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Abstract

Regret minimization is treated as the gol-
den rule in the traditional study of online
learning. However, regret minimization al-
gorithms tend to converge to the static opti-
mum, thus being suboptimal for changing en-
vironments. To address this limitation, new
performance measures, including dynamic re-
gret and adaptive regret have been proposed
to guide the design of online algorithms. The
former one aims to minimize the global re-
gret with respect to a sequence of changing
comparators, and the latter one attempts to
minimize every local regret with respect to
a fixed comparator. Existing algorithms for
dynamic regret and adaptive regret are deve-
loped independently, and only target one per-
formance measure. In this paper, we bridge
this gap by proposing novel online algorithms
that are able to minimize the dynamic regret
and adaptive regret simultaneously. In fact,
our theoretical guarantee is even stronger in
the sense that one algorithm is able to mini-
mize the dynamic regret over any interval.

1 Introduction

Online convex optimization (OCO) is a powerful fra-
mework for sequential decision making and has found a
variety of applications (Hazan, 2016). The protocol of
OCO can be viewed as a repeated game between a le-
arner and an adversary: In each round t = 1, 2, . . . , T ,
the learner selects an action wt from a convex feasible
set Ω, and at the same time the adversary chooses a
convex loss function ft(·) : Ω 7→ R. Then, the function
is revealed to the learner who incurs an instantaneous
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loss ft(wt). The goal of the learner is to minimize the
regret:

R(T ) =
T∑
t=1

ft(wt)− min
w∈Ω

T∑
t=1

ft(w) (1)

which compares the cumulative loss of the learner to
that of the best fixed action in hindsight, and is typi-
cally referred to as static regret since the comparator
is time-invariant.

Over the past decades, static regret has been extensi-
vely studied and algorithms with minimax optimal re-
gret bounds have been developed (Zinkevich, 2003; Ha-
zan et al., 2007; Shalev-Shwartz et al., 2007; Bartlett
et al., 2008; Srebro et al., 2010; Shalev-Shwartz, 2011).
However, the metric of static regret is only meaning-
ful for stationary environments, and low static regret
does not necessarily imply a good performance in chan-
ging environments since the time-invariant comparator
in (1) may behave badly. To address this limitation,
recent studies have introduced more stringent perfor-
mance metrics, including dynamic regret and strongly
adaptive regret, to measure the learner’s performance.

The dynamic regret is defined as the difference bet-
ween the cumulative loss of the learner and that of a
sequence of comparators u1, . . . ,uT ∈ Ω (Zinkevich,
2003):

D-R(u1, . . . ,uT ) =

T∑
t=1

ft(wt)−
T∑
t=1

ft(ut). (2)

While it is well-known that sublinear dynamic regret
is unattainable in the worst case, one can bound the
dynamic regret in terms of some regularities of the
comparator sequence. A remarkable example is gi-
ven by Zinkevich (2003), who introduces the notion
of path-length defined in (4) to measure the temporal
variability of the comparator sequence, and derives an
O(
√
T (1 + PT )) dynamic regret bound, where PT is

the path-length. Very recently, Zhang et al. (2018a)
improve this result to be optimal by establishing an
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O(
√
T (1 + PT )) upper bound as well as a matching

lower bound.

The strongly adaptive regret evaluates the learner’s
performance on each time interval of length τ , and is
defined as the maximum static regret over these inter-
vals (Daniely et al., 2015):

SA-R(T, τ)

= max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑
t=s

ft(wt)− min
w∈Ω

s+τ−1∑
t=s

ft(w)

)
.

(3)

In the above definition, since the benchmark action w
that minimizes the cumulative loss over interval [s, s+
τ − 1] typically varies with s, the learner is essentially
competing with changing comparators. The state-of-
the-art strongly adaptive regret bound is O(

√
τ log T )

(Jun et al., 2017a) which matches the minimax static
regret over a fixed interval up to a logarithmic factor
(Abernethy et al., 2008).

Dynamic regret handles changing environments from
a global prospective, as it measures the performance
over the whole interval but allows the comparator
changes over time. By contrast, adaptive regret ta-
kes a local perspective, since it focuses on short in-
tervals with a fixed comparator but allows the inter-
val changes over time. Although Zhang et al. (2018a)
demonstrate that it is possible to derive dynamic re-
gret from adaptive regret, their dynamic regret bound
only takes a special form, and thus it does not mean
adaptive regret is more fundamental than dynamic re-
gret. Since dynamic regret and adaptive regret reflect
different perspectives and are complementary to each
other, it is appealing to ask whether we can minimize
these two metrics simultaneously. Unfortunately, ex-
isting algorithms for minimizing dynamic regret and
adaptive regret are developed independently and dif-
fer significantly.

In this paper, we propose novel algorithms that mini-
mize the dynamic regret and adaptive regret simulta-
neously. Our methods follow the framework of “pre-
diction with expert advice” (Cesa-Bianchi and Lugosi,
2006) and share a similar hierarchical structure: a se-
ries of expert algorithms configured with different life-
times running in parallel, and an expert-tracking algo-
rithm that combines the actions of all active experts.
Specifically, the first method uses the simple online
gradient descent (OGD) as the expert algorithm but
manages the lifetime of experts through specifically
designed intervals. On the contrary, the second met-
hod utilizes standard techniques to activate and de-
activate experts, at the cost of a more complicated ex-
pert algorithm. Theoretical analysis shows that both
methods attain the state-of-the-art O(

√
τ log T ) adap-

tive regret, and they achieve O(
√
T (1 + PT ) log T )

and O(
√
T (log T + PT )) dynamic regrets, respecti-

vely. Furthermore, the second method enjoys an even
stronger theoretical guarantee: it can minimize the dy-
namic regret over any interval.

2 Related Work

In this section, we briefly review related work in dyn-
amic regret and adaptive regret for OCO.

2.1 Dynamic Regret

Dynamic regret is first introduced by Zinkevich (2003),
who proposes to use the path-length

PT =

T∑
t=1

‖ut+1 − ut‖2 (4)

to measure the performance. Specifically, Zinkevich
(2003) demonstrates that OGD with a constant step
size attains a dynamic regret of O(

√
T (1+PT )) for any

sequence u1, . . . ,uT . This upper bound is adaptive in
the sense that it automatically becomes tighter when
the comparators change slowly. Another regularity of
the comparator sequence is defined as

P ′T =

T∑
t=1

‖ut+1 − Φt(ut)‖2

where Φt(·) is a dynamic model that predicts a refe-
rence point for the t-th round. Hall and Willett (2013)
develope a novel algorithm named dynamic mirror des-
cent and prove a dynamic regret of O(

√
T (1 + P ′T )).

An Ω(
√
T (1 + PT )) lower bound of dynamic regret is

established by Zhang et al. (2018a), which indicates
the results of Zinkevich (2003) and Hall and Willett
(2013) are far away from the optimum. To address
this limitation, Zhang et al. (2018a) develop an opti-
mal algorithm, namely adaptive learning for dynamic
environment (Ader), which attains an O(

√
T (1 + PT ))

bound in the general case, and an O(
√
T (1 + P ′T ))

bound when a sequence of dynamical models is avai-
lable.

Deviating from the definition in (2), most studies on
dynamic regret only consider a restricted form, defined
with respect to a sequence of minimizers of the loss
functions due to its greater mathematical tractability
(Jadbabaie et al., 2015; Besbes et al., 2015; Yang et al.,
2016; Mokhtari et al., 2016; Zhang et al., 2017):

D-R(w∗1, . . . ,w
∗
T ) =

T∑
t=1

ft(wt)−
T∑
t=1

ft(w
∗
t )

=

T∑
t=1

ft(wt)−
T∑
t=1

min
w∈Ω

ft(w)

(5)
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where w∗t ∈ argminw∈Ω ft(w) is a minimizer of
ft(·) over domain Ω. Although one can show that
D-R(w∗1, . . . ,w

∗
T ) ≥ D-R(u1, . . . ,uT ), it does not

imply the former one is stronger since an upper
bound for D-R(w∗1, . . . ,w

∗
T ) could be very loose for

D-R(u1, . . . ,uT ). In fact, the definition in (2) is more
general since it holds for any sequence of comparators,
and thus includes the static regret in (1) and the re-
stricted dynamic regret in (5) as special cases.

Let P ∗T be the path-length of the minimizer sequence
w∗1, . . . ,w

∗
T . When the loss functions are strongly con-

vex and smooth, Mokhtari et al. (2016) show that the
restricted dynamic regret of OGD is O(P ∗T ). This rate
is also attainable for convex and smooth functions un-
der the condition that the minimizers lie in the interior
of Ω (Yang et al., 2016). Zhang et al. (2017) introduce
the squared path-length:

S∗T =

T∑
t=1

‖w∗t+1 −w∗t ‖22

which could be much smaller than P ∗T in the case that
minimizers move slowly. They demonstrate that the
restricted dynamic regret bound for strongly convex
functions could be improved to O(min(P ∗T , S

∗
T )).

Instead of measuring the complexity of the comparator
sequence, Besbes et al. (2015) propose to evaluate the
movement of the loss functions as follows:

FT =

T∑
t=1

sup
w∈Ω
|ft+1(w)− ft(w)|. (6)

Besbes et al. (2015) show that a restarted OGD al-
gorithm equipped with a prior knowledge of an upper

bound VT ≥ FT achieves O(V
1/3
T T 2/3) and O(

√
VTT )

dynamic regret for convex functions and strongly con-
vex functions, respectively. However, these bounds de-
pend on the predetermined VT rather than the actual
FT , and thus are not adaptive.

2.2 Adaptive Regret

In their seminal work, Hazan and Seshadhri (2007)
define adaptive regret as

A-R(T ) = max
[s,q]⊆[T ]

(
q∑
t=s

ft(wt)− min
w∈Ω

q∑
t=s

ft(w)

)
(7)

which is the maximum regret over any contiguous in-
terval. They develop a novel algorithm named as fol-
low the leading history (FLH), which runs an instance
of low-regret algorithm in each round as an expert,
and then combines them with an expert-tracking met-
hod. To improve the efficiency, Hazan and Seshadhri
(2007) deploy a data-streaming technique to prune the

set of experts, and as a result only O(log t) experts are
stored at round t. The efficient version of FLH attains
O(d log2 T ) and O(

√
T log3 T ) adaptive regrets for ex-

ponentially concave functions and convex functions,
respectively (Hazan and Seshadhri, 2009).

However, the adaptive regret in (7) does not respect

short intervals well. For example, the O(
√
T log3 T )

adaptive regret of convex functions is vacuous for inter-
vals of size O(

√
T ). To avoid this limitation, Daniely

et al. (2015) propose the strongly adaptive regret in
(3), which emphasizes the dependence on the interval
length. The strongly adaptive algorithm of Daniely
et al. (2015) shares a similar structure to that of FLH
(Hazan and Seshadhri, 2007), but with the following
differences.

(i) Daniely et al. (2015) construct a set of geometric
covering (GC) intervals, and run an instance of
low-regret algorithm for each interval as an ex-
pert.

(ii) A new meta-algorithm named as strongly adap-
tive online learner (SOAL) is used to combine
experts.

The GC intervals are defined as

I =
⋃

k∈N∪{0}

Ik (8)

where for all k ∈ N ∪ {0}, Ik ={
[i · 2k, (i+ 1) · 2k − 1] : i ∈ N

}
. For convex functi-

ons, Daniely et al. (2015) establish an O(
√
τ log T )

strongly adaptive regret. In a subsequent work, Jun
et al. (2017a) design a new meta-algorithm named as
sleeping coin betting (CB), and improve the strongly
adaptive regret to O(

√
τ log T ). The adaptive regret

of convex and smooth functions are studied by Jun
et al. (2017b) and Zhang et al. (2019).

2.3 The Relationship between Dynamic
Regret and Adaptive Regret

In the setting of prediction with expert advice (PEA),
dynamic regret is usually referred to as tracking re-
gret or shifting regret (Littlestone and Warmuth, 1994;
Herbster and Warmuth, 1998; György et al., 2012). In
this case, it has been proved that the tracking regret
can be derived from the adaptive regret (Adamskiy
et al., 2012; Cesa-bianchi et al., 2012; Daniely et al.,
2015). In particular, Theorem 4 of Luo and Schapire
(2015) indicates that it is possible to bound the dyn-
amic regret by the adaptive regret and the following
variation:

VT =

T∑
t=1

N∑
i=1

[ut+1,i − ut,i]+
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where N is the number of experts, ut,i is the i-th com-
ponent of ut, and [x]+ = max(0, x). Thus, for PEA,
it is commonly believed that adaptive regret is more
fundamental.

In the setting of OCO, to the best of our knowledge,
there is only one work (Zhang et al., 2018b) that has
investigated the relationship between dynamic regret
and adaptive regret. Let I1 = [s1, q1], . . . , Ik = [sk, qk]
be a partition of [1, T ] and for each interval Ii, define
the local variation of functions as

FT (i) =

qi−1∑
t=si

sup
w∈Ω
|ft+1(w)− ft(w)|.

Zhang et al. (2018b) prove that the restricted dynamic
regret can be upper bounded in terms of the strongly
adaptive regret and FT (i) as follows:

D-R(w∗1, . . . ,w
∗
T )

≤ min
I1,...,Ik

k∑
i=1

(
SA-R(T, |Ii|) + 2|Ii| · FT (i)

)
.

As can be seen, this result is only applicable to the re-
stricted dynamic regret instead of the general dynamic
regret considered in this paper.

Following the analysis of Zhang et al. (2018b), we
have tried to upper bound the dynamic regret by the
strongly adaptive regret and the path-length.

Theorem 1 Assuming all the online functions are G-
Lipschitz continuous, we have

D-R(u1, . . . ,uT )

≤ min
I1,...,Ik

k∑
i=1

(
SA-R(T, |Ii|) +G|Ii| · PT (i)

) (9)

where PT (i) =
∑qi−1
t=si
‖ut+1 − ut‖2. Combining with

the adaptive regret of convex functions (Jun et al.,
2017a), we obtain the following dynamic regret for con-
vex functions

D-R(u1, . . . ,uT )

=O
(

max
{√

T log T , T 2/3P
1/3
T log1/3 T

})
.

(10)

The above theorem shows that although the strongly
adaptive regret can be used to control the dynamic
regret, it may not be able to give the optimal result,
since the regret bound in (10) is much worse than the
O(
√
T (1 + PT )) bound of Zhang et al. (2018a). Thus,

in the setting of OCO, which one of dynamic regret
and adaptive regret is more fundamental remains an
open problem. Note that our algorithms are able to
minimize the dynamic regret and adaptive regret si-
multaneously. So, no matter which performance mea-
sure is stronger, they are always meaningful.

Algorithm 1 Online Gradient Descent (OGD)

1: Input: Initial point w1, and step size η
2: for t = 1 to T do
3: Submit wt, and then receive ft(·)
4: Suffer a loss ft(wt) and update as

wt+1 = ΠΩ

[
wt − η∇ft(wt)

]
5: end for

3 Our Methods

In this section, we present our online algorithms that
are able to minimize the dynamic regret and adaptive
regret simultaneously. The first method uses a two-
layer structure, but with specifically designed compo-
nents. In contrast, the second method has a three-
layer structure, but with standard techniques that are
easy to comprehend.

Assumption 1 The gradients of all functions are
bounded by G, i.e.,

max
w∈Ω
‖∇ft(w)‖2 ≤ G, ∀t ∈ [T ]. (11)

Assumption 2 The domain Ω contains the origin 0,
and its diameter is bounded by D, i.e.,

max
w,w′∈Ω

‖w −w′‖2 ≤ D. (12)

Assumption 3 The value of each function belongs to
[0, 1], i.e.,

0 ≤ ft(w) ≤ 1, ∀w ∈ Ω, t ∈ [T ].

As long as the loss functions are bounded, they can
always be scaled and restricted to [0, 1].

3.1 The First Method

Our first method follows the framework of adaptive
algorithms for convex functions (Daniely et al., 2015;
Jun et al., 2017a). On one hand, the proposed method
inherits their ability to minimize the adaptive regret.
On the other hand, our method contains new features
so that the dynamic regret can also be minimized.

We take the classical online gradient descent (OGD)
as the expert algorithm, and present the procedure in
Algorithm 1. After receiving the loss function ft(·),
OGD performs gradient descent to update wt:

wt+1 = ΠΩ

[
wt − η∇ft(wt)

]
where ΠΩ[·] denotes the projection onto the nearest
point in Ω, and η > 0 is the step size. The following
static regret bound of OGD is well-known (Zinkevich,
2003).
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t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 · · ·
D0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] · · ·
D1 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ · · ·
D2 [ ] [ ] [ ] [ ] [ · · ·
D3 [ ] [ ] [ · · ·

Figure 1: Dense geometric covering (DGC) intervals.

Theorem 2 Under Assumptions 1 and 2, we have

T∑
t=1

ft(wt)− min
w∈Ω

T∑
t=1

ft(w) ≤ D2

2η
+
ηTG2

2
= DG

√
T

where the step size is set as η = D/(G
√
T ).

Similar to existing adaptive algorithms, we will run
multiple instances of OGD over a set of intervals.
Instead of using the GC intervals of Daniely et al.
(2015), we construct a dense version of GC intervals:

D =
⋃

k∈N∪{0}&2k≤T

Dk

where for all k ∈ N ∪ {0}, Dk ={
Iik = [(i− 1) · 2k + 1, i · 2k] : i ∈ N

}
. We present

a graphical illustration of our dense geometric cove-
ring (DGC) intervals in Fig. 1. Compared with the
original GC intervals, the main difference is that Ik
in GC intervals is a partition of N \ {1, · · · , 2k − 1}
to consecutive intervals of length 2k, while Dk in
our DGC intervals is a partition of N to consecutive
intervals of length 2k. Furthermore, we assume the
total number of iterations T is given beforehand, so
we only construct intervals whose lengths are not
larger than T .

For each interval Iik ∈ D, we will run an instance of
OGD. According to Theorem 2, we set the step size as
η = D/(G

√
2k), which is able to minimize the static

regret over Iik. For the initial solution, we choose one
of the following two ways:

• If i = 1, we set the initial solution as an arbitrary
point in Ω.
• If i > 1, we set the initial solution as the last

output of the OGD associated with Ii−1
k .

In other words, the expert associated with each in-
terval in Dk, except the first one, is warm started by
initiating OGD with the solution of the previous ex-
pert.

To combine the actions of all experts, we choose the
AdaNormalHedge (Luo and Schapire, 2015) as our
meta-algorithm. AdaNormalHedge is a parameter-free
expert-tracking algorithm, which shares a similar re-
gret bound as the sleeping CB (Jun et al., 2017a), but
with simpler updating rules. It makes use of a poten-

Algorithm 2 Adaptive Online learning with Dynamic
regret (AOD)

1: for t = 1 to T do
2: for I ∈ Ct do
3: Create an expert EI which runs OGD, and set

Rt−1,I = Ct−1,I = 0

4: Set the step size of EI as η = D/(G
√
|I|)

5: if t = 1 then
6: Set the initial solution of EI arbitrarily
7: else
8: Identify the expert EJ ∈ At such that |J | =

|I|
9: Set the initial solution of EI to be the out-

put of expert EJ , denoted by wt,J

10: Remove EJ from At
11: end if
12: Add expert EI to the set of active experts At
13: end for
14: Receive the action wt,I of each expert EI ∈ At,

and calculate its weight pt,I according to (14)
15: Submit wt defined in (15) and then receive ft(·)

16: For each EI ∈ At, update

Rt,I =Rt−1,I + ft(wt)− ft(wt,I),

Ct,I =Ct−1,I + |ft(wt)− ft(wt,I)|

17: Pass ft(·) to each expert EI ∈ At
18: end for

tial function:

Φ(R,C) = exp

(
[R]2+
3C

)
where [x]+ = max(0, x) and Φ(0, 0) is defined to be 1,
and a weight function with respect to this potential:

w(R,C) =
1

2

(
Φ(R+ 1, C + 1)− Φ(R− 1, C + 1)

)
.

The complete procedure is named as Adaptive Online
learning with Dynamic regret (AOD), and summarized
in Algorithm 2. We explain the main steps below. In
each round t, we will maintain a set of active experts,
denoted by At. To simplify the notation, let’s define
the set of intervals in D that start from t as Ct, i.e.,

Ct = {I|I ∈ D, t ∈ I, (t− 1) /∈ I}. (13)
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For each interval I in Ct, we create an expert EI which
runs an instance of OGD, and initialize two variables
Rt−1,I and Ct−1,I that are used to calculate the weight
of EI (Step 3). The step size of EI is set in Step 4,
and the initial solution is set in Step 6 or 9. Note that
when t > 1, for each interval I ∈ Ct, there must be an
expert EJ ∈ At such that |J | = |I| (Step 8). Then,
we use the output of EJ to initialize EI (Step 9), and
remove EJ from At (Step 10). The new expert EI is
added to At (Step 12).

In Step 14, we receive the action wt,I of each active
expert EI ∈ At, and assign the following weight to EI

pt,I =
w(Rt−1,I , Ct−1,I)∑

EI∈At w(Rt−1,I , Ct−1,I)
(14)

where

Rt−1,I =

t−1∑
u=min I

fu(wu)− fu(wu,I),

Ct−1,I =

t−1∑
u=min I

|fu(wu)− fu(wu,I)| ,

and min I denotes the starting round of interval I. In
Step 15, we submit the weighted average

wt =
∑
EI∈At

pt,Iwt,I (15)

as the output, and receive the loss function ft(·). In
Step 16, we update variables that are used to calculate
probabilities in (14). Finally, we reveal the function
ft(·) to all active experts so that they can make pre-
dictions for the next round.

We first present the strongly adaptive regret of AOD.

Theorem 3 Under Assumptions 1, 2, and 3, the
strongly adaptive regret of AOD in Algorithm 2 sa-
tisfies

SA-R(T, τ) ≤ 8
(√

3c(T ) +DG
)√

τ = O
(√

τ log T
)

where

c(T )

≤1 + lnT + ln(1 + log2 T ) + ln
5 + 3 ln(1 + T )

2
.

(16)

Note that our strongly adaptive regret matches the
state-of-the-art result of Jun et al. (2017a) exactly.
The main advantage is that AOD is also equipped with
a dynamic regret bound, which is nearly optimal.

Theorem 4 Under Assumptions 1, 2, and 3, for any
comparator sequence u1, . . . ,uT ∈ Ω, AOD in Algo-

rithm 2 satisfies

D-R(u1, . . . ,uT )

≤

(
3DG

2
+

5G

2

√
DPT +

√
6c(T )

(
1 +

2PT
D

))√
T

=O
(√

T (1 + PT ) log T
)

where c(T ) is given in (16).

Remark: The dynamic regret of AOD matches the
Ω(
√
T (1 + PT )) lower bound up to a logarithmic fac-

tor, and is slightly worse than the O(
√
T (1 + PT ))

bound of Ader (Zhang et al., 2018a). However, Ader
is not equipped with any adaptive regret, while our
AOD achieves the state-of-the-art adaptive regret as
shown in Theorem 3.

Complexity: The computational complexity of AOD
in each round is O(log T ), since it needs to main-
tain O(log T ) experts (i.e., instances of OGD), and the
complexity of each expert is O(1).

3.2 The Second Method

One limitation of AOD is that the total number of ite-
rations T needs to be known and fixed. In this section,
we address this limitation by developing a three-layer
algorithm, in which an additional layer is inserted to
decouple the adaptive regret and the dynamic regret.

The basic idea is very simple. Instead of running OGD
as the expert in our previous AOD algorithm, we use
Ader (Zhang et al., 2018a), which is designed to mi-
nimize the dynamic regret, as the expert algorithm.
The new algorithm is named as Adaptive Online lear-
ning based on Ader (AOA), and summarized in Algo-
rithm 3. Because Ader itself is a two-layer algorithm,
AOA is essentially a three-layer algorithm. The top
layer takes responsibility for the adaptive regret, and
the middle-layer is responsible for the dynamic regret.
Because of this design, AOA is able to minimize the
dynamic regret over any interval. In contrast, the top
layer in AOD takes care of both the adaptive regret
and the dynamic regret.

We create experts based on the original GC intervals
in (8) (Daniely et al., 2015), because they can be con-
structed dynamically and do not need to know the
total number of iterations T . Similar to the AOD al-
gorithm, we use At to denote the set of active experts
in round t, and C̃t to denote the set of intervals in I
that start from t, i.e.,

C̃t = {I|I ∈ I, t ∈ I, (t− 1) /∈ I}.

For each interval I in C̃t, we will create an expert EI
which runs an instance of Ader (Step 3), pass the in-
terval length |I| to EI (Step 4), and add it to the set
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Algorithm 3 Adaptive Online learning based on Ader
(AOA)

1: for t = 1 to T do
2: for I ∈ C̃t do
3: Create an expert EI , which runs Ader, and

set Rt−1,I = Ct−1,I = 0
4: Pass the interval length I to expert EI
5: Add expert EI to the set of active experts At
6: end for
7: Receive the action wt,I of each expert EI ∈ At,

and calculate its weight pt,I according to (14)
8: Submit wt defined in (15) and receive ft(·)
9: Remove experts whose ending times are t

At = At \ {EI |t ∈ I, (t+ 1) /∈ I}

10: For each EI ∈ At, update

Rt,I =Rt−1,I + ft(wt)− ft(wt,I),

Ct,I =Ct−1,I + |ft(wt)− ft(wt,I)|

11: Pass ft(·) to each expert EI ∈ At
12: end for

of active experts At (Step 5). As before, we combine
the actions of all active experts by AdaNormalHedge
(Steps 7 and 8). After submitting wt, AOA removes
all the experts whose ending times are t (Step 9). All
the remaining steps of AOA are identical to those of
AOD.

For the sake of completeness, we present the procedure
of Ader in Algorithm 4, and give a brief introduction.
Ader takes the total number of iterations T as the
input, and constructs a set of step sizes

H =

{
ηi =

2i−1D

G

√
7

2T

∣∣∣∣∣ i = 1, . . . , N

}
(17)

where N = d 1
2 log2(1 + 4T/7)e+ 1 (Step 2). For each

η ∈ H, Ader creates an expert Eη by running an in-
stance of OGD with step size η (Step 3).1 The actions
of experts are combined by the standard Hedge algo-
rithm (Steps 7 and 8) with nonuniform initial weights
(Step 4) (Freund and Schapire, 1997; Cesa-Bianchi and
Lugosi, 2006).

We present the theoretical guarantee of AOA.

Theorem 5 Under Assumptions 1, 2, and 3, for any
interval I = [r, s] ⊆ N and any comparator sequence

1The initial solution of OGD can be set arbitrarily.

Algorithm 4 Adaptive learning for dynamic environ-
ment (Ader)

1: Input: The total number of iterations T
2: Construct the set H according to (17)
3: Create a set of experts {Eη|η ∈ H} by running

OGD with each step size η ∈ H
4: Sort step sizes in ascending order η1 ≤ η2 ≤ · · · ≤
ηN , and set p1,ηi = C

i(i+1) where C = 1 + 1
|H|

5: for t = 1, . . . , T do
6: Receive the action wt,η from each expert Eη
7: Submit

wt =
∑
η∈H

pt,ηwt,η

and then receive ft(·)
8: Update the weight of each expert by

pt+1,η =
pt,ηe

−αft(wt,η)∑
µ∈H pt,µe

−αft(wt,µ)

where α =
√

8/T
9: Pass ft(·) to each expert Eη

10: end for

ur, . . . ,us ∈ Ω, AOA in Algorithm 3 satisfies

s∑
t=r

ft(wt)−
s∑
t=r

ft(ut)

≤
(

14
√
c′(s) + 3 [1 + 2 ln(kI + 1)] + 23DG

)√
|I|

+ 5G
√
DPI

√
|I|

=O
(√
|I|(log s+ PI)

)
where

c′(s) ≤1 + ln s+ ln(1 + log2 s) + ln
5 + 3 ln(1 + s)

2
,

PI =

s∑
t=r

‖ut+1 − ut‖2,

kI =

⌊
1

2
log2

(
1 +

4PI
7D

)⌋
+ 1.

Remark: The above theorem indicates that our
AOA algorithm can minimize the dynamic regret over
any interval, which is a strong theoretical guaran-
tee that allows us to derive either dynamic regret or
adaptive regret. To derive dynamic regret over the
whole interval, we set I = [1, T ], and then obtain an
O(
√
T (log T + PT )) dynamic regret bound, which ne-

arly matches the Ω(
√
T (1 + PT )) lower bound (Zhang

et al., 2018a), and becomes optimal when PT =
Ω(log T ). To derive adaptive regret, we set ur = · · · =
us such that PI = 0 and consider s ≤ T , and then can
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prove SA-R(T, τ) = O
(√
τ log T

)
which matches the

state-of-the-art result (Jun et al., 2017a) exactly.

Complexity: Note that AOA maintains O(log t) ex-
perts in the t-th round, and the complexity of each
expert, which is an instance of Ader, is O(log t). So,
the computational complexity of AOA in the t-round
is O(log2 t).

4 Analysis

Due to the limitation of space, we only prove Theo-
rem 3, and the omitted proofs can be found in the full
version (Zhang et al., 2020).

4.1 Proof of Theorem 3

We first present the meta-regret of AOD. Let m(t) be
the total number of experts created up to round t. It
is easy to verify that

m(t) ≤ t(1 + log2 T ).

Then, according to Theorems 1&3 of Luo and Scha-
pire (2015) and Jensen’s inequality (Boyd and Van-
denberghe, 2004), we have the following lemma.

Lemma 1 Under Assumption 3, for any interval J =
[i, j] ∈ D, AOD satisfies

t∑
u=i

fu(wu)−
t∑

u=i

fu(wu,J) ≤
√

3(t− i+ 1)c(t), ∀t ∈ J

where

c(t) ≤1 + lnm(t) + ln
5 + 3 ln(1 + t)

2

≤1 + ln t+ ln(1 + log2 T ) + ln
5 + 3 ln(1 + t)

2
.

We proceed to bound the adaptive regret of AOD. To
this end, we first bound the regret of AOD over any
interval J = [i, j] ∈ D. By combining the meta-regret
in Lemma 1 and the expert-regret in Theorem 2, we
immediately have the following bound.

Lemma 2 Under Assumptions 1, 2, and 3, for any
interval J = [i, j] ∈ D, AOD satisfies∑
t∈J

ft(wt)− min
w∈Ω

∑
t∈J

ft(w) ≤
(√

3c(j) +DG
)√
|J |.

We then extend the above regret bound to any interval
I = [r, s] ⊆ [T ]. To this end, we need the following
lemma about the DGC intervals, which has a similar
property as the original GC intervals (Daniely et al.,
2015).

Lemma 3 For any interval [r, s] ⊆ [T ], it can be
partitioned into two sequences of disjoint and con-
secutive intervals, denoted by I−p, . . . , I0 ∈ D and
I1, . . . , Iq ∈ D, such that

|I−i|/|I−i+1| ≤ 1/2, ∀i ≥ 1

and

|Ii|/|Ii−1| ≤ 1/2, ∀i ≥ 2.

Then, based on Lemmas 2 and 3, we bound the re-
gret with respect to any w ∈ Ω over I = [r, s] in the
following way

s∑
t=r

ft(wt)−
s∑
t=r

ft(w)

=

q∑
i=−p

(∑
t∈Ii

ft(wt)−
∑
t∈Ii

ft(w)

)

≤
q∑

i=−p

(√
3c(s) +DG

)√
|Ii|

≤2
(√

3c(s) +DG
) ∞∑
i=0

(2−i|I|)1/2

≤8
(√

3c(s) +DG
)√

I.

Thus, the strongly adaptive regret

SA-R(T, τ)

= max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑
t=s

ft(wt)− min
w∈Ω

s+τ−1∑
t=s

ft(w)

)
≤8
(√

3c(T ) +DG
)√

τ .

5 Conclusion

Inspired by recent developments of dynamic regret and
adaptive regret, this paper asks whether it is possible
to bound them simultaneously. We provide affirmative
answers by proposing novel algorithms that achieve
this goal. The first method, namely AOD, runs mul-
tiple instances of OGD over specifically designed in-
tervals, uses warm start to connect successive OGD’s,
and then combines multiple decisions by an expert-
tracking algorithm. Theoretical analysis shows that
AOD enjoys a tight adaptive regret and a nearly op-
timal dynamic regret. The second method, namely
AOA, maintains multiple instances of Ader, and com-
bines them in the same way as AOD. We demonstrate
that AOA is equipped with a strong theoretical gua-
rantee in the sense that it can minimize the dynamic
regret over any interval.
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