
Non-stationary Continuum-armed Bandits
for Online Hyperparameter Optimization

Shiyin Lu

National Key Lab for Novel Software

Technology, Nanjing University

Nanjing, China

lusy@lamda.nju.edu.cn

Yu-Hang Zhou

Alibaba Group

Hangzhou, China

zyh174606@alibaba-inc.com

Jing-Cheng Shi

Alibaba Group

Hangzhou, China

jingcheng.sjc@alibaba-inc.com

Wenya Zhu

Alibaba Group

Hangzhou, China

wenya.zwy@alibaba-inc.com

Qingtao Yu

Alibaba Group

Hangzhou, China

qingtao.yqt@alibaba-inc.com

Qing-Guo Chen

Alibaba Group

Hangzhou, China

qingguo.cqg@alibaba-inc.com

Qing Da

Alibaba Group

Hangzhou, China

daqing.dq@alibaba-inc.com

Lijun Zhang
∗

National Key Lab for Novel Software

Technology, Nanjing University

Nanjing, China

zhanglj@lamda.nju.edu.cn

ABSTRACT
For years, machine learning has become the dominant approach

to a variety of information retrieval tasks. The performance of

machine learning algorithms heavily depends on their hyperparam-

eters. It is hence critical to identity the optimal hyperparameter

configuration when applying machine learning algorithms. Most

of existing hyperparameter optimization methods assume a static

relationship between hyperparameter configuration and algorith-

mic performance and are thus not suitable for many information

retrieval applications with non-stationary environments such as e-

commerce recommendation and online advertising. To address this

limitation, we study online hyperparameter optimization, where

the hyperparameter configuration is optimized on the fly. We for-

mulate online hyperparameter optimization as a non-stationary

continuum-armed bandits problem in which each arm corresponds

to a hyperparameter configuration and the algorithmic performance

is viewed as reward. For this problem, we develop principled meth-

ods with strong theoretical guarantees in terms of dynamic regret.

The key idea is to adaptively discretize the continuous arm set and

estimate the mean reward of each arm via weighted averaging. As

a case application, we show how our methods can be applied to

optimize the hyperparameter of vector-based candidate generation

algorithm and empirically demonstrate the effectiveness and ef-

ficiency of our methods on public advertising dataset and online

∗
Lijun Zhang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9132-0/22/02. . . $15.00

https://doi.org/10.1145/3488560.3498396

A/B testing. Furthermore, to the best of our knowledge, our meth-

ods are the first to achieve sub-linear dynamic regret bounds for

continuum-armed bandits, which may be of independent interest.

CCS CONCEPTS
• Information systems → Information retrieval.

KEYWORDS
continuum-armed bandits, non-stationary environments, hyperpa-

rameter optimization

ACM Reference Format:
Shiyin Lu, Yu-Hang Zhou, Jing-Cheng Shi, Wenya Zhu, Qingtao Yu, Qing-

Guo Chen, Qing Da, and Lijun Zhang. 2022. Non-stationary Continuum-

armed Bandits for Online Hyperparameter Optimization. In Proceedings of
the Fifteenth ACM International Conference on Web Search and Data Mining
(WSDM ’22), February 21–25, 2022, Tempe, AZ, USA. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3488560.3498396

1 INTRODUCTION
Machine learning is a popular and dominant approach for building

information retrieval (IR) systems [4, 25, 27, 32, 42] and has been

applied in various IR tasks such as e-commerce recommendation

[43], web search [41], and online advertising [44]. The performance

of machine learning algorithms typically depends on the configu-

rations of hyperparameters, which are adjustable parameters that

govern the learning process. Representative examples of hyperpa-

rameters in IR scenarios include thresholds of vector-based can-

didate generation algorithms [8] and step sizes of online learning

to rank algorithms [16], to name a few. Due to the complex rela-

tionship between hyperparameter configuration and algorithmic

performance, it is difficult to tune hyperparameters by standard

optimization techniques such as convex optimization [39]. Instead,

practitioners often resort to brute-force approaches such as grid

search and random search [28, 31].

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

618

https://doi.org/10.1145/3488560.3498396
https://doi.org/10.1145/3488560.3498396

Grid search refers to exhaustive exploration on a manually de-

termined discretization of the hyperparameter space. In grid search,

each discrete hyperparameter configuration is first evaluated and

the one yielding the highest performance is then identified as the

best configuration. While grid search is simple to implement and

easy to parallelize, it requires human expertise to specify a suitable

discretization level for balancing the computational cost of eval-

uating all discrete configurations and the quality of the obtained

best configuration. As a refinement of grid search, random search

avoids human overhead by uniformly drawing candidate hyperpa-

rameter configurations from the hyperparameter space [7]. It has

been empirically demonstrated and widely recognized that random

search is more effective than grid search in finding well-performing

hyperparameter configurations [6].

Nevertheless, an intrinsic drawback of random search as well as

grid search is that the performance of previously explored hyper-

parameter configurations is totally ignored when determining the

next configuration to evaluate, which makes the exploration pro-

cess rather inefficient. To address this drawback, recent advances in

hyperparameter optimization have introduced Bayesian optimiza-

tion to utilize historical information for more efficient exploration

on the hyperparameter space [33]. Under Bayesian optimization

framework, the relationship between hyperparameter configura-

tion and algorithmic performance is characterized by an objective

function. While the objective function is complex and remains un-

known, Bayesian optimization only requires querying the objective

function and uses a probabilistic surrogate model to approximate

the objective function. The surrogate model is first initialized with

a prior distribution that expresses one’s belief on the unknown

objective function and then iteratively updated according to the

value of the objective function at the queried point. Equipped with

the surrogate model, Bayesian optimization can exploit historical

observations of the objective function and adaptively select the

next hyperparameter configuration to explore. Such adaptivity also

translates into superior performance than brute-force approaches

on various tasks including information retrieval [23, 24, 37].

While Bayesian optimization stands as the state-of-the-art ap-

proach for optimizing hyperparameters of information retrieval

systems [24], existing Bayesian optimizationmethods either assume

a stationary objective function or lack of theoretical guarantees

and hence not suitable for many non-stationary and cost-sensitive

scenarios such as e-commerce recommendation and online adver-

tising. For example, in online advertising, the click-through-rate of

an ad usually changes with time and so does the objective function;

a one-percent drop of click-through-rate due to a bad hyperparame-

ter configuration can lead to million dollars losses [1]. Furthermore,

Bayesian optimization is originally designed for offline hyperpa-

rameter optimization and its time complexity grows rapidly with

iteration, which is prohibitive for real-time update applications.

In this paper, we study online hyperparameter optimization,

where the objective function can vary with time and the hyperpa-

rameter configuration is optimized on the fly. We propose a novel

bandit learning framework termed as non-stationary continuum-

armed bandits for online hyperparameter optimization: each hyper-

parameter configuration is viewed as an arm with the correspond-

ing algorithmic performance being reward. We develop provably

effective methods under the proposed bandit learning framework.

The main idea is to handle the continuous arm set by adaptive

discretization and deal with the non-stationary environment via

dynamic mean estimator. We rigorously analyze the performance of

our methods in terms of dynamic regret and establish the first sub-

linear dynamic regret bounds for continuum-armed bandits, which

may be of independent interest. Our methods are also efficient in

the sense that each iteration only takes constant time. As a practical

example, we apply our methods to optimize the hyperparameter of

vector-based candidate generation algorithm. Extensive experimen-

tal comparison with existing hyperparameter algorithms on both

public advertising dataset and online A/B testing demonstrates the

effectiveness and efficiency of our methods.

2 RELATEDWORK
Grid search is the most basic method for hyperparameter optimiza-

tion and has been widely used in tuning hyperparameters of various

machine learning models such as random forest [38], support vec-

tor machine [40], and deep neural networks [11]. Thanks to its

simplicity and flexibility, grid search is commonly integrated in

popular machine learning software packages including scikit-learn

[30], libsvm [9], and pytorch [29]. Given a human-specified step

size, grid search traverses the hyperparameter space step by step

and evaluates each possible hyperparameter configuration. To find

a well-performing hyperparameter configuration with affordable

computational costs, one has to carefully set the step size and often

repeats the process of grid search multiple times [45]. As an effort

to overcoming this limitation, a variant of grid search termed as

random search was proposed, where the hyperparameter space is

randomly explored [2]. Random search inherits all advantages of

grid search such as simple implementation and flexible parallelism

and greatly reduces the manual burden of grid search [34]. The

superiority of random search was delicately analyzed in [7], where

random search was found to spend less time in exploring poor-

performing regions of the hyperparameter space than grid search.

[7] also empirically shows that random search is more effective

than grid search in tuning hyperparameters of diverse machine

learning algorithms on a variety of datasets.

A common criticism of grid search and random search is that the

hyperparameter configuration to explore is independent of the hy-

perparameter configurations that have been evaluated, which may

involve a large number of unnecessary hyperparameter evaluations

[39]. To improve the exploration efficiency, advanced methods in-

cluding Bayesian optimization [33] and Hyperband [26] have been

proposed, where the exploration process is guided by the previously

evaluated hyperparameter configurations. Bayesian optimization

speeds up the identification of good hyperparameter configurations

by adaptively determining the next hyperparameter to evaluate [6].

In each iteration, after observing the performance of previously

evaluated hyperparameter configurations, Bayesian optimization

first fits the observations into a surrogate model. Then, based on

the surrogate model, an acquisition function is adopted to balance

the trade-off between exploring potentially better regions and ex-

ploiting the currently promising regions [19]. According to the

adopted surrogate model, Bayesian optimization methods can be

divided into three categories, namely, sequential model-based algo-

rithm configuration [19], tree-structured Parzen [6], and Spearmint

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

619

[33], where the surrogate model is random forest, Parzen density

estimator, and Gaussian process, respectively. The three types of

Bayesian optimization methods were empirically shown to beat

random search on various tasks [12, 13, 24, 35, 37].

As an orthogonal research direction to Bayesian optimization,

Hyperband [26] accelerates the optimization process by adaptively

allocating the evaluation budget to different hyperparameter con-

figurations. Hyperband is a best-arm identification (BAI) algorithm

built upon the successive halving (SH) method [20]. Given a finite

evaluation budget 𝐵, SH first samples 𝑛 hyperparameter configura-

tions each allocated 𝐵/𝑛 evaluation budget and then successively

eliminates poorly-performing configurations while doubling the

evaluation budget of the remain configurations. The difficultly of

applying SH lies in balancing the trade-off between the number

of configurations 𝑛 and the average allocated evaluation budget

across 𝑛 configurations 𝐵/𝑛. As a simple yet effective approach to

this 𝑛 versus 𝐵/𝑛 dilemma, Hyperband essentially performs a grid

search over all feasible 𝑛 and calls SH as a subroutine for each 𝑛.

The effectiveness of Hyperband is empirically verified on a variety

of problems [21, 36].

3 PRELIMINARY
We formulate online hyperparameter optimization as a novel non-

stationary continuum-armed bandits problem, where a learner in-

teracts with a continuous set of arms. Without loss of generality,

we assume the arm set (the hyperparameter space) has been shifted

and scaled to the unit interval, i.e., [0, 1]. The learning protocol

proceeds over 𝑇 rounds. In each round 𝑡 ∈ [𝑇], the learner first
chooses an arm (a hyperparameter configuration) 𝐼𝑡 from [0, 1] and
then receives a reward of the chosen arm 𝑟𝑡 (𝐼𝑡), which corresponds

to the performance of the selected hyperparameter configuration.

For each arm 𝑎 ∈ [0, 1], we denote by D𝑡 (𝑎) the probability distri-

bution from which the reward of 𝑎 in round 𝑡 is drawn. Finally, the

learner updates her arm selection strategy for the next round based

on the received reward 𝑟𝑡 (𝐼𝑡).
In each round 𝑡 , let 𝜇𝑡 (𝑎) = E𝑟∼D𝑡 (𝑎) [𝑟] denote the mean reward

of an arm 𝑎. We define the arm with maximum mean reward as the

optimal arm: 𝑎∗𝑡 = argmax𝑎∈[0,1] 𝜇𝑡 (𝑎). The learner’s performance

is measured by dynamic regret, which is the difference between the

cumulative mean rewards of the arms chosen by the learner and

that of the optimal arms:

DR(𝑇) =
𝑇∑︁
𝑡=1

𝜇𝑡 (𝑎∗𝑡) −
𝑇∑︁
𝑡=1

𝜇𝑡 (𝐼𝑡).

We make three mild assumptions as follows.

• The rewards are all bounded in [0, 1] and the reward distri-

butions are independent across arms and rounds.

• The mean reward function is Lipschitz continuous:

|𝜇𝑡 (𝑢) − 𝜇𝑡 (𝑣) | ≤ |𝑢 − 𝑣 |, ∀𝑢, 𝑣 ∈ [0, 1],∀𝑡 ∈ [𝑇] .
• The environment is piecewise stationary with reward distri-

butions varying at most Γ times
1
:

𝑇∑︁
𝑡=1

1[∃𝑎 ∈ [0, 1],D𝑡 (𝑎) ≠ D𝑡−1 (𝑎)] ≤ Γ.

1
We denote by 1[·] the indicator function.

4 METHOD
The main idea of our methods is to deal with the continuous arms

by discretizing the arm set and handle non-stationary reward dis-

tributions via dynamic mean estimator. To ease understanding, we

first present a basic method using static discretization and then

propose a refined method with adaptive discretization.

4.1 Static Discretization
Let 𝜌 denote the discretization resolution. We first discretize the

continuous arm set [0, 1] into a set of equally-spaced arms:

A = {𝜌𝑘 | 𝑘 = 1, . . . , ⌊1/𝜌⌋}. (1)

We refer to each arm in A as active arm and only pull active arms

during the 𝑇 rounds. The intuition behind the discretization in

(1) is two folds. On the one hand, the number of active arms only

grows inverse-linearly with the discretization resolution and thus

the sampling cost on the active arm set can be controlled. On the

other hand, for each inactive arm 𝑎 ∈ [0, 1] − A, its mean reward

can be approximated by that of certain active arm 𝑎′ ∈ A and the

approximate error can be bounded by the discretization resolution,

since by the definition of A and the Lipschitz continuity of mean

reward function, there must exist an active arm 𝑎′ ∈ A such that

|𝜇𝑡 (𝑎) − 𝜇𝑡 (𝑎′) | ≤ |𝑎 − 𝑎′ | ≤ 𝜌.

After discretization, we associate each active arm 𝑎 ∈ A with

two variables, namely 𝜇𝑡 (𝑎) and 𝜉𝑡 (𝑎), which denote the estimated

mean of arm 𝑎’s reward distribution in round 𝑡 and the confidence

width of the estimation, respectively. In each round 𝑡 = 1, . . . ,𝑇 ,

following the principle of “optimism in the face of uncertainty” [3],

we select the active arm with the maximum sum of estimated mean

reward and confidence width:

𝐼𝑡 = argmax

𝑎∈A
𝜇𝑡 (𝑎) + 𝜉𝑡 (𝑎) . (2)

As the reward distribution of each arm is non-stationary, classical

mean estimators that directly average the historical rewards do not

apply. To address this problem, we adopt dynamic mean estimator

[15], which can converge to the time-varying mean reward. The

main idea of dynamic mean estimator is to assign more weights

to recent rewards and less weights to old rewards when averaging

the historical rewards. Specifically, let 𝑤𝑡 (𝑠) denote the weight

assigned to the reward in round 𝑠 . We estimate the mean reward of

each active arm 𝑎 ∈ A in round 𝑡 by2

𝜇𝑡 (𝑎) =
∑𝑡−1
𝑠=1𝑤𝑡 (𝑠)1[𝐼𝑠 = 𝑎]𝑟𝑠 (𝑎)∑𝑡−1

𝑠=1𝑤𝑡 (𝑠)1[𝐼𝑠 = 𝑎]
. (3)

We consider two types of weight configurations termed as hard-

drop and soft-drop, respectively. In the hard-drop configuration,

we simply drop the historical rewards before round 𝑡 − 𝜆:

𝑤𝑡 (𝑠) =
{
1, 𝑠 ≥ 𝑡 − 𝜆

0, 𝑠 < 𝑡 − 𝜆
(4)

where 𝜆 ∈ N is the drop threshold. By contrast, in the soft-drop

configuration, all historical rewards are preserved and their weights

constitute a geometric series:

𝑤𝑡 (𝑠) = 𝛾𝑡−𝑠−1 (5)

2
We make the convention that 0/0 = +∞.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

620

Algorithm 1 Static Discretization with Dynamic Mean Estimator

(SD
2
ME)

Require: discretization resolution 𝜌 , drop threshold 𝜆, drop dis-

count 𝛾

1: Construct a set of active arms A = {𝜌𝑘 | 𝑘 = 1, . . . , ⌊1/𝜌⌋}
2: Initialize 𝜇1 (𝑎) = 0 and 𝜉1 (𝑎) = +∞ for each 𝑎 ∈ A
3: for 𝑡 = 1, 2, . . . ,𝑇 do
4: Select an arm 𝐼𝑡 according to (2)

5: Pull 𝐼𝑡 and receive a reward 𝑟𝑡 (𝐼𝑡)
6: switch weight configuration do
7: case hard-drop: Compute𝑤𝑡 (𝑠), 𝑠 = 1, . . . , 𝑡 − 1 by (4)

8: case soft-drop: Compute𝑤𝑡 (𝑠), 𝑠 = 1, . . . , 𝑡 − 1 by (5)

9: end switch
10: Update 𝜇𝑡+1 (𝑎) and 𝜉𝑡+1 (𝑎) for each 𝑎 ∈ A by (3) & (7)

11: end for

where 𝛾 ∈ (0, 1] is the drop discount.

It remains to design the confidence width 𝜉𝑡 (𝑎). To this end,

we resort to the Hoeffding’s inequality [17]. Specifically, it can be

proved that
3
in most of rounds, the following inequality holds with

a high probability

|𝜇𝑡 (𝑎) − 𝜇𝑡 (𝑎) | ≤

√√
log

∑𝑡−1
𝑠=1𝑤𝑡 (𝑠)∑𝑡−1

𝑠=1𝑤𝑡 (𝑠)1[𝐼𝑠 = 𝑎]
, ∀𝑎 ∈ A . (6)

Thus, we set the confidence width of each active arm 𝑎 ∈ A as

𝜉𝑡 (𝑎) =

√√
log

∑𝑡−1
𝑠=1𝑤𝑡 (𝑠)∑𝑡−1

𝑠=1𝑤𝑡 (𝑠)1[𝐼𝑠 = 𝑎]
. (7)

We summarize the whole procedure in Algorithm 1, which is

referred to as Static Discretization with Dynamic Mean Estimator

(SD
2
ME) and enjoys the following theoretical guarantee.

Theorem 4.1. The dynamic regret of the SD2ME method with
𝜆 = ⌊61/4 (𝑇 /Γ)3/4⌋, 𝛾 = 1 − 6

−1/4 (Γ/𝑇)3/4, and

𝜌 =

{
3
√︁
6/𝜆, hard-drop weight configuration

3
√︁
6(1 − 𝛾), soft-drop weight configuration

(8)

satisfies E[DR(𝑇)] ≤ 𝑂 (Γ1/4𝑇 3/4).
Remark 4.1. The pseudo-code in Algorithm 1 is not optimized

for runtime but for ease of exposition and understanding. In fact,

for each active arm 𝑎 ∈ A, both the estimated mean reward

𝜇𝑡 (𝑎) and the confidence width 𝜉𝑡 (𝑎) can be computed in an on-

line manner with 𝑂 (1) time complexity per round. Specifically, let

𝑛𝑡 (𝑎) =
∑𝑡−1
𝑠=1𝑤𝑡 (𝑠)1[𝐼𝑠 = 𝑎], 𝑅𝑡 (𝑎) =

∑𝑡−1
𝑠=1𝑤𝑡 (𝑠)1[𝐼𝑠 = 𝑎]𝑟𝑠 (𝑎),

and𝑊𝑡 =
∑𝑡−1
𝑠=1𝑤𝑡 (𝑠). We have 𝜇𝑡 (𝑎) = 𝑅𝑡 (𝑎)/𝑛𝑡 (𝑎) and 𝜉𝑡 (𝑎) =√︁

(log𝑊𝑡)/𝑛𝑡 (𝑎). In the hard-drop weight configuration, we can

maintain two queues of length 𝜆 (one for storing the rewards

𝑟𝑠 (𝑎), 𝑠 = 𝑡 − 𝜆, . . . , 𝑡 − 1 and the other for storing the indicators

1[𝐼𝑠 = 𝑎], 𝑠 = 𝑡 − 𝜆, . . . , 𝑡 − 1) and update 𝑛𝑡 (𝑎), 𝑅𝑡 (𝑎), and 𝑊𝑡

incrementally as

𝑛𝑡+1 (𝑎) = 𝑛𝑡 (𝑎) − 1[𝐼𝑡−𝜆 = 𝑎] + 1[𝐼𝑡 = 𝑎]
𝑅𝑡+1 (𝑎) = 𝑅𝑡 (𝑎) − 1[𝐼𝑡−𝜆 = 𝑎]𝑟𝑡−𝜆 (𝑎) + 1[𝐼𝑡 = 𝑎]𝑟𝑡 (𝑎)

𝑊𝑡+1 = min(𝑊𝑡 + 1, 𝜆) .
3
The proof is postponed to the next section.

In the soft-drop weight configuration, the values of 𝑛𝑡 (𝑎), 𝑅𝑡 (𝑎),
and𝑊𝑡 can be also updated on the fly:

𝑛𝑡+1 (𝑎) = 𝛾𝑛𝑡 (𝑎) + 1[𝐼𝑡 = 𝑎]
𝑅𝑡+1 (𝑎) = 𝛾𝑅𝑡 (𝑎) + 1[𝐼𝑡 = 𝑎]𝑟𝑡 (𝑎)

𝑊𝑡+1 = 𝛾𝑊𝑡 + 1.

4.2 Adaptive Discretization
While SD

2
ME is simple, it cannot utilize the rewards received on

the fly to refine the discretization, which hinders its effectiveness

in dealing with complex mean reward functions. To overcome this

limitation, we propose an adaptive discretization based method,

where the discretization is not determined in advance but adaptively

adjusted throughout the 𝑇 rounds.

Specifically, we maintain a time-varying active arm set A𝑡 ⊂
[0, 1], which is initialized to be empty and updated in each round.

Similarly to SD
2
ME, each active arm 𝑎 ∈ A𝑡 is associated with a

time-varying estimated mean reward 𝜇𝑡 (𝑎) and a corresponding

confidence width 𝜉𝑡 (𝑎). While we compute 𝜇𝑡 (𝑎) in the same way

as that of SD
2
ME, we slightly modify the design of 𝜉𝑡 (𝑎) in (7) to

4
:

𝜉𝑡 (𝑎) =
√︄

log (2𝑡1.5/𝛿0.5)∑𝑡−1
𝑠=1𝑤𝑡 (𝑠)1[𝐼𝑠 = 𝑎]

(9)

where 𝛿 ∈ (0, 1) controls the failure probability of the concentration
inequality in (6).

An active arm 𝑎 ∈ A𝑡 and its associated confidence width 𝜉𝑡 (𝑎)
define a covering interval [𝑎 − 𝜉𝑡 (𝑎), 𝑎 + 𝜉𝑡 (𝑎)]. By the Lipschitz

continuity of the mean reward function and the concentration

inequality of the dynamic mean estimator in (6), the mean reward

𝜇𝑡 (𝑎′) of each arm 𝑎′ in the covering interval [𝑎 − 𝜉𝑡 (𝑎), 𝑎 + 𝜉𝑡 (𝑎)]
can be approximated by the estimated mean reward 𝜇𝑡 (𝑎) of the
active arm 𝑎 as

|𝜇𝑡 (𝑎) − 𝜇𝑡 (𝑎′) | ≤ |𝜇𝑡 (𝑎) − 𝜇𝑡 (𝑎) | + |𝜇𝑡 (𝑎) − 𝜇𝑡 (𝑎′) | ≤ 2𝜉𝑡 (𝑎) .

Thus, in each round, we can only pull active arms if the arm set

[0, 1] can be covered by the union of the covering interval of each

active arm, i.e.,

[0, 1] ⊆ ∪𝑎∈A𝑡
[𝑎 − 𝜉𝑡 (𝑎), 𝑎 + 𝜉𝑡 (𝑎)] . (10)

Our adaptive discretization based method is designed such that

(10) is guaranteed throughout the 𝑇 rounds. Specifically, in each

round 𝑡 = 1, . . . ,𝑇 , we first check whether [0, 1] ⊆ ∪𝑎∈A𝑡−1 [𝑎 −
𝜉𝑡 (𝑎), 𝑎 + 𝜉𝑡 (𝑎)] holds. If yes, (10) can be guaranteed by simply

setting A𝑡 = A𝑡−1. Otherwise, we pick an arbitrary arm 𝑎′ from
the uncovered region [0, 1] −∪𝑎∈A𝑡−1 [𝑎 − 𝜉𝑡 (𝑎), 𝑎 + 𝜉𝑡 (𝑎)] and add
it into the active arm set, i.e., A𝑡 = A𝑡−1 ∪ {𝑎′}. Then, we set the
estimated mean reward and the confidence width of this newly

added active arm as zero and infinity, respectively. By doing so, the

arm set [0, 1] becomes a subset of the covering interval of 𝑎′ and
thus (10) holds.

With (10) guaranteed, we can only pull arm from the active arm

set A𝑡 . In each round 𝑡 = 1, . . . ,𝑇 , we first select an active arm in a

similar way to that of SD
2
ME, with the only difference of doubling

4
This modification is essential in deriving a dynamic regret bound that holds with

high probability rather than in expectation.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

621

Algorithm 2 Adaptive Discretization with Dynamic Mean Estima-

tor (AD
2
ME)

Require: drop threshold 𝜆, drop discount 𝛾

1: Initialize the active arm set as A0 = ∅
2: for 𝑡 = 1, 2, . . . ,𝑇 do
3: if [0, 1] ⊆ ∪𝑎∈A𝑡−1 [𝑎 − 𝜉𝑡 (𝑎), 𝑎 + 𝜉𝑡 (𝑎)] then
4: Set A𝑡 = A𝑡−1
5: else
6: Pick an arm 𝑎′ ∈ [0, 1] − ∪𝑎∈A𝑡−1 [𝑎 − 𝜉𝑡 (𝑎), 𝑎 + 𝜉𝑡 (𝑎)]
7: Set A𝑡 = A𝑡−1 ∪ {𝑎′}, 𝜇𝑡 (𝑎′) = 0, and 𝜉𝑡 (𝑎′) = +∞
8: end if
9: Select an arm 𝐼𝑡 according to (11)

10: Pull 𝐼𝑡 and receive a reward 𝑟𝑡 (𝐼𝑡)
11: switch weight configuration do
12: case hard-drop: compute𝑤𝑡 (𝑠), 𝑠 = 1, . . . , 𝑡 − 1 by (4)

13: case soft-drop: compute𝑤𝑡 (𝑠), 𝑠 = 1, . . . , 𝑡 − 1 by (5)

14: end switch
15: Update 𝜇𝑡+1 (𝑎) and 𝜉𝑡+1 (𝑎) for each 𝑎 ∈ A𝑡 by (3) & (9)

16: end for

the confidence width:

𝐼𝑡 = argmax

𝑎∈A𝑡

𝜇𝑡 (𝑎) + 2𝜉𝑡 (𝑎) . (11)

Then, we pull the selected arm and receive a reward 𝑟𝑡 (𝐼𝑡). Finally,
we update the estimated mean reward and the confidence width of

each active arm according to (3) and (9).

The whole procedure is summarized in Algorithm 2. We call this

algorithm as Adaptive Discretizationwith DynamicMean Estimator

(AD
2
ME). We derive a high probability dynamic regret bound for

AD
2
ME as follows, which is stronger than the expected dynamic

regret bound of SD
2
ME.

Theorem 4.2. With probability at least 1 − 𝛿 , the dynamic regret
of AD2ME with{

𝜆 = ⌊2(𝑇 /3Γ)3/4⌋, hard-drop weight configuration
𝛾 = 1 − (3Γ/𝑇)3/4, soft-drop weight configuration

(12)

satisfies DR(𝑇) ≤ 𝑂 (Γ1/4𝑇 3/4).
Remark 4.2. In AD

2
ME, both the estimated mean reward 𝜇𝑡 (𝑎)

and the confidence width 𝜉𝑡 (𝑎) of each active arm 𝑎 can be also

computed online in the same way as Remark 4.1. Furthermore, we

would like to point out that the operation of checking [0, 1] ⊆
∪𝑎∈A𝑡−1 [𝑎− 𝜉𝑡 (𝑎), 𝑎 + 𝜉𝑡 (𝑎)] at Step 3 of AD2

ME can be performed

with constant time complexity in each round. Specifically, we can

maintain a sorted and doubly linked list 𝐿 = ℓ1 ↔ ℓ2 ↔ · · · ↔ ℓ |A𝑡 |
with ℓ1 < ℓ2 < · · · < ℓ |A𝑡 | to store the active arm set A𝑡 . In the

first round, we initialize 𝐿 = ℓ1 and set 𝜉1 (ℓ1) = +∞. Then, in each

round 𝑡 = 2, . . . ,𝑇 , let ℓ𝑘 be the node storing the arm pulled at round

𝑡 − 1, i.e., ℓ𝑘 = 𝐼𝑡−1. By the definition of the confidence width, all

active arms 𝑎 ∈ A𝑡−1 except for 𝐼𝑡−1 satisfy 𝜉𝑡 (𝑎) ≥ 𝜉𝑡−1 (𝑎). Thus,
if the linked list is sorted before round 𝑡 and [0, 1] ⊆ ∪𝑎∈A𝑡−1 [𝑎 −
𝜉𝑡−1 (𝑎), 𝑎 + 𝜉𝑡−1 (𝑎)], we only need to check whether any of the

following two inequalities holds.

ℓ𝑘 − 𝜉𝑡 (ℓ𝑘) >
{
0, ℓ𝑘 is the head node;

ℓ𝑘−1 + 𝜉𝑡 (ℓ𝑘−1), ℓ𝑘 is not the head node.

ℓ𝑘 + 𝜉𝑡 (ℓ𝑘) <
{
1, ℓ𝑘 is the tail node;

ℓ𝑘+1 − 𝜉𝑡 (ℓ𝑘+1), ℓ𝑘 is not the tail node.

If no inequality holds, we simply keep the linked list 𝐿 unchanged,

so that 𝐿 is sorted after round 𝑡 and [0, 1] ⊆ ∪𝑎∈A𝑡
[𝑎 − 𝜉𝑡 (𝑎), 𝑎 +

𝜉𝑡 (𝑎)]. Otherwise, taking the case of ℓ𝑘 +𝜉𝑡 (ℓ𝑘) < ℓ𝑘+1−𝜉𝑡 (ℓ𝑘+1) as
an example, we first pick a new active arm 𝑎′ ∈

(
ℓ𝑘 + 𝜉𝑡 (ℓ𝑘), ℓ𝑘+1 −

𝜉𝑡 (ℓ𝑘+1)
)
and create a new node ℓ ′ to store 𝑎′. Then, we update

the pointers of ℓ𝑘 , ℓ𝑘+1, and ℓ ′ to ℓ𝑘 ↔ ℓ ′ ↔ ℓ𝑘+1 so as to ensure

𝐿 is sorted after round 𝑡 . Finally, we set 𝜉𝑡 (𝑎′) = +∞ to guarantee

[0, 1] ⊆ ∪𝑎∈A𝑡
[𝑎 − 𝜉𝑡 (𝑎), 𝑎 + 𝜉𝑡 (𝑎)].

5 ANALYSIS
Due to space limitation, we only prove Theorem 4.1 and Theorem

4.2 for the hard-drop weight configuration and the proofs for the

soft-drop weight configuration can be done in a similar way.

5.1 Proof of Theorem 4.1
We first partition the 𝑇 rounds into Γ epochs such that in each

epoch the reward distributions are stationary:

[1,𝑇] = [𝜏1, 𝜏2) ∪ [𝜏2, 𝜏3) ∪ . . . ∪ [𝜏Γ,𝑇 + 1)
where 𝜏𝑖 , 𝑖 = 1, . . . , Γ denotes the 𝑖-th change point of the reward

distributions, i.e., 𝜏1 < · · · < 𝜏Γ and ∃𝑎 ∈ [0, 1],D𝜏𝑖 ≠ D𝜏𝑖−1 (𝑎).
For notational convenience, we additionally define 𝜏Γ+1 = 𝑇 + 1.

Fix an epoch 𝑖 . Let O𝑖 = {𝑎 ∈ A | 𝜇𝜏𝑖 (𝑎) = max𝑎′∈A 𝜇𝜏𝑖 (𝑎′)} be
all optimal active arms during the epoch [𝜏𝑖 , 𝜏𝑖+1) and 𝑜𝑖 ∈ O𝑖 be

an optimal active arm. We denote the mean reward gap between

an active arm 𝑎 and the optimal active arm 𝑜𝑖 by Δ𝑖 (𝑎) = 𝜇𝜏𝑖 (𝑜𝑖) −
𝜇𝜏𝑖 (𝑎). Define A𝜌 = {𝑎 ∈ A | Δ𝑖 (𝑎) ≥ 𝜌}. We have

𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

[𝜇𝑡 (𝑜𝑖) − 𝜇𝑡 (𝐼𝑡)] =
𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

Δ𝑖 (𝐼𝑡) ≤ 𝜆 +
𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖+𝜆

Δ𝑖 (𝐼𝑡)

≤ 𝜆 + (𝜏𝑖+1 − 𝜏𝑖)𝜌 +
∑︁

𝑎∈A𝜌

Δ𝑖 (𝑎)
𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖+𝜆

1[𝐼𝑡 = 𝑎] .
(13)

Fix an arm 𝑎 ∈ A𝜌 . DefineΛ𝑖 (𝑎) = 4Δ−2
𝑖

(𝑎) log (𝜆 + 1) and𝑛𝑡 (𝑎) =∑𝑡−1
𝑠=1𝑤𝑡 (𝑠)1[𝐼𝑠 = 𝑎] = ∑𝑡−1

𝑠=𝑡−𝜆 1[𝐼𝑠 = 𝑎]. On one hand, we have

𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖+𝜆

1[𝐼𝑡 = 𝑎, 𝑛𝑡 (𝑎) < Λ𝑖 (𝑎)] ≤ ⌊(𝜏𝑖+1 − 𝜏𝑖)/𝜆⌋Λ𝑖 (𝑎). (14)

On the one hand, by the arm selection rule in (2) and the Hoeffding’s

inequality [17], for 𝑡 ∈ [𝜏𝑖 + 𝜆, 𝜏𝑖+1) we have
E
[
1[𝐼𝑡 = 𝑎, 𝑛𝑡 (𝑎) ≥ Λ𝑖 (𝑎)]

]
= Pr[𝐼𝑡 = 𝑎, 𝑛𝑡 (𝑎) ≥ Λ𝑖 (𝑎)]

≤ Pr[𝜇𝑡 (𝑎) + 𝜉𝑡 (𝑎) ≥ 𝜇𝑡 (𝑜𝑖) + 𝜉𝑡 (𝑜𝑖), 2𝜉𝑡 (𝑎) < 𝜇𝑡 (𝑜𝑖) − 𝜇𝑡 (𝑎)]
≤ Pr[𝜇𝑡 (𝑎) > 𝜇𝑡 (𝑎) + 𝜉𝑡 (𝑎)] + Pr[𝜇𝑡 (𝑜𝑖) < 𝜇𝑡 (𝑜𝑖) − 𝜉𝑡 (𝑜𝑖)] (15)

≤ exp[−2𝑛𝑡 (𝑎)𝜉2𝑡 (𝑎)] + exp[−2𝑛𝑡 (𝑜𝑖)𝜉2𝑡 (𝑜𝑖)] = 2/𝜆2 .

Combining (13)–(15) and Λ𝑖 (𝑎) = 4Δ−2
𝑖

(𝑎) log (𝜆 + 1) gives

E

[
𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

[𝜇𝑡 (𝑜𝑖) − 𝜇𝑡 (𝐼𝑡)]
]

≤ 𝜆 + (𝜏𝑖+1 − 𝜏𝑖)𝜌 + (𝜏𝑖+1 − 𝜏𝑖)
∑︁

𝑎∈A𝜌

[
4 log(𝜆 + 1)

𝜆𝜌
+ 2

𝜆2

]
.

(16)

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

622

Let 𝑜∗
𝑖
be an optimal arm during epoch 𝑖: 𝜇𝑡 (𝑜∗𝑖) = 𝜇𝑡 (𝑎∗𝑡),∀𝑡 ∈

[𝜏𝑖 , 𝜏𝑖+1). By the definition of the active arm set A in (1), there

must exist 𝑎′ ∈ A such that |𝑜∗
𝑖
− 𝑎′ | ≤ 𝜌 . Thus, we have

E

[
𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

[𝜇𝑡 (𝑎∗𝑡) − 𝜇𝑡 (𝑜𝑖)]
]
= E

[
𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

[𝜇𝑡 (𝑜∗𝑖) − 𝜇𝑡 (𝑜𝑖)]
]

(17)

≤ E
[
𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

[𝜇𝑡 (𝑜∗𝑖) − 𝜇𝑡 (𝑎′)]
]
≤ E

[
𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

|𝑜∗𝑖 − 𝑎′ |
]
≤ (𝜏𝑖+1 − 𝜏𝑖)𝜌.

Adding (16) and (17) and summing over epoch 𝑖 = 1, . . . , Γ gives

E[DR(𝑇)] = E
[
𝑇∑︁
𝑡=1

[𝜇𝑡 (𝑎∗𝑡) − 𝜇𝑡 (𝐼𝑡)]
]
≤ 𝜆Γ + 2𝜌𝑇 + 6 log(𝜆 + 1)𝑇

𝜆𝜌2
.

5.2 Proof of Theorem 4.2
Following the previous subsection, we partition the𝑇 rounds into Γ
stationary epochs: [1,𝑇] = [𝜏1, 𝜏2) ∪ [𝜏2, 𝜏3) ∪ · · ·∪ [𝜏Γ, 𝜏Γ+1). Let T
be a subset of the𝑇 rounds:T = ∪Γ

𝑖=1
[𝜏𝑖+𝜆, 𝜏𝑖+1). We first introduce

the following lemma, which is a straightforward consequence of

the Hoeffding’s inequality [17] and the union bound [10].

Lemma 1. With probability at least 1−𝛿 , for all rounds 𝑡 ∈ T and
all active arms 𝑎 ∈ A𝑡 , |𝜇𝑡 (𝑎) − 𝜇𝑡 (𝑎) | ≤ 𝜉𝑡 (𝑎) .

Based on this lemma, we then show that the confidence width

of each active arm is lower bounded by its mean reward gap.

Lemma 2. Let 𝑜∗
𝑖
be an optimal arm during epoch 𝑖 , i.e., 𝜇𝜏𝑖 (𝑜∗𝑖) =

max𝑎∈[0,1] 𝜇𝜏𝑖 (𝑎) and denote the mean reward gap of each arm 𝑎 by
Δ𝑖 (𝑎) = 𝜇𝜏𝑖 (𝑜∗𝑖) − 𝜇𝜏𝑖 (𝑎) . For all epochs 𝑖 = 1, . . . , Γ, we have

𝜋𝜉𝑡 (𝑎) ≥ Δ𝑖 (𝑎), ∀𝑡 ∈ [𝜏𝑖 + 2𝜆, 𝜏𝑖+1),∀𝑎 ∈ A𝑡 .

Proof. The proof is postponed to appendix. □

We are now ready to prove Theorem 4.2. Fix an epoch 𝑖 . We

partition [𝜏𝑖+2𝜆, 𝜏𝑖+1) into [𝜈0, 𝜈1)∪[𝜈1, 𝜈2)∪· · ·∪[𝜈 𝐽 , 𝜏𝑖+1)with 𝐽 =
⌊(𝜏𝑖+1−𝜏𝑖−2𝜆)/𝜆⌋ and 𝜈 𝑗 = 𝜏𝑖 +(2+ 𝑗)𝜆, 𝑗 = 0, . . . , 𝐽 . Define𝑛𝑡 (𝑎) =∑𝑡−1
𝑠=𝑡−𝜆 1[𝐼𝑠 = 𝑎] . By Lemma 2, for each 𝑗 = 1, . . . , 𝐽 and 𝑎 ∈ A𝜈𝑗 ,

we have Δ𝑖 (𝑎) ≤ 𝜋𝜉𝜈𝑗 ≤ 𝜋

√︃
log (2𝑇 1.5/𝛿0.5)/𝑛𝜈𝑗 (𝑎) . It follows

that

∑𝜈𝑗−1
𝑡=𝜈𝑗−1

[𝜇𝑡 (𝑎∗𝑡) − 𝜇𝑡 (𝐼𝑡)] =
∑
𝑎∈A𝜈𝑗

:𝑛𝜈𝑗
(𝑎)>0 𝑛𝜈𝑗 (𝑎)Δ𝑖 (𝑎) ≤

𝜋

√︃
𝜆4/3 log (2𝑇 1.5/𝛿0.5). Summing this over 𝑗 = 1, . . . , 𝐽 gives

𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

[𝜇𝑡 (𝑎∗𝑡) − 𝜇𝑡 (𝐼𝑡)] ≤ 3𝜆 + 𝜆−1/3 (𝜏𝑖+1 − 𝜏𝑖)𝜋
√︃
log (2𝑇 1.5/𝛿0.5).

Further summing this inequality over 𝑖 = 1, . . . , Γ leads to

DR(𝑇) =
Γ∑︁
𝑖=1

𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

[𝜇𝑡 (𝑎∗𝑡) − 𝜇𝑡 (𝐼𝑡)] ≤ 3Γ𝜆 +
𝜋𝑇

√︁
log (2𝑇 1.5/𝛿0.5)

𝜆1/3
.

6 APPLICATION: CANDIDATE GENERATION
As a case application, we show how our methods can be applied

to tune the hyperparameter of the vector-based candidate genera-

tion algorithm. In industrial retrieval scenarios such as web search,

e-commerce recommendation, and online advertising, a common

practice for balancing the trade-off between effectiveness and ef-

ficiency is to rank items by a two-phased strategy, where a large

corpus is first filtered by a candidate generation algorithm and the

generated candidate items are then sorted by a ranking method.

Taking web search as an example, the goal of candidate generation

algorithm is to preserve relevant items w.r.t. user’s query while dis-

carding irrelevant items. Let 𝑣𝑞 and 𝑣𝑑 denote the embedding vector

of a query 𝑞 and a document 𝑑 , respectively. Then, the relevance

between 𝑞 and 𝑑 can be measured via the cosine similarity

⟨𝑣𝑞 ,𝑣𝑑 ⟩
∥𝑣𝑞 ∥ ∥𝑣𝑑 ∥

and documents with relevance exceeding the truncation threshold

𝛽 are designated as candidate items: C𝑞 =

{
𝑑 :

⟨𝑣𝑞 ,𝑣𝑑 ⟩
∥𝑣𝑞 ∥ ∥𝑣𝑑 ∥ ≥ 𝛽

}
.

The key here is to tune the hyperparameter 𝛽 ∈ [0, 1]. On the

one hand, large 𝛽 leads to overall high quality of candidate items

but may prevent some user-desired items from entering into the

ranking phase. On the other hand, small 𝛽 allows a large number of

candidate items but may introduce irrelevant items into the ranking

phase. Thus, the tuning of 𝛽 is non-trivial and requires principled

approaches. Since thewhose corpus as well as user preference varies

with time, the optimal value of 𝛽 is also not fixed. Furthermore, it is

reasonable to believe that similar values of 𝛽 lead to similar search

performance. Thus, we can formulate the tuning of 𝛽 as a non-

stationary continuum-armed bandits problem with each possible

configuration of 𝛽 being an arm.

7 EXPERIMENT
In this section, we provide extensive experimental results to demon-

strate the effectiveness and efficiency of our methods for online

hyperparameter optimization.

7.1 Setup
7.1.1 Dataset. We conduct experiments on the Ali-Display-Ad

dataset [14, 44], which was collected from the online advertis-

ing logs of taobao for 8 days and has been publicly released
5
.

The dataset consists of 26 million records of interactions between

1061768 users and 846811 ads. Each record comprises the identities

of the served user and the displayed ad in the interaction, as well

as the time stamp of the interaction and the user’s click feedback

on the ad. The basic information of both users and ads is also pro-

vided in the dataset. Specifically, each user is associated with 8

profile features such as age level, shopping level, and gender. Each

ad is described by 5 features including the identity of the adver-

tiser, the campaign of the ad, the category, the brand, and the price

of the advertised commodity. All the 13 features except for the

price of the advertised commodity are categorical. Following com-

mon industrial practice, we also convert the price of the advertised

commodity into a categorical feature by splitting the prices of all

commodities into 5 equal-sized bins. As the Ali-Display-Ad dataset

is sufficiently large, we simply drop the records with missing values

of any feature.

7.1.2 Experimental Framework. As described in the previous sec-

tion, to run the vector-based candidate generation algorithm on the

Ali-Display-Ad dataset, an encoding model that can transform the

raw features of both user and ad into embedding vectors is required.

We take DSSM [18] as the encoding model, which is widely used

in online advertising and consists of two sub-networks, one for

5
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

623

encoding user’s features and the other for encoding ad’s features.

Each sub-network is comprised of four fully-connected layers with

500, 300, 300, and 128 neurons, respectively and all fully-connected

layers are followed by the tanh activation function. Following the

approach in [18], we train the DSSM model as follows: We first

choose a user 𝑢, an ad 𝑎+ that was clicked by the user and four

ads 𝑎−
1
, . . . , 𝑎−

4
that were not clicked by the user uniformly at ran-

domly from the Ali-Display-Ad dataset. Then, the raw features of

user and ads are fed into the corresponding sub-networks to obtain

embedding vectors of the user and ads 𝑣𝑢 , 𝑣𝑎+ , 𝑣𝑎−
1

, . . . , 𝑣𝑎−
4

. The rel-

evance between user and ad is measured via the cosine distance

and the loss is defined as ℓ = − log
M(𝑣𝑢 ,𝑣𝑎+)

M(𝑣𝑢 ,𝑣𝑎+)+
∑

4

𝑖=1 M(𝑣𝑢 ,𝑣𝑎−
𝑖
) where

M(𝑥,𝑦) = ⟨𝑥,𝑦⟩
∥𝑥 ∥ ∥𝑦 ∥ denotes the cosine of the angle between 𝑥 and

𝑦. We train the DSSM model with batch size 1024 by the Adam

optimizer [22] for 10000 epochs.

Equippedwith the trained DSSMmodel, we are now ready to con-

struct an online hyperparameter optimization framework, which

proceeds in a sequence of rounds 𝑡 = 1, . . . ,𝑇 . In each round 𝑡 , we

first select a user 𝑢𝑡 and collect the ads 𝐴𝑡 = 𝐴+
𝑡 ∪ 𝐴−

𝑡 that were

displayed to this user, where 𝐴+
𝑡 and 𝐴−

𝑡 denote the set of clicked

and unclicked ads, respectively. To comply with the real-world

non-stationary environment, the users are not sampled uniformly

at random but picked in order according to the most frequent hour

in their interaction time stamps. Then, the trained DSSM model is

employed to output the embedding vectors of both the user and

ads, denoted as 𝑣𝑢𝑡 and {𝑣𝑎 : 𝑎 ∈ 𝐴+
𝑡 ∪ 𝐴−

𝑡 }. Next, we invoke the
examined hyperparameter optimization algorithm, which outputs a

truncation threshold 𝛽𝑡 . Intuitively, we wish the truncation thresh-

old could preserve as many clicked ads while filtering out as many

unclicked ads as possible. Thus, we measure the quality of the trun-

cation threshold via F-score [5], which is the harmonic mean of

precision and recall, defined as follows

F𝑡 =
precision𝑡 · recall𝑡
precision𝑡 + recall𝑡

=
2

∑
𝑎∈𝐴+

𝑡
1{M(𝑣𝑢𝑡 , 𝑣𝑎) ≥ 𝛽𝑡 }

|𝐴+
𝑡 | +

∑
𝑎∈𝐴𝑡

1{M(𝑣𝑢𝑡 , 𝑣𝑎) ≥ 𝛽𝑡 }
.

Finally, we reveal F𝑡 to the examined hyperparameter optimization

algorithm as its instantaneous reward. The overall performance of

the examined hyperparameter optimization algorithm is measured

by its cumulative rewards over 𝑇 = 10000 rounds:

∑𝑇
𝑡=1 F𝑡 .

7.1.3 Baselines. We compare our methods with the following hy-

perparameter optimization algorithms:

• Grid Search.We split the 𝑇 rounds into two equal-length

phases, one for exploration and the other for exploitation.

Specifically, during the first 𝑇 /2 rounds, ten evenly spaced

points over the unit interval [0, 1] are explored in a round-

robin fashion. Then, the one that achieves the maximum

average F-score is exploited in the last 𝑇 /2 rounds.
• RandomSearch.We sample ten points uniformly at random

from the unit interval [0, 1]. Similarly to grid search, the first

𝑇 /2 rounds are taken to explore the sampled points and the

empirically best one is used in last 𝑇 /2 rounds.
• BayesianOptimization. Following [24], we adopt Gaussian
process as the surrogate model and examine two covariance

functions, namely squared exponential (SE) function and

Matérn function. To make fair comparison, we take upper

confidence bound (UCB) as the acquisition function. In each

round 𝑡 , Bayesian Optimization needs to compute the inverse

covariance matrix, whose time complexity grows cubicly

with 𝑡 . To control the computation time within a reasonable

limit, we train Bayesian optimization during the first 𝑇 /10
rounds and use its output in the remaining rounds.

• Hyperband. Following [26], we set the proportion of candi-

date hyperparameter configurations discarded in each round

as 1/3. As Hyperband is originally designed for offline sce-

narios, we take the first 𝑇 /2 rounds to train Hyperband and

use its output in the last 𝑇 /2 rounds. Accordingly, the max-

imum amount of resource that can be allocated to a single

hyperparameter configuration is set as
𝑇

2(ln𝑇+1)2 .

We configure our methods according to Theorem 4.1 and The-

orem 4.2. While the actual non-stationarity Γ remains unknown

in the experiments, we simply replace Γ with an estimated non-

stationarity Γ̃ = 10 in (8) and (12).

7.1.4 ResearchQuestions. We aim to answer the following research

questions via experiments:

(1) How does our methods perform in comparison with the

baseline algorithms?

(2) To what extent does the mismatch between the estimated

non-stationarity Γ̃ and the actual non-stationarity Γ affect

the performance of our methods?

(3) How about the efficiency of our methods compared to the

baseline algorithms?

7.2 Results and Analysis
We start with the first research question and run our methods and

each baseline algorithm in the online hyperparameter optimization

experimental framework ten times. The average performance as

well as the standard deviation of each algorithm is listed in Ta-

ble 1. We can observe that the two brute-force algorithms grid

search and random search behave the worst. This is because the

two algorithms lack guidance in exploring on the unit interval

[0, 1] and hence waste too much time on bad truncation thresh-

olds. This drawback is addressed by the Bayesian optimization and

Hyperband algorithms where the exploration process is guided by

historical observations of previously tried truncation thresholds.

As can be seen, such informative exploration indeed translates into

improved cumulative F-score. Nevertheless, we can also see that

our methods with both soft-drop and hard-drop weight configu-

rations achieve significantly higher cumulative F-score than the

Bayesian optimization and Hyperband algorithms. This is expected

as online advertising is a typical non-stationary scenario where

the overall click-through-rate varies with time period and so does

the optimal truncation threshold, while Bayesian optimization and

Hyperband are designed for stationary scenarios assuming the

existence of a global optimal truncation threshold over all time

periods. By contrast, both of our methods SD
2
ME and AD

2
ME take

the non-stationarity into account and track the time-varying opti-

mism truncation threshold via dynamic mean estimator. Taking a

closer look at the performance of our methods, there is clear perfor-

mance improvement of AD
2
ME over SD

2
ME, which validates the

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

624

Table 1: Performance comparison between our methods and
the baseline algorithms on the Ali-Display-Ad dataset. ★ de-
notes significant improvement over all baseline algorithms
at 𝑝 < 0.01. The unit of computation time is second.

Algorithm Cumulative F-score Computation Time

Grid Search 3396 ± 0.0 517

Random Search 3467 ± 64.9 528

Hyperband 3550 ± 49.2 546

Bayesian-Matérn 3564 ± 14.5 43426

Bayesian-SE 3533 ± 20.7 37283

SD
2
ME-hard 3673 ± 5.9★ 612

SD
2
ME-soft 3671 ± 4.3★ 568

AD
2
ME-hard 3714 ± 15.2★ 745

AD
2
ME-soft 3720 ± 19.8★ 671

superiority of adaptive discretization for online hyperparameter

optimization.

We then answer the second research question by running our

methods with different estimated non-stationarity ranging from 5

to 25. Except for the estimated non-stationarity, the other experi-

mental setup is the same as that in the above investigation of the

first research question. We plot the performance of our methods un-

der each estimated non-stationarity Γ̃ = 5, 10, 15, 20, 25 in Figure 1.

The curve of cumulative F-score versus estimated non-stationarity

varies slowly, which reveals that our methods are relatively robust

to the mismatch between the estimated non-stationarity and the

actual non-stationarity of the experimental environment.

Finally, we investigate the last research question. To this end, we

record the overall computation time of each algorithm, which is

also listed in Table 1 for saving space. The first observation is that

Bayesian optimization takes much longer time than the other algo-

rithms. This is due to the time-consuming operation of inverting

the covariance matrix, which makes the overall time complexity

of Bayesian optimization scale with 𝑂 (𝑇 3). By contrast, the other

algorithms all perform constant-time operations in each round,

leading to an overall time complexity of 𝑂 (𝑇). Further comparing

our methods with grid search, random search and Hyperband, we

see that the computation time of our methods are slightly higher,

which is acceptable in light of the improvement on online perfor-

mance. We can also observe that within our methods, soft-drop

weight configuration is more efficient than hard-drop weight con-

figuration, which is intuitive as the latter needs to additionally

maintain queues as discussed in Remark 4.1.

7.3 Online A/B Testing
The candidate generation is an important stage for search, recom-

mendation, and advertising on e-commerce platforms. In practice,

several candidate generation algorithms are always kept in online

service, each providing a set of candidate items for the subsequent

ranking stage. Among them, the vector-based candidate generation

algorithm has attracted much attention recently. As discussed in

Section 6, the performance of the vector-based candidate generation

algorithm heavily depends on the truncation threshold. A common

5 10 15 20 25
estimated non-stationarity

3600

3625

3650

3675

3700

3725

3750

3775

3800

C
um

ul
at

iv
e

F-
sc

or
e

SD2ME-hard
SD2ME-soft
AD2ME-hard
AD2ME-soft

Figure 1: Performance of our methods with different Γ̃

practice is to manually choose the truncation threshold based on

historical data, which may fail in the non-stationary environment.

We deployed our methods on an international e-commerce plat-

form, to optimize the truncation threshold of the vector-based can-

didate generation algorithm. In this platform, the queries are cat-

egorized into several disjointed classes according to their natural

categories. Thus, we run our methods for each category separately

to obtain meticulous thresholds. Our goal is to maximize the user

conversion rate, which is defined as the ratio of the buyer number

to the visitor number in the platform. Moreover, to decrease the

gap between the conversion rate of users and that of items, we

introduce a novel reward formulation where every arm benefits

from the conversion of the same user-query pair in the future 10

minutes time window. The results of online A/B testing demon-

strate that compared to the manually fine-tuning, our methods gain

2.24% more user conversion rate and 2.38% more GMV per visitor

over 14 days.

8 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel bandit-type formulation for online

hyperparameter optimization, where each hyperparameter config-

uration is viewed as an arm and the algorithmic performance is

modelled as reward. We name the proposed bandit formulation as

non-stationary continuum-armed bandits, for which we develop

two effective and efficient methods. Theoretically, we prove that

both of our methods can achieve sub-linear dynamic regret bounds,

which, to the best of our knowledge, is the first theoretical result for

continuum-armed bandits in non-stationary environments and may

be of independent interest. We also empirically demonstrate the ef-

fectiveness and efficiency of our methods by extensive experiments

on both public advertising dataset and online A/B testing.

Currently, we only consider online optimization of single hy-

perparameter. While multiple hyperparameters can be optimized

separately by our methods, the correlation structure between dif-

ferent hyperparameters remains to be investigated. We leave the

study of online and joint optimization of multiple hyperparameters

as a future work.

ACKNOWLEDGMENTS
This work was partially supported by NSFC (62122037), JiangsuSF

(BK20200064), and the Open Research Projects of Zhejiang Lab

(NO. 2021KB0AB02). We thank the anonymous reviewers for their

constructive suggestions.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

625

REFERENCES
[1] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, and Liang Zhang.

2014. Laser: A scalable response prediction platform for online advertising. In

Proceedings of the 7th ACM international conference onWeb search and data mining.
173–182.

[2] Richard Loree Anderson. 1953. Recent advances in finding best operating condi-

tions. J. Amer. Statist. Assoc. 48, 264 (1953), 789–798.
[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of

the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235–256.

[4] Manpreet Singh Bajwa, Ravi Rana, and Geetanshi Bagga. 2020. Machine Learning-

Based Information Retrieval System. In The International Conference on Recent
Innovations in Computing. Springer, 13–22.

[5] Steven M Beitzel. 2006. On understanding and classifying web queries. Citeseer.
[6] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms

for hyper-parameter optimization. In 25th annual conference on neural information
processing systems (NIPS 2011), Vol. 24. Neural Information Processing Systems

Foundation.

[7] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. Journal of machine learning research 13, 2 (2012).

[8] Fedor Borisyuk, Krishnaram Kenthapadi, David Stein, and Bo Zhao. 2016. CaS-

MoS: A framework for learning candidate selection models over structured

queries and documents. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 441–450.

[9] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector

machines. ACM transactions on intelligent systems and technology (TIST) 2, 3
(2011), 1–27.

[10] Louis Comtet. 2012. Advanced Combinatorics: The art of finite and infinite expan-
sions. Springer Science & Business Media.

[11] Nuno Dionísio, Fernando Alves, Pedro M Ferreira, and Alysson Bessani. 2019. Cy-

berthreat detection from twitter using deep neural networks. In 2019 International
Joint Conference on Neural Networks. IEEE, 1–8.

[12] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper

Snoek, Holger Hoos, and Kevin Leyton-Brown. 2013. Towards an empirical

foundation for assessing bayesian optimization of hyperparameters. In NIPS
workshop on Bayesian Optimization in Theory and Practice, Vol. 10. 3.

[13] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel

Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learning.

In Advances in Neural Information Processing Systems. Curran Associates, Inc.

[14] Kun Gai, Xiaoqiang Zhu, Han Li, Kai Liu, and Zhe Wang. 2017. Learning piece-

wise linear models from large scale data for ad click prediction. arXiv preprint
arXiv:1704.05194 (2017).

[15] Aurélien Garivier and Eric Moulines. 2011. On upper-confidence bound policies

for switching bandit problems. In Proceedings of the 22nd International Conference
on Algorithmic Learning Theory. PRML, 174–188.

[16] ArtemGrotov andMaarten de Rijke. 2016. Online learning to rank for information

retrieval: Sigir 2016 tutorial. In Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information Retrieval. 1215–1218.

[17] Wassily Hoeffding. 1963. Probability inequalities for sums of bounded random

variables. Journal of the American statistical association 58, 301 (1963), 13–30.

[18] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry

Heck. 2013. Learning deep structured semantic models for web search using

clickthrough data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. 2333–2338.

[19] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-

based optimization for general algorithm configuration. In International confer-
ence on learning and intelligent optimization. Springer, 507–523.

[20] Kevin Jamieson and Ameet Talwalkar. 2016. Non-stochastic Best Arm Identifica-

tion and Hyperparameter Optimization. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, Arthur Gretton and Christian C.

Robert (Eds.), Vol. 51. PMLR, Cadiz, Spain, 240–248.

[21] Abdul Rehman Khan, Ameer Tamoor Khan, Masood Salik, and Sunila Bakhsh.

2021. An Optimally Configured HP-GRUModel Using Hyperband for the Control

of Wall Following Robot. International Journal of Robotics and Control Systems 1,
1 (2021), 66–74.

[22] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[23] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.

2017. Fast Bayesian Optimization of Machine Learning Hyperparameters on

Large Datasets. In Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, Aarti Singh and Jerry Zhu (Eds.), Vol. 54. PMLR, Fort

Lauderdale, FL, USA, 528–536.

[24] Dan Li and Evangelos Kanoulas. 2018. Bayesian optimization for optimizing

retrieval systems. In Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining. 360–368.

[25] Hang Li and Zhengdong Lu. 2016. Deep learning for information retrieval.

In Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval. 1203–1206.

[26] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet

Talwalkar. 2017. Hyperband: A novel bandit-based approach to hyperparameter

optimization. The Journal of Machine Learning Research 18, 1 (2017), 6765–6816.

[27] Tie-Yan Liu. 2011. Learning to rank for information retrieval. (2011).

[28] Debanjan Mahata, Jasper Friedrichs, Rajiv Ratn Shah, and Jing Jiang. 2018. De-

tecting personal intake of medicine from twitter. IEEE Intelligent Systems 33, 4
(2018), 87–95.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.

Advances in Neural Information Processing Systems 32 (2019), 8026–8037.
[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[31] BH Shekar and Guesh Dagnew. 2019. Grid search-based hyperparameter tuning

and classification of microarray cancer data. In 2019 Second International Confer-
ence on Advanced Computational and Communication Paradigms (ICACCP). IEEE,
1–8.

[32] Luo Si and Rong Jin. 2011. Machine Learning for Information Retrieval. In

Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval. Association for Computing Machinery,

New York, NY, USA, 1293–1294.

[33] Jasper Snoek, Hugo Larochelle, and Ryan Prescott Adams. 2012. Practical

Bayesian Optimization of Machine Learning Algorithms. Advances in Neural
Information Processing Systems (2012).

[34] Francisco J Solis and Roger J-B Wets. 1981. Minimization by random search

techniques. Mathematics of operations research 6, 1 (1981), 19–30.

[35] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2013.

Auto-WEKA: Combined selection and hyperparameter optimization of classifica-

tion algorithms. In Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining. 847–855.

[36] Lazar Valkov, Rodolphe Jenatton, Fela Winkelmolen, and Cédric Archambeau.

2018. A simple transfer-learning extension of Hyperband. In NIPS Workshop on
Meta-Learning.

[37] Lidan Wang, Minwei Feng, Bowen Zhou, Bing Xiang, and Sridhar Mahadevan.

2015. Efficient hyper-parameter optimization for NLP applications. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing. 2112–
2117.

[38] Xiashuang Wang, Guanghong Gong, Ni Li, and Shi Qiu. 2019. Detection analysis

of epileptic EEG using a novel random forest model combined with grid search

optimization. Frontiers in human neuroscience 13 (2019), 52.
[39] Li Yang and Abdallah Shami. 2020. On hyperparameter optimization of machine

learning algorithms: Theory and practice. Neurocomputing 415 (2020), 295–316.

[40] Lei Yao, Zhanpeng Fang, Yanqiu Xiao, Junjian Hou, and Zhijun Fu. 2021. An

intelligent fault diagnosis method for lithium battery systems based on grid

search support vector machine. Energy 214 (2021), 118866.

[41] Hema Yoganarasimhan. 2020. Search personalization using machine learning.

Management Science 66, 3 (2020), 1045–1070.
[42] Weinan Zhang, Xiangyu Zhao, Li Zhao, Dawei Yin, Grace Hui Yang, and Alex

Beutel. 2020. Deep Reinforcement Learning for Information Retrieval: Fundamen-

tals and Advances. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2468–2471.

[43] Qi Zhao, Yi Zhang, Daniel Friedman, and Fangfang Tan. 2015. E-commerce

recommendation with personalized promotion. In Proceedings of the 9th ACM
Conference on Recommender Systems. 219–226.

[44] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui

Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through

rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. Association for Computing Machinery,

New York, NY, USA, 1059–1068.

[45] Marc-André Zöller andMarco FHuber. 2021. Benchmark and survey of automated

machine learning frameworks. Journal of Artificial Intelligence Research 70 (2021),

409–472.

A PROOF OF LEMMA 2
Proof. Fix an epoch 𝑖 , a round 𝑡 ∈ [𝜏𝑖 + 2𝜆, 𝜏𝑖+1), and an ac-

tive arm 𝑎 ∈ A𝑡 . Let 𝑡
′
be the last round when 𝑎 is pulled, i.e.,

𝐼𝑡 ′ = 𝑎 and 𝑎 ∉ {𝐼𝑡 ′+1, . . . , 𝐼𝑡−1}. If 𝑡 ′ < 𝑡 − 𝜆, we have 𝜉𝑡 (𝑎) =√︃
log (2𝑡1.5/𝛿0.5)/∑𝑡−1

𝑠=𝑡−𝜆 1[𝐼𝑠 = 𝑎] = +∞. Thus, the inequality

𝜋𝜉𝑡 (𝑎) ≥ Δ𝑖 (𝑎) trivially holds.

Below, we consider the case 𝑡 ′ ≥ 𝑡 − 𝜆. On the one hand, since

(10) is guaranteed throughout the 𝑇 rounds, there must exist an

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

626

active arm 𝑎′ ∈ A𝑡 ′ such that its covering interval contains the

optimal arm 𝑜∗
𝑖
, i.e., 𝑜∗

𝑖
∈ [𝑎′−𝜉𝑡 ′ (𝑎′), 𝑎′+𝜉𝑡 ′ (𝑎′)]. By the Lipschitz

continuity of mean reward function, we have

𝜇𝑡 ′ (𝑜∗𝑖) − 𝜇𝑡 ′ (𝑎′) ≤ |𝑜∗𝑖 − 𝑎′ | ≤ 𝜉𝑡 ′ (𝑎′). (18)

On the other hand, according to the arm selection rule in (11),

𝐼𝑡 ′ = 𝑎 implies 𝜇𝑡 ′ (𝑎) + 2𝜉𝑡 ′ (𝑎) ≥ 𝜇𝑡 ′ (𝑎′) + 2𝜉𝑡 ′ (𝑎′) . As 𝑡 ′ ≥ 𝑡 − 𝜆,

we have 𝑡 ′ ≥ 𝜏𝑖 + 𝜆 and hence 𝑡 ∈ T . Applying Lemma 1 gives

𝜇𝑡 ′ (𝑎) − 𝜇𝑡 ′ (𝑎) ≤ 𝜉𝑡 ′ (𝑎) and 𝜇𝑡 ′ (𝑎′) − 𝜇𝑡 ′ (𝑎′) ≤ 𝜉𝑡 ′ (𝑎′). By these

three inequalities, we obtain

𝜇𝑡 ′ (𝑎) + 3𝜉𝑡 ′ (𝑎) ≥ 𝜇𝑡 ′ (𝑎′) + 𝜉𝑡 ′ (𝑎′) . (19)

Combining (18) and (19) leads to Δ𝑖 (𝑎) = 𝜇𝑡 ′ (𝑜∗𝑖)−𝜇𝑡 ′ (𝑎) ≤ 3𝜉𝑡 ′ (𝑎) .
Finally, if 𝑎 is pulled not more than ten times during [𝑡 ′−𝜆, 𝑡 ′−1],

we have

∑𝑡−1
𝑠=𝑡−𝜆 1[𝐼𝑠 = 𝑎] ≤ 11 and hence 𝜋𝜉𝑡 (𝑎) ≥ 1 ≥ Δ𝑖 (𝑎) .

Otherwise, we have 𝜉𝑡 (𝑎)/𝜉𝑡 ′ (𝑎) ≥
√︁
11/12 ≥ 3/𝜋 . □

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

627

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Method
	4.1 Static Discretization
	4.2 Adaptive Discretization

	5 Analysis
	5.1 Proof of Theorem 4.1
	5.2 Proof of Theorem 4.2

	6 Application: Candidate Generation
	7 Experiment
	7.1 Setup
	7.2 Results and Analysis
	7.3 Online A/B Testing

	8 Conclusion and Future Work
	Acknowledgments
	References
	A Proof of Lemma 2

