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Improving Deep Forest by Exploiting High-order
Interactions*

Yi-He Chen† Shen-Huan Lyu‡ Yuan Jiang§

Abstract

Recent studies on deep forests have shown that deep learning frameworks can be built on non-
differentiable modules without a backpropagation training process. However, the feature represen-
tations of deep forests only consist of predicted class probabilities. The information these class
probabilities deliver is very limited and lacks diversity, especially when the number of output labels
is far less than the number of input features. Besides, the prediction-based representations require
us to save multiple layers of random forests to use them during testing, which is high-memory and
high-time cost. In this paper, we propose a novel deep forest model that utilizes high-order interac-
tions of input features to generate more informative and diverse feature representations. Specifically,
we design a generalized version of Random Intersection Trees (gRIT) to discover stable high-order
interactions and apply Activated Linear Combination (ALC) to transform them into hierarchical dis-
tributed representations. These interaction-based representations obviate the need to store random
forests in the front layers, thus greatly improving the computational efficiency. Our experiments
show that our method achieves highly competitive predictive performance with significantly reduced
time and memory cost.

1 Introduction

In recent years, deep forests (DFs) have achieved state-of-the-art performance on the categorical and
mixed modeling tasks, e.g., financial application [Zha+19], medical application [Sun+20], [Guo+18] and
geoscience [Yan+18], while deep neural networks (DNNs) dominate the numerical tasks, e.g., computer
vision (CV) [He+15], automatic speech recognition (ASR) [Kri+20] and natural language processing
(NLP) [Dev+18]. Although the recent development of deep neural networks on numerical data is rather
attractive, more real-world problems belong to categorical and mixed modeling tasks. In such tasks,
there are a large number of attributes from which we can only get qualitative characteristics rather
than quantitative characteristics. Therefore, applying and exploring deep forests and other non-neural
network deep models to a wide range of tasks is an important direction for the future of deep learning
[Ben09].

By summarizing the key ingredients of deep learning may lie in: layer-by-layer processing, suffi-
cient model complexity, and in-model feature transformation, Zhou and Feng [ZF19] proposed gcForest,
the first non-NN-style deep models with these characteristics. Essentially, gcForest is a decision tree
ensemble that employs a cascade structure to do representation learning. In this cascade structure, each
level consists of an ensemble of decision tree forests, i.e. an ensemble of ensembles. Each level receives
feature information processed by the preceding level and outputs estimated class probabilities which are
then concatenated with the original feature vector as the input to the next level. Lyu, Yang, and Zhou
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Figure 1: The framework of High-order Interaction Deep Forest (hiDF).

[LYZ19] provided a detailed theoretical analysis that proved deep forests have sufficient model com-
plexity with enough depth, and the cascaded structure boosts the feature representations layer by layer
instead of the predictions.

Although gcForest has shown its great potential both empirically and theoretically, we argue that
the prediction-based feature representation of gcForest is a critical deficiency. Firstly, as stated by orig-
inal authors [ZF19], the predicted class probabilities deliver very limited information. A majority of
tasks have much more input features than output labels, which causes the information in predictions
to likely be drowned out by original features when concatenating them together. Secondly, since de-
cision tree forests are already pretty stable predictors, an ensemble of different forests may result in
similar predictions, which causes feature representations to be redundant and lack diversity. Thirdly,
the prediction-based representations rely on the storing of multi-layered forest models to do prediction
level-by-level during testing, thus requiring a large amount of memory and time consumption. There-
fore, it is necessary to design more informative feature representations with less computational cost for
deep forests.

In this paper, we propose a novel deep forest model named high-order interaction Deep Forest
(hiDF), which leverages stable high-order interactions of input features to generate informative and
diverse feature representations. Specifically, we design a generalized version of Random Intersection
Trees (gRIT) to discover stable high-order interactions and apply Activated Linear Combination (ALC)
to transform these interactions into new feature representations, which can interact with input features
across multiple layers. In such iterations, hiDF can effectively mine high-order interactions between
input features and utilize them to improve predictive performance.

Our contributions are twofold. First, the proposed hiDF method firstly provides hierarchical dis-
tributed representations from low-order to high-order interactions for deep forests, greatly enhancing
the effectiveness and diversity of feature representations. Second, these representations obviate the need
to store random forests in the front layers, reducing the time cost and memory requirement by one order
of magnitude.

2 High-order interaction deep forest

In this section, we provide a detailed description of our hiDF algorithm. The framework of hiDF is
illustrated in Figure 1. It employs a multi-layered structure to do representation learning, each layer
consists of an ensemble of decision tree forests as DF. The most significant difference between DF
and hiDF is that DF uses the prediction of each layer as representations while hiDF employs high-
order feature interactions as representations. hiDF utilizes both feature interactions and multi-layered
structure to construct multiple levels of feature representations and learn a hierarchy of explanatory
factors internally. This deep structure promotes the re-use of features [BCV13] and the ultimate goal is
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to form hierarchical distributed representations of data, which is useful to our learning task.
Specifically, hiDF utilizes feature interactions mainly in three steps. First, given an ensemble of

random forests fitted on the input features, numerous decision rules are extracted from these decision
trees. These decision rules are then processed by generalized Random Intersection Trees (gRIT) to
identify prevalent feature interactions. Second, an outer bagging procedure performs the previous step
on bootstrap samples. This extra perturbation of the data allows us to do “interaction selection” by
assessing the stability associated with the identified interactions. Only those feature interactions with
high stability scores are utilized through Activated Linear Combinations (ALC) to generate new feature
representations. Finally, a metric-aware mechanism is applied to grow layers adaptively to reduce the
risk of overfitting. We will discuss these three steps in more detail in the following subsections.

2.1 Extract feature interactions through gRIT and ERF

We identify feature interaction as a collection of conditions inside a decision rule, a decision rule is of
the simple form:

IF: condition1 & . . .& conditioni, THEN: response. (1)

Accordingly, a feature interaction can be described as condition1& . . .&conditioni, which is the
premise of a decision rule. The conditions are based on input variables. For a continuous variable xi, it
could take the form: xi ≥ ti, where ti is a determined threshold. For categorical variables, we transform
them using one-hot encoding so we can get similar forms. In this work, we only consider the premise of
a decision rule regardless of the response. To represent decision rules succinctly, we use signed feature
index ±i with threshold ti for describing a condition, in which a positive index means xi ≥ ti and a
negative index means xi < ti. Following this notation, a decision rule R of i conditions is represented
by I(R) = {Iindex, Ithreshold} = {(x1, . . . , xi), (t1, . . . , ti)}, where Iindex is a vector of i signed feature
indices and Ithreshold represents associated thresholds.

Since decision rules can be encoded by the decision paths from root nodes to leaf nodes, we use
enriched random forests (ERFs) [ACL08] to extract decision rules from data. ERFs can be seen as RFs
with a soft dimension reduction process, i.e. selecting more informative features in the input space.

Given numerous decision rules detected from ERFs, one can naturally treat them as feature interac-
tions. However, they come with two drawbacks. First, each decision rule corresponds to only a small
number of instances, which lacks statistical importance. Second, the decision rules are long and intri-
cate, therefore do not generalize very well. To address these two drawbacks, we apply gRIT to process
the detected decision rules. The main idea of gRIT is to “prune” those decision rules with respect to
statistical meaning. After gRIT, statistically important feature interactions with better generalization
ability can be discovered.

gRIT is summarized in Algorithm 1. A gRIT contains L intersection trees. Inside each intersection
tree ℓ ∈ {1, . . . , L}, J example indices {i1, . . . , iJ} are uniformly sampled from data and their corre-
sponding decision rules are represented as {Ii1 . . . IiJ} using the signed feature index notation mentioned
earlier. Then, it performs J-fold intersections Ii1 ∩· · ·∩ IiJ to keep informative features and prune away
noisy features. The main intuition behind this is that if a feature xi of an interaction I is sufficiently
prevalent, it will survive the intersection with high probability.

The original RIT algorithm [SM14] is restricted to only binary categorical features, so it has a limited
application range. Here, our generalized version can deal with both categorical and continuous features
with threshold information.

2.2 Stability-aware interaction utilization

Statistical results should at least be reproducible relative to “reasonable” data and model perturbations
[Yu13]. Towards this goal, we assess the stability associated with the identified feature interactions using
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Algorithm 1: generalized Random Intersection Trees

Require: Rule setR =
{
Ii; Ii = {Iindexi , Ithresholdi }

}n

i=1

Ensure: T = ∪Lℓ=1Tℓ
1: for tree ℓ in {1, 2, . . . , L} do
2: Let ℓ be a tree of depth D. Let J be the total number of nodes in the tree, and index the nodes

such that every parent-child pair, larger indices are assigned to the child than the parent. For
each node j = 1, . . . , J , denote the parent of node j as pa(j), let ij be a uniform sample index
from the training data and corresponds to node j.

3: Set T index
1 ← Iindexi1

, T threshold
1 ← Ithresholdi1

4: for j in {2, . . . , J} do
5: T index

j ← Iindexij
∩ Tpa(j) , T threshold

j ← ∅
6: for feature index i in T index

j do
7: T threshold

j ←
T threshold
j +

{
max(ti, t

′
i) if i < 0, else min(ti, t

′
i). ti ∈ Ithresholdij

, t′i ∈ T threshold
pa(j)

}
8: end for
9: end for

10: T index
ℓ ←

{
T index
j : depth(j) = D

}
, T threshold

ℓ ←
{
T threshold
j : depth(j) = D

}
11: Tℓ ← {T index

ℓ , T threshold
ℓ }

12: end for

an extra outer bagging step. Specifically, we generate B bootstrap sample data D(b), b = {1, . . . , B}, fit
B enriched random forests ERF on each sampleD(b). Then, we apply gRIT to discover B sets of feature
interactions T(b) from these samples. We use the stability score defined as (2). It reflects the prevalence
an interaction I ∈ ∪Bb=1T(b) appears out of B bootstrap samples.

stability(I) =
1

B

B∑
b=1

1{I ∈ T(b)}. (2)

Given the discovered feature interactions and their stability scores, we want to retain those interac-
tions with top k scores or with scores bigger than a pre-specified threshold. They represent the most
stable feature interactions, therefore lead to better generalization performance. This “interaction se-
lection” procedure retains only a small number of stable interactions and discards a large number of
unstable ones, which will ease the memory cost burden significantly.

To utilize the discovered feature interactions, we generate one new feature for each interaction,
using Activated Linear Combination (ALC) including weighted sum and nonlinear activation func-
tions, and denote these new features by rnew. Take the feature interaction I = {Iindex, Ithreshold} =
{(−2, 3), (t2, t3)} as an example, along with each feature’s gini importance w = (w2, w3). rnew(w, I)
is calculated as:

rnew(w, I) = σ(−w2(x2 − t2) + w3(x3 − t3)), (3)

where σ(x) = x · I[x ≥ 0] is a non-linear activation function. We concatenate the new features with
the current input features to form the input feature in the next layer. We will discuss the multi-layered
structure in the next subsection.

2.3 Adaptive layer growth

It is widely acknowledged that depth plays a crucial role in the success of deep learning. We believe
that deep structures bring two crucial benefits compared to shallow structures. First, deep structures pro-
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Algorithm 2: High-order Interaction Deep Forest
Require: Training set S, the maximum number of layers

K and number of bootstrap samples B.
Ensure: K-layer deep forest model

{
RF, {S(k)

r }Kk=1

}
.

1: Initialize representation features r(1) ← ∅,
layer 0 data S

(0)
r = S, validation error l0 = 1.

2: for k in {1, . . . ,K} do
3: S

(k)
r ← concatenate(S

(k−1)
r , r(k))

4: Fit RF on S
(k)
r

5: w(k) ← Gini importance of RF
6: for b in {1, 2, . . . , B} do
7: Generate bootstrap samples S(b) from S

(k)
r

8: Fit an Enriched-RF (w(k)) on S(b)

9: R(b) ← { Iit : xi ∈ S(b),
falls in leaf node it of tree t }

10: T (k+1)
(b) ← gRIT(R(b))

11: end for
12: Initialize r(k+1) ← ∅.
13: for I(k+1) ∈ ∪Bb=1T

(k+1)
(b) do

14: stability(I(k+1))← 1
B

∑B
b=1 1{I(k+1) ∈ T (k+1)

(b) }
15: if stability(I(k+1)) > 0.5 then
16: r(k+1) ← r(k+1) ∪ rnew

(
w(k), I(k+1)

)
17: end if
18: end for
19: Compute the cross validation error lk on r(k+1).
20: if lk > lk−1 then
21: Terminate training and return current model.
22: end if
23: end for
24: Fit RF on S

(K+1)
r

mote the re-use of features, with the ultimate goal is to form hierarchical distributed representations of
data, which are beneficial to better generalization performance. Second, shallow layers tend to discover
low-order feature interactions while deeper layers tend to discover high-order interactions, high-order
interactions reflect on greater importance, thus have more impact on the learning task.

To get these two benefits, hiDF employs a multi-layered structure. Specifically, each layer is an en-
semble of random forests, based on which we apply ERFs and gRIT to discover a rich family of feature
interactions. Then we generate a new feature vector via the stability-aware interaction utilization mech-
anism described in the previous subsection. The newly generated feature vector is then concatenated
with the input feature vector to form the new feature representations, which serve as the input to the next
layer.

After expanding each new layer, hiDF estimates the performance of the current whole structure
using a separate validation set. If there is no obvious performance boost, hiDF will terminate the training
process. This adaptive layer-wise growing strategy can reduce the risk of overfitting, it also facilitates the
model complexity of hiDF to be determined automatically. The overall framework of hiDF is illustrated
in Figure 1 and summarized in Algorithm 2.
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Figure 2: The quality of feature representations generated by hiDF across different layers on the syn-
thetic data.

It is worth mentioning that the meaning of high-order in our hiDF is twofold: (1) hiDF can discover
high-order interactions from the original features by gRIT, and (2) through our multi-layered approach,
hiDF can detect the interactions between original features and the newly generated features, even among
only newly generated features, causing the order of interactions to increase layer by layer.

3 Experiments

In this section, we conduct several experiments with hiDF on both synthetic data and several widely
used benchmark datasets. We first demonstrate that hiDF can obtain informative feature representations
using a hierarchical processing structure. We then evaluate the effectiveness of hiDF across several
real datasets. The results show that hiDF can achieve the highest classification accuracy on all of these
benchmark datasets and it exhibits better performance than deep forest consistently. Meanwhile, hiDF
uses significantly less memory space and test time and has a moderate amount of training time compared
to deep forest.

3.1 Synthetic data

First, we use a synthetic dataset to demonstrate that hiDF can learn informative feature representations
through its multi-layered feature interaction utilization mechanism. Our synthetic dataset is a binary
classification task generated by Gaussian data on R2 with a spherical decision boundary as illustrated
in Figure 2(a). It contains 10,000 examples (80% for training and 20% for testing). We also introduce
additional 500 uniform random noise features in the dataset. These uninformative random features make
the classification task more complex, thus allowing us to assess the quality of representation features
generated by hiDF.

The output feature representations from layer 6 and layer 12 of hiDF are illustrated via t-SNE in
Figure 2(b). Clearly, hiDF can get informative feature representations from the original input space, and
as layers go deeper, data points become linearly separable while preserving some structure information
inside one class. This demonstrates that hiDF is equipped with similar representation learning abilities
as deep neural networks, which uses hidden layers to distort the input in a non-linear way so that classes
become easily separable by the last layer [LBH15]. We believe that leveraging feature interactions on
multiple levels facilitates hiDF to learn hierarchical distributed representations of data.

We also examine the importance of new features generated across varying feature interaction orders
via the marginal importance metric [Bas+18]. Figure 3 depicts the result by a boxplot. We can see that
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the leftmost bar shows the input features’ marginal importance, with all but two informative features
having nearly zero importance values. Figure 3 also illustrates that new features generated from higher-
order interactions tend to have greater feature importance, thus have more impact on the learning task.
Since higher-order feature interactions are usually discovered in deeper layers, it is reasonable to believe
that hiDF can benefit from its hierarchical structure.
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Figure 3: The importance of features with varying interaction orders

3.2 Real dataset

We select several widely used benchmark datasets of binary and multi-class classification tasks from the
UCI Machine Learning Repository [DG17]. The datasets vary in size: from only 452 examples up to
581,012 examples. They come from different areas, including health and medical research (Arrhythmia
and Diabetes Readmission), remote sensing (CoverType and Satimage), financial and business (Bank
marketing and Default of Credit card clients), social study (Adult), etc. We select these datasets mainly
for two reasons. First, they are representative tabular data of categorical and mixed variable types and
tend to contain multiple underlying explanatory factors that can be utilized by our hiDF to discover
feature interactions. Second, these datasets have more input features than output labels, which could
verify that our hiDF can generate more informative and diverse feature representations than gcForest.

In addition to these 9 UCI datasets, we release a new dataset called Congestive Heart Failure Dataset.
This dataset includes 9809 patients with a diagnosis of “Congestive Heart Failure” from the MIMIC-III
(Medical Information Mart for Intensive Care) platform [Joh+16]. MIMIC is a relational and public
database containing tables of data relating to patients who stayed within the intensive care units at Beth
Israel Deaconess Medical Center. In this Congestive Heart Failure Dataset, 88 numerical and categori-
cal variables including patients’ demographics, vitals’ measurements, laboratory results, prescriptions,
imaging results, etc are collected to predict the in-hospital mortality of patients. Table 1 shows the basic
statistics of these datasets.

In these experiments, we used the default hyper-parameters defined in our hiDF model and did not
fine-tune them. The default number of decision trees in a random forest is 500; the number of maximum
layers in hiDF is 10; the early stopping patience is 2; the number of bootstrap samples B = 10 ;
the default number of intersection trees is 20 with each tree’s depth D = 5 and nchild = 2. For
reproducibility, we make the source code and some datasets used in this work publicly available at
https://git.io/DM487
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Table 1: Statistics of the datasets in terms of number of examples, number of features and number of
classes

Datasets # of examples # of features # of classes

CoverType 581,012 54 7
Adult 48,842 14 2
Bank 41,188 20 2
Credit Card 30,000 23 2
Arrhythmia 452 279 16
YearPredictionMSD 50,000 90 2
Diabetes Readmission 100,000 55 2
Satimage 6,435 36 6
Crowdsourced Mapping 10,845 28 6
Congestive Heart Failure 9809 88 2

3.3 Performance comparison

We adopt classification accuracy as our evaluation measure. For comparison, we choose several widely
used tree ensemble algorithms including GBDT [Fri01], Random Forests [Bre01], gcForest [ZF19],
gcForestCS [Pan+20], XGBoost [CG16], and SVM.

The gcForest method is proposed by Zhou and Feng [ZF19] to show that deep learning framework
also can be realized by non-differentiable modules. It achieves state-of-the-art performance on many
categorical and mixed modeling tasks. Recently, Pang et al. [Pan+20] proposed gcForestCS to address
the high computational cost problem of gcForest by introducing a confidence screening mechanism. We
set the hyper-parameters of gcForest and gcForestCS as default.

XGBoost is a scalable end-to-end tree boosting system proposed by Chen and Guestrin [CG16]. We
set the number of boosting rounds equals to 500, and the maximum tree depth for base learners equals to
6. As for other hyper-parameters, we set them as the default values. We apply the same configurations
of hyper-parameters to GBDT.

Table 2 reports the accuracy comparison result among these methods. The win/tie/lose counts of
hiDF over the other methods are indicated by the last rows. We can see that hiDF achieves the highest
accuracy on all of these datasets. We can also clearly see that hiDF exhibits consistently better perfor-
mance than gcForest and gcForestCS, which suggests hiDF’s representation learning ability based on
high-order feature interactions can indeed boost the performance of the original deep forest.

Table 2: Comparison of test accuracy of each methods on these 10 datasets.
The best accuracy is highlighted in bold type. • indicates the second-best.

Datasets hiDF gcForest gcForestCS Random Forests XGBoost GBDT SVM

CoverType 97.62 ± 0.08 96.23 ± 0.10 96.09 ± 0.07 95.63 ± 0.07 94.48 ± 0.05 96.94 ± 0.11 • 71.47 ± 0.12
Adult 86.90 ± 0.05 86.17 ± 0.06 86.17 ± 0.09 85.15 ± 0.08 86.40 ± 0.00 • 86.12 ± 0.10 79.86 ± 0.00
Bank 89.96 ± 0.21 89.89 ± 0.26 89.95 ± 0.25 • 89.33 ± 0.17 89.13 ± 0.33 88.60 ± 0.25 89.75 ± 0.21
Credit Card 82.00 ± 0.23 81.74 ± 0.38 • 81.73 ± 0.20 81.71 ± 0.33 80.61 ± 0.36 81.24 ± 0.27 77.88 ± 0.01
Arrhythmia 78.24 ± 1.62 76.26 ± 1.49 • 74.51 ± 1.62 74.51 ± 2.13 75.16 ± 1.32 74.29 ± 3.15 60.66 ± 1.62
YearPredictionMSD 75.89 ± 0.46 75.49 ± 0.40 75.61 ± 0.30 73.41 ± 0.30 74.69 ± 0.21 75.85 ± 0.20 • 68.62 ± 0.62
Diabetes 62.43 ± 0.23 62.26 ± 0.36 62.37 ± 0.33 • 62.11 ± 0.24 61.00 ± 0.17 61.04 ± 0.45 54.99 ± 0.02
Satimage 91.75 ± 0.06 91.63 ± 0.12 • 91.58 ± 0.11 91.21 ± 0.05 90.65 ± 0.00 90.44 ± 0.09 88.60 ± 0.00
Crowdsourced Mapping 65.07 ± 0.88 64.93 ± 0.95 65.03 ± 0.56 • 63.47 ± 0.72 62.00 ± 0.00 62.53 ± 0.50 55.67 ± 0.00
Congestive Heart Failure 90.16 ± 0.53 88.61 ± 0.59 88.58 ± 0.27 87.90 ± 0.01 89.34 ± 0.01 • 88.83 ± 0.01 85.09 ± 0.00

win/tie/lose — 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0
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3.4 Computational complexity comparison with gcForest

To show that hiDF can achieve state-of-the-art predictive result while still being computationally effi-
cient, we compare hiDF with gcForest and gcForestCS on two datasets: Adult and CoverType. We use a
hardware of 16× 3.70 GHz CPUs with 128 GB memory. All of these methods grow 20 layers. Table 3
summarizes the results. We can see that hiDF uses significantly less memory and test time than gcForest
and gcForestCS (by about one order of magnitude).

Table 3: Comparison results of training time, test time(in CPU seconds) and memory usage (in
megabytes) with two datasets.

Datasets Method Training time Test time Memory

Adult
hiDF 3208.7 13.1 2793.2
gcForest 2763.8 541.3 29243.9
gcForestCS 1063.1 290.2 23272.7

Covertype
hiDF 4505.9 90.9 5562.5
gcForest 2861.3 1519.4 61981.2
gcForestCS 1582.3 730.1 57658.8

The main reason behind the efficiency of hiDF is: since the feature representations generated by gc-
Forest and gcForestCS are based on RF predictions. As a result, they have to save the trained multilayer
RFs to generate feature representations for test instances, which is essentially saving tens of thousands
of unpruned decision rules, thus requiring a large memory cost. Besides, gcForest and gcForestCS con-
sumes a lot of time to do layer-wise prediction for test instances. On the other hand, hiDF does not rely
on prediction-based representations. Therefore, only a small number (tens) of feature interactions have
to be saved in each layer, and test instances can generate feature representations easily based solely on
these interactions.

Note that in our current implementation, the B times bootstrap are done sequentially, so the gRIT
processing takes the majority amount of time. The training time of our hiDF could be significantly less
if using parallel processing.

4 Conclusion

In this paper, we focus on the problem of limited representation learning ability and large computational
complexity caused by prediction-based representations in traditional Deep Forest algorithms. To address
these shortcomings, we propose a novel method called hiDF to attain interaction-based hierarchical dis-
tributed representations through in-model feature transformation. Experiments show the potential of
hierarchical distributed representations for reducing the complexity of classification tasks by enhanc-
ing the separability of data, and further demonstrate the performance improvement and computational
effectiveness of our method.
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