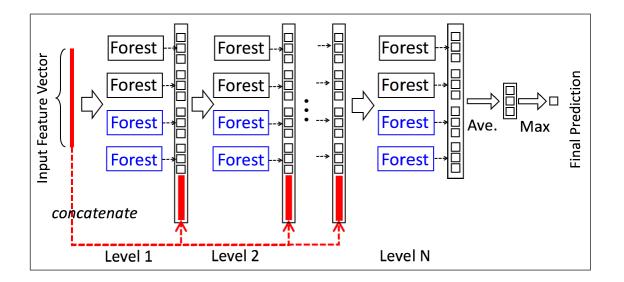


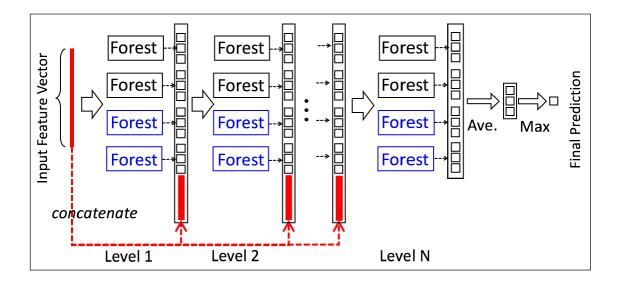
Improving Deep Forest by Exploiting High-order Interactions

Yi-He Chen* Shen-Huan Lyu* Yuan Jiang⁺

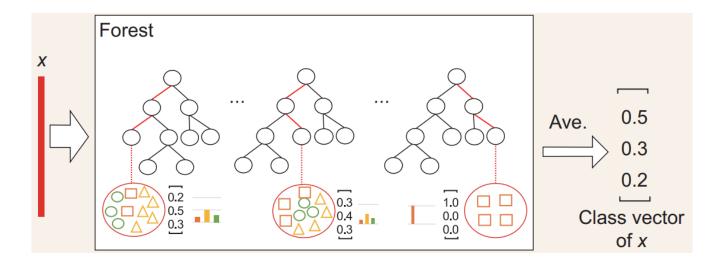

{ chenyh, lvsh, jiangy }@lamda.nju.edu.cn

* : equal contribution+ : corresponding author

Deep Forest


- Realize deep learning with non-differentiable modules
- Excellent performance on categorical & mixed modeling tasks

Future **Issues** of Deep Forest :


- Representation learning ability and diversity are limited.
- High memory and time consumption.

Future **Issues** of Deep Forest :

- Representation learning ability and diversity are limited.
- High memory and time consumption.

Utilize **decision paths** of decision trees inside random forest.

Improving Deep Forest by Exploiting High-order Interactions

Utilize **decision paths** of decision trees inside random forest.

decision paths = decision rules = leaf nodes

IF: $condition_1 \& \dots \& condition_i$, THEN: response.

Utilize **decision paths** of decision trees inside random forest.

decision paths = decision rules = leaf nodes

IF: $condition_1 \& \dots \& condition_i$, THEN: response.

Extract decision paths from RF?

Utilize **decision paths** of decision trees inside random forest.

decision paths = decision rules = leaf nodes

IF: $condition_1 \& \dots \& condition_i$, THEN: response.

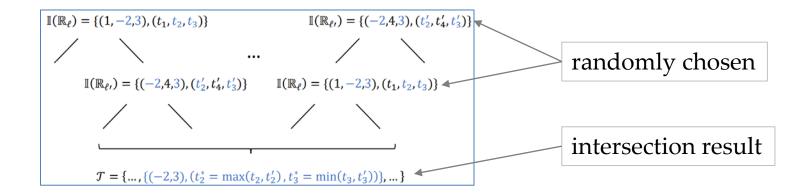
Extract decision paths from RF?

No!

- 1. Lack of statistical importance.
- 2. Complex decision rules do not generalize well.

Random Intersection Trees

--- start with the full set of variables as an interaction and then iteratively prune away variables.



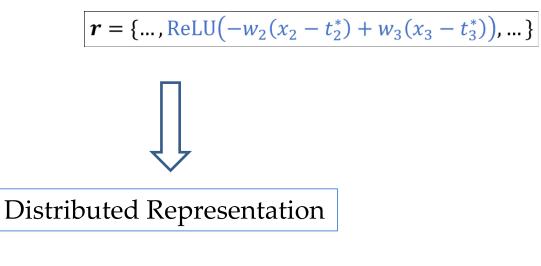
Random Intersection Trees

--- start with the full set of variables as an interaction and then iteratively prune away variables.

Perform **intersection** among random chosen feature interactions.

(intersection of decision rules == union of corresponding regions)

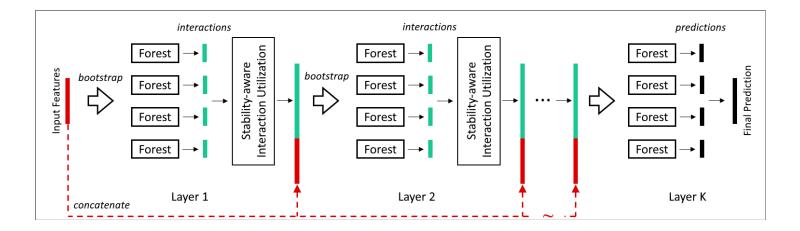
Utilizing discovered feature interactions


--- Activated Linear Combination (ALC)

 $r = \{\dots, \text{ReLU}(-w_2(x_2 - t_2^*) + w_3(x_3 - t_3^*)), \dots\}$

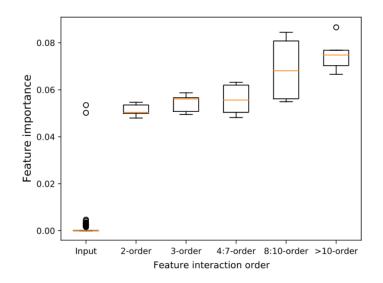
Utilizing discovered feature interactions

--- Activated Linear Combination (ALC)



--- core idea of deep learning methods.

Adaptive layer growth


--- retains high-order interactions.

Adaptive layer growth

--- retains high-order interactions.

The importance of features with varying interaction orders

Experiments : UCI data

Datasets	hiDF	gcForest	gcForest _{CS}	Random Forests	XGBoost	GBDT	SVM
CoverType	97.62 ± 0.08	96.23 ± 0.10	96.09 ± 0.07	95.63 ± 0.07	94.48 ± 0.05	96.94 ± 0.11 ●	71.47 ± 0.12
Adult	86.90 ± 0.05	86.17 ± 0.06	86.17 ± 0.09	85.15 ± 0.08	$86.40\pm0.00\bullet$	86.12 ± 0.10	79.86 ± 0.00
Bank	89.96 ± 0.21	89.89 ± 0.26	$89.95 \pm 0.25 \bullet$	89.33 ± 0.17	89.13 ± 0.33	88.60 ± 0.25	89.75 ± 0.21
Credit Card	82.00 ± 0.23	81.74 ± 0.38 •	81.73 ± 0.20	81.71 ± 0.33	80.61 ± 0.36	81.24 ± 0.27	77.88 ± 0.01
Arrhythmia	$\textbf{78.24} \pm \textbf{1.62}$	$76.26 \pm 1.49 \bullet$	74.51 ± 1.62	74.51 ± 2.13	75.16 ± 1.32	74.29 ± 3.15	60.66 ± 1.62
YearPredictionMSD	75.89 ± 0.46	75.49 ± 0.40	75.61 ± 0.30	73.41 ± 0.30	74.69 ± 0.21	75.85 ± 0.20 \bullet	68.62 ± 0.62
Diabetes	62.43 ± 0.23	62.26 ± 0.36	$62.37 \pm 0.33 \bullet$	62.11 ± 0.24	61.00 ± 0.17	61.04 ± 0.45	54.99 ± 0.02
Satimage	91.75 ± 0.06	91.63 ± 0.12 \bullet	91.58 ± 0.11	91.21 ± 0.05	90.65 ± 0.00	90.44 ± 0.09	88.60 ± 0.00
Crowdsourced Mapping	$\textbf{65.07} \pm \textbf{0.88}$	64.93 ± 0.95	$65.03 \pm 0.56 \bullet$	63.47 ± 0.72	62.00 ± 0.00	62.53 ± 0.50	55.67 ± 0.00
Congestive Heart Failure	90.16 ± 0.53	88.61 ± 0.59	88.58 ± 0.27	87.90 ± 0.01	$89.34\pm0.01\bullet$	88.83 ± 0.01	85.09 ± 0.00
win/tie/lose	_	10/0/0	10/0/0	10/0/0	10/0/0	10/0/0	10/0/0

Experiments : UCI data

Datasets	hiDF	gcForest	gcForest _{CS}	Random Forests	XGBoost	GBDT	SVM
CoverType	97.62 ± 0.08	96.23 ± 0.10	96.09 ± 0.07	95.63 ± 0.07	94.48 ± 0.05	96.94 ± 0.11 •	71.47 ± 0.12
Adult	86.90 ± 0.05	86.17 ± 0.06	86.17 ± 0.09	85.15 ± 0.08	$86.40\pm0.00\bullet$	86.12 ± 0.10	79.86 ± 0.00
Bank	89.96 ± 0.21	89.89 ± 0.26	$89.95\pm0.25\bullet$	89.33 ± 0.17	89.13 ± 0.33	88.60 ± 0.25	89.75 ± 0.21
Credit Card	82.00 ± 0.23	$81.74 \pm 0.38 \bullet$	81.73 ± 0.20	81.71 ± 0.33	80.61 ± 0.36	81.24 ± 0.27	77.88 ± 0.01
Arrhythmia	$\textbf{78.24} \pm \textbf{1.62}$	$76.26 \pm 1.49 \bullet$	74.51 ± 1.62	74.51 ± 2.13	75.16 ± 1.32	74.29 ± 3.15	60.66 ± 1.62
YearPredictionMSD	75.89 ± 0.46	75.49 ± 0.40	75.61 ± 0.30	73.41 ± 0.30	74.69 ± 0.21	75.85 ± 0.20 \bullet	68.62 ± 0.62
Diabetes	62.43 ± 0.23	62.26 ± 0.36	$62.37 \pm 0.33 \bullet$	62.11 ± 0.24	61.00 ± 0.17	61.04 ± 0.45	54.99 ± 0.02
Satimage	91.75 ± 0.06	$91.63 \pm 0.12 \bullet$	91.58 ± 0.11	91.21 ± 0.05	90.65 ± 0.00	90.44 ± 0.09	88.60 ± 0.00
Crowdsourced Mapping	65.07 ± 0.88	64.93 ± 0.95	$65.03\pm0.56~\bullet$	63.47 ± 0.72	62.00 ± 0.00	62.53 ± 0.50	55.67 ± 0.00
Congestive Heart Failure	90.16 ± 0.53	88.61 ± 0.59	88.58 ± 0.27	87.90 ± 0.01	89.34 \pm 0.01 \bullet	88.83 ± 0.01	85.09 ± 0.00
win/tie/lose	_	10/0/0	10/0/0	10/0/0	10/0/0	10/0/0	10/0/0

Computational complexity

Datasets	Method	Training time	Test time	Memory
Adult	hiDF	3208.7	13.1	2793.2
	gcForest	2763.8	541.3	29243.9
	gcForest _{CS}	1063.1	290.2	23272.7
Covertype	hiDF	4505.9	90.9	5562.5
	gcForest	2861.3	1519.4	61981.2
	gcForest _{CS}	1582.3	730.1	57658.8

Improving Deep Forest by Exploiting High-order Interactions

Summary :

Interaction-based representation. & Multi-layer structure.

- --- realize hierarchical distributed representation.
- --- enhance representation diversity.
- --- reduce computational complexity.

