drugan and Nowe, 2013] to measure the
difference between the learner’s reward and that of the Pareto
optimal arms.

Definition 3 (Pareto suboptimality gap, PSG) Let x be an
arm in X . Its Pareto suboptimality gap ∆x is defined as the
minimal scalar ε ≥ 0 such that x becomes Pareto optimal
after adding ε to all entries of its expected reward. Formally,

∆x := inf {ε | (µx + ε) ⊀ µx′ , ∀x′ ∈ X}.

We evaluate the learner’s performance using the (pseudo)
Pareto regret [Drugan and Nowe, 2013] defined as the cu-
mulative Pareto suboptimality gap of the arms pulled by the
learner.

Definition 4 (Pareto regret, PR) Let x1, x2, . . . , xT be the
arms pulled by the learner. The Pareto regret is defined as

PR(T ) :=
T∑
t=1

∆xt.

3.3 Algorithm
The proposed algorithm, termed MOGLB-UCB, is outlined
in Algorithm 1. Had we known all coefficients θ1, . . . , θm in
advance, we could compute the Pareto front directly and al-
ways pull the Pareto optimal arms, whose Pareto suboptimal-
ity gaps are zero. Motivated by this observation, we maintain
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an arm setOt as an approximation to the Pareto frontO∗ and
always play arms in Ot. To encourage fairness, we draw an
arm xt from Ot uniformly at random to play (Step 3). The
approximate Pareto front is initialized to be X and is updated
as follows.

In each round t, after observing the reward vector yt, we
make an estimation denoted by θ̂t+1,i for each coefficients θi
(Steps 4-7). Let Ht := {(x1, y1), (x2, y2), . . . , (xt, yt)} be
the learning history up to round t. A natural approach is to
use the maximum log-likelihood estimation:

θ̂t+1,i = arg max
‖θ‖≤D

t∑
s=1

log Pr(yis|xs)

= arg min
‖θ‖≤D

t∑
s=1

−yisθ>xs + gi(θ
>xs).

Despite its simplicity, this approach is inefficient since it
needs to store the whole learning history and perform batch
computation in each round, which makes its space and time
complexity grow at least linearly with t.

To address this drawback, we utilize an online learning
method to estimate the unknown coefficients and construct
confidence sets. Specifically, for each objective i ∈ [m], let
`t,i denote the surrogate loss function in round t, defined as

`t,i(θ) := −yitθ>xt + gi(θ
>xt).

We employ a variant of the online Newton step and compute
θ̂t+1,i by

θ̂t+1,i = arg min
‖θ‖≤D

‖θ − θ̂t,i‖2Zt+1

2
+ θ>∇`t,i(θ̂t,i)

= Π
Zt+1

BD
[θ̂t,i − Z−1t+1∇`t,i(θ̂t,i)]

(1)

where

Zt+1 = Zt +
κ

2
xtx
>
t = λId +

κ

2

t∑
s=1

xsx
>
s (2)

and ∇`t,i(θ̂t,i) = −yitxt + µi(θ̂
>
t,ixt)xt. Based on this es-

timation, we construct a confidence set Ct+1,i (Step 8) such
that the true vector of coefficients θi falls into it with high
probability. According to the theoretical analysis (Theorem
1), we define Ct+1,i as an ellipsoid centered at θ̂t+1,i:

Ct+1,i := {θ : ‖θ − θ̂t+1,i‖2Zt+1
≤ γt+1} (3)

where γt+1 is defined in (8).
Then, we adopt the principle of “optimism in face of uncer-

tainty” to balance exploration and exploitation. Specifically,
for each arm x ∈ X , we compute the upper confidence bound
of its expected reward µ̂t+1,x (Step 11) as

µ̂it+1,x = max
θ∈Ct+1,i

µi(θ
>x), i = 1, 2, . . . ,m. (4)

Based on it, we define the empirical Pareto optimality.
Definition 5 (Empirical Pareto optimality) An arm x ∈ X
is empirically Pareto optimal if and only if the upper confi-
dence bound of its expected reward is not dominated by that
of any arm in X , i.e., ∀x′ ∈ X , µ̂t+1,x ⊀ µ̂t+1,x′ .

Algorithm 1 MOGLB-UCB

Require: Regularization parameter λ ≥ max(1, κ/2)

1: Initialize Z1 = λId, θ̂1,1 = · · · = θ̂1,m = 0,O1 = X
2: for t = 1, 2, . . . , T do
3: Pull an arm xt from the approximate Pareto front Ot

uniformly at random
4: Observe the reward vector yt
5: Update Zt+1 = Zt + κ

2xtx
>
t

6: for i = 1, 2, . . . ,m do
7: Compute the estimation θ̂t+1,i by formula (1)
8: Construct the confidence set Ct+1,i by formula (3)
9: end for

10: for each x ∈ X do
11: Compute the upper confidence bound µ̂t+1,x by for-

mula (6)
12: end for
13: Update the approximate Pareto front Ot+1 = {x ∈

X | ∀x′ ∈ X , µ̂t+1,x ⊀ µ̂t+1,x′}
14: end for

Finally, we update the approximate Pareto front Ot (Step 13)
by finding all empirically Pareto optimal arms:

Ot+1 = {x ∈ X | ∀x′ ∈ X , µ̂t+1,x ⊀ µ̂t+1,x′}.
Note that the computation in (4) involves the link function

µi, which may be very complicated. Fortunately, thanks to
the fact that the updating mechanism only relies on the Pareto
order between arms’ rewards and the link function is mono-
tonically increasing, we can replace (4) by

µ̂it+1,x = max
θ∈Ct+1,i

θ>x, i = 1, 2, . . . ,m. (5)

Furthermore, by standard algebraic manipulations, the above
optimization problem can be rewritten in a closed form:

µ̂it+1,x = θ̂>t+1,ix+
√
γt+1‖x‖Z−1

t+1
. (6)

3.4 Theoretical Guarantees
We first show that the confidence sets constructed in each
round contain the true coefficients with high probability.
Theorem 1 With probability at least 1− δ,

‖θi − θ̂t+1,i‖2Zt+1
≤ γt+1, ∀i ∈ [m], ∀t ≥ 0 (7)

where

γt+1 =
16(R+ U)2

κ
log
(m
δ

√
1 + 4D2t

)
+ λD2

+
2(R+ U)2

κ
log

det (Zt+1)

det (Z1)
+
κ

2
.

(8)

Proof of Theorem 1. The detailed proof can be found in the
full paper [Lu et al., 2019a]. The main idea lies in exploring
the properties of the surrogate loss function (Lemmas 1 and
2), analyzing the estimation method (Lemma 3), and utilizing
the self-normalized bound for martingales (Lemma 4). �

We then investigate the data-dependent item log det (Zt+1)
det (Z1)

appearing in the definition of γt+1 and bound the width of the
confidence set by the following corollary, which is a direct
consequence of Lemma 10 in Abbasi-Yadkori et al. [2011].
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Corollary 1 For any t ≥ 0, we have

log
det (Zt+1)

det (Z1)
≤ d log

(
1 +

κt

2λd

)
and hence

γt+1 ≤ O(d log t).

Finally, we present the Pareto regret bound of our algo-
rithm, which is built upon on Theorem 1.
Theorem 2 With probability at least 1− δ,

PR(T ) ≤ 4L

√
dT

κ
log

(
1 +

κT

2λd

)
γT+1

where γT+1 is defined in (8).
Remark. The above theorem implies that our algorithm en-
joys a Pareto regret bound of Õ(d

√
T ), which matches the op-

timal result for single objective GLB problem. Futhermore,
in contrast to the Õ(T 1−1/(2+dp)) Pareto regret bound of Tur-
gay et al. [2018], which is almost linear in T when the Pareto
zooming dimension dp is large, our bound grows sublinearly
with T regardless of the dimension.
Proof of Theorem 2. By Theorem 1,

θi ∈ Ct,i, ∀i ∈ [m], ∀t ≥ 1 (9)

holds with probability at least 1 − δ. For each objective i ∈
[m] and each round t ≥ 1, we define

θ̃t,i := arg max
θ∈Ct,i

θ>xt. (10)

Recall that xt is selected from Ot, which implies that for any
x ∈ X , there exists an objective j ∈ [m] such that

µ̂jt,xt
≥ µ̂jt,x. (11)

By definitions in (5) and (10), we have

µ̂jt,xt
= θ̃>t,jxt, µ̂jt,x = max

θ∈Ct,j
θ>x

(9)

≥ θ>j x. (12)

Combining (11) and (12), we obtain

θ̃>t,jxt ≥ θ>j x. (13)

In the following, we consider two different scenarios, i.e.,
θ>j x ≤ θ>j xt and θ>j x > θ>j xt. For the former case, it is
easy to show

µj(θ
>
j x)− µj(θ>j xt) ≤ 0

since µj is monotonically increasing. For the latter case, we
have

µj(θ
>
j x)− µj(θ>j xt)

≤ L(θ>j x− θ>j xt)
(13)

≤ L(θ̃>t,jxt − θ>j xt)

= L(θ̃t,j − θ̂t,j)>xt + L(θ̂t,j − θj)>xt
≤ L(‖θ̃t,j − θ̂t,j‖Zt

+ ‖θ̂t,j − θj‖Zt
)‖xt‖Z−1

t

(7)

≤2L
√
γt‖xt‖Z−1

t
≤ 2L

√
γT+1‖xt‖Z−1

t

where the first inequality is due to the Lipschitz continuity
of µj , the third inequality follows from the Hölder’s inequal-
ity, and the last inequality holds since γt is monotonically
increasing with t. In summary, we have

µj(θ
>
j x)− µj(θ>j xt) ≤ 2L

√
γT+1‖xt‖Z−1

t
.

Since the above inequality holds for any x ∈ X , we have
∆xt ≤ 2L

√
γT+1‖xt‖Z−1

t
, which immediately implies

PR(T ) =
T∑
t=1

∆xt ≤ 2L
√
γT+1

T∑
t=1

‖xt‖Z−1
t
. (14)

We bound the RHS by the Cauchy–Schwarz inequality:

T∑
t=1

‖xt‖Z−1
t
≤

√√√√T
T∑
t=1

‖xt‖2Z−1
t
. (15)

By Lemma 11 in Abbasi-Yadkori et al. [2011], we have

T∑
t=1

‖xt‖2Z−1
t
≤ 4

κ
log

det (ZT+1)

det (Z1)
. (16)

Combining (14)-(16) and Corollary 1 finishes the proof. �

4 Experiments
In this section, we conduct numerical experiments to com-
pare our algorithm with the following multi-objective bandits
algorithms.
• P-UCB [Drugan and Nowe, 2013]: This is the Pareto

UCB algorithm, which compares different arms by the
upper confidence bounds of their expected reward vec-
tors and pulls an arm uniformly from the approximate
Pareto front.
• S-UCB [Drugan and Nowe, 2013]: This is the scalarized

UCB algorithm, which scalarizes the reward vector by
assigning weights to each objective and then employs
the single objective UCB algorithm [Auer et al., 2002a].
Throughout the experiments, we assign each objective
with equal weight.
• P-TS [Yahyaa and Manderick, 2015]: This is the Pareto

Thompson sampling algorithm, which makes use of the
Thompson sampling technique to estimate the expected
reward for every arm and selects an arm uniformly at
random from the estimated Pareto front.

Note that the Pareto contextual zooming algorithm proposed
by Turgay et al. [2018] is not included in the experiments,
because one step of this algorithm is finding relevant balls
whose specific implementation is lacked in their paper and no
experimental results of their algorithm are reported as well.

In our algorithm, there is a parameter λ. Since its func-
tionality is just to make Zt invertible and our algorithm is
insensitive to it, we simply set λ = max(1, κ/2). Follow-
ing common practice in bandits learning [Zhang et al., 2016;
Jun et al., 2017], we also tune the width of the confidence set
γt as c log det (Zt)

det (Z1)
, where c is searched within [1e−3, 1]. We

use a synthetic dataset constructed as follows. Let m = 5
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(a) d = 5 (b) d = 10 (c) d = 15

Figure 1: Pareto regret of different methods

and pick d from {5, 10, 15}. For each objective i ∈ [m], we
sample the coefficients θi uniformly from the positive part of
the unit ball. To control the size of the Pareto front, we gen-
erate the arm set comprised of 4d arms as follows. We first
draw 3d arms uniformly from the centered ball whose radius
is 0.5, and then sample d arms uniformly from the centered
unit ball. We repeat this process until the size of the Pareto
front is not more than d.

In each round t = 1, 2, . . . , T , after the learner submits an
arm xt, he observes an m-dimensional reward vector, each
component of which is generated according to the generalized
linear model. While the GLM family contains various statis-
tical models, in the experiments we choose two frequently
used models namely the probit model and the logit model.
Specifically, the first two components of the reward vector are
generated by the probit model, and the last three components
are generated by the logit model.

Since both the problem and the algorithms involve random-
ness, we perform 10 trials up to round T = 3000 and re-
port average performance of the algorithms. As can be seen
from Fig. 1, where the vertical axis represents the cumulative
Pareto regret up to round t, our algorithm significantly out-
performs its competitors in all experiments. This is expected
since all these algorithms are designed for multi-armed ban-
dits problem and hence do not utilize the particular structure
of the problem considered in this paper, which is explicitly
exploited by our algorithm.

Finally, we would like to investigate the issue of fairness.
To this end, we examine the approximate Pareto frontOt con-
structed by the tested algorithms except S-UCB and use Jac-
card index (JI) to measure the similarity between Ot and the
true Pareto front O∗, defined as

JIt :=
|Ot ∩ O∗|
|Ot ∪ O∗|

for which the larger the better.
We plot the curve of JIt for each algorithm in Fig. 2, where

we set d = 10. As can be seen, our algorithm finds the true
Pareto front much faster than P-UCB and P-TS. Furthermore,
the approximate Pareto front constructed by our algorithm is
very close to the true Pareto front when t > 1500. Combin-
ing with the result shown in Fig. 1 and the uniform sampling
strategy used in Step 3 of Algorithm 1, we observe that our

Figure 2: Jaccard index of different methods

algorithm indeed minimizes the Pareto regret while ensuring
fairness.

5 Conclusion and Future Work

In this paper, we propose a novel bandits framework named
multi-objective generalized linear bandits, which extends the
multi-objective bandits problem to contextual setting under
the parameterized realizability assumption. By employing the
principle of “optimism in face of uncertainty”, we develop a
UCB-type algorithm whose Pareto regret is upper bounded by
Õ(d
√
T ), which matches the optimal regret bound for single

objective contextual bandits problem.
While we have conducted numerical experiments to show

that the proposed algorithm is able to achieve high fairness,
it is appealing to provide a theoretical guarantee regarding
fairness. We will investigate this in future work.
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