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A Refined Margin Distribution Analysis for Forest
Representation Learning*

Shen-Huan Lyu† Liang Yang‡ Zhi-Hua Zhou§

Abstract

In this paper, we formulate the forest representation learning approach named casForest as an
additive model, and show that the generalization error can be bounded by O(lnm/m), when the
margin ratio related to the margin standard deviation against the margin mean is sufficiently small.
This inspires us to optimize the ratio. To this end, we design a margin distribution reweighting
approach for the deep forest model to attain a small margin ratio. Experiments confirm the relation
between the margin distribution and generalization performance. We remark that this study offers a
novel understanding of casForest from the perspective of the margin theory and further guides the
layer-by-layer forest representation learning.

1 Introduction

In recent years, deep neural networks have achieved excellent performance in many application scenarios
such as face recognition and automatic speech recognition [LBH15]. It is well known that deep neural
networks are difficult to be interpreted. This severely restricts the development of deep learning in
application scenarios where the interpretability of the model is crucial. Moreover, deep neural networks
are data-hungry and the performance will degrades significantly when the size of the training data is not
big enough [Els+18; LWZ18]. In real-world tasks, due to the high cost of data collection and labeling,
the amount of labeled training data may be insufficient for deep neural networks.

In such a situation, conventional learning methods such as support-vector machines (SVMs) [CV95],
random forests (RFs) [Bre01], gradient boosting decision trees (GBDTs) [Fri01; CG16], etc., are still
good choices. By realizing that the essence of deep learning lies in the layer-by-layer processing, in-
model feature transformation, and sufficient model complexity, recently Zhou and Feng [ZF17; ZF19]
propose the deep forest model and the gcForest algorithm that incorporate forest representation learning.
It can achieve excellent performance on a broad range of tasks, and even perform well on small or
middle-scale data. Later on, a more efficient improvement is made by Pang et al. [Pan+18]. Feng
and Zhou [FZ18] show that forests are able to do auto-encoder which was considered as a specialty
of neural networks. The tree-based multi-layer model can do hierarchical distributed representation
learning which was thought to be a special feature of neural networks [FYZ18]. Utkin and Ryabinin
[UR18] propose a Siamese deep forest as an alternative to the Siamese neural network for metric learning
tasks.

The cascade forest (abbr. casForest) structure plays an important role in Deep Forest, and it is
crucial for the layer-by-layer processing. This paper attempts to explain the benefits of casForest from
the perspective of the margin theory.

*This is a preprinted manuscript.
†Nanjing University. E-mail: lvsh@lamda.nju.edu.cn
‡Nanjing University. E-mail: yangl@lamda.nju.edu.cn
§Nanjing University. E-mail: zhouzh@lamda.nju.edu.cn

1



1.1 Our Results

In Section 2, we formulate casForest (see the structure in Figure 1) as an additive model (the additive
casForest model) to optimize the margin distribution:

F (x) =
T∑
t=1

αtht (x) , (1)

where αt is a scalar determined by the margin distribution loss function ℓmd. The input of each random
forests block function ϕt is the raw feature x and the (t− 1)-th augmented feature ft−1 =

∑t−1
l=1 αlhl:

ht(x) = ϕt ([x, ft−1(x)]) = ϕt

([
x,

t−1∑
l=1

αlhl(x)

])
, (2)

so that the t-layer casForest model ht ∈ Ht is defined by such a recursive formula. Unlike all the weak
classifiers of traditional boosting are chosen from the same hypothesis set H, the hypothesis set of the
t-layer casForest model contains the (t− 1)-layer1, i.e.,Ht−1 ⊂ Ht, ∀t ≥ 2.

In Section 3, we provide a margin distribution upper bound for the generalization error of the additive
model above:

Pr
D
[yF (x) < 0]− Pr

S
[yF (x) < r] ≤

ln
∑T

t=1 αt |Ht|
r2

· lnm
m

+ λ

√
ln
∑T

t=1 αt |Ht|
r2

· lnm
m

, (3)

where m is the size of training set, r is a margin parameter, λ =
√

Var[yF (x)]
E2
S [yF (x)]

is a ratio related to the

margin standard deviation against the margin mean, and yF (x) denotes the margin of the sample x.
Inspired by our theoretical result, we propose an effective algorithm named margin distribution Deep

Forest (see mdDF in Algorithm 2) to encourage optimizing the margin ratio. Extensive experiments
validate that mdDF can effectively improve the performance on classification tasks, especially for cate-
gorical and mixed modeling tasks.

1.2 Related Work

Deep Forest. Deep Forest [ZF17; ZF19] is a non-neural network deep learning model which builds
upon decision trees and does not rely on BP algorithm and gradient-based approach. The earliest deep
forest algorithm gcForest [ZF19], is constructed by the multi-grained scanning operation and the cas-
Forest structure. The multi-grained scanning operation aims to deal with the raw data with spatial or
sequential relations. The casForest structure aims at the layer-by-layer processing with in-model feature
transformation. It can be viewed as an ensemble approach that utilizes almost all categories of well-
known strategies for diversity enhancement, e.g., input feature manipulation and output representation
manipulation [Zho12].

Margin theory. The margin theory was used by Schapire et al. [Sch+98] to explain the resistance of
AdaBoost to overfitting, but then attacked almost to death by the construction of the Arc algorithm by
Breiman [Bre99]. Later on, it was found that the empirical attack to margin theory of Adaboost might
be misleading [RS06], and many theoretical studies tried to get more understanding, ended by Gao and
Zhou [GZ13]. They finally proved that the margin distribution, which can be improved by increasing the
margin mean while decreasing the margin variance, is crucial to the performance of AdaBoost. This has
inspired the birth of a series of new statistical learning algorithms named ODM [Zho14; ZZ17; ZZ19].

1The hypothesis of the random forests block in the t-th layer contains that in the (t − 1)-th layer without updating the
augmented features, i.e., αt = 0. In other words, the in-model transformation [ZF19] is crucial for the recursive formulation.
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Figure 1: The standard cascade structure of the deep forest model [ZF19] can be viewed as a layer-by-
layer process. This feature augmentation can achieve feature enrichment by concatenating the prediction
vector with the input feature vector, which is named ”PRECONC”.

2 Cascade Forest

In Figure 1, the casForest structure is composed of stacked entities named random forests blocks ϕts.
Each random forests block consists of several forest modules, e.g., commonly random forests (abbr.
RF) [Bre01] and completely-random forests (abbr. CRF) [ZF17]. Suppose f1 denotes the function
of the first-layer forests, then given the input x to the first layer, the input to the second layer will
be [x, f1(x)], where [a, b] denotes the concatenation of a and b to form a feature vector. Considering
that the f1(x) is the prediction from the first layer, we name this process as “PRECONC” (PREdiction
CONCatenation), which is crucial for the feature learning process in deep forest. PRECONC is different
from the stacking operation [Wol92; Bre96] in traditional ensemble learning, where the second-level
learners act on the prediction space composed of different base learners, whereas the information of the
original input feature space is ignored. Using the stacking operation with more than two layers would
seriously suffer from overfitting, and cannot enable a deep model. In this paper we do not study the
factors which enable deep forest to become a deep model, only focus on the cascade structure.

Firstly we formulate casForest as an additive model in this section. We consider training and test
samples generated i.i.d. from distribution D over X × Y , where X ∈ Rn is the input space and Y ∈
{1, 2, . . . , s} is the output space. We denote a training set of m samples drawn from Dm by S.

The casForest model can be formalized as follows. We use a quadruple form (ϕ,f ,D,h) where

• Forest block: ϕ = (ϕ1, ϕ2, . . . , ϕT ), where ϕt denotes the function computed by the random
forests block in the t-th layer which is defined by (4);

• casForest: h = (h1, h2, . . . , hT ), where ht denotes the t-layer casForest model defined by (5),
and ht drawn from the hypothesis setHt;

• Augmented feature: f = (f1, f2, . . . , fT ), where ft denotes the output in the t-th layer, which
is defined by (6);

• Sample distribution: D = (D1,D2, . . . ,DT ), whereDt is the updated sample distribution in the
t-th layer, and D1 = D.

ϕt is the function returned by the random forests block (Algorithm 1). The input of the algorithm is
the raw training sample S = {(x1, y1), . . . , (xm, ym)}, the augmented feature from the previous layer

3



Algorithm 1 Random forests block Arfb [ZF19]

Input: A training set S drawn from Dt and the augmented feature ft−1(xi),∀i ∈ [m].
Output: The function computed by the random forests block in the t-th layer: ϕt.

1: Divide S to k-fold subsets {S1, . . . , Sk} randomly.
2: for Si in {S1, S2, . . . , Sk} do
3: Using S/Si to train two random forests and two completely random forests.
4: Compute the prediction rate pit(j) for the j-th leaf node generated by S/Si.
5: ϕt([x, ft−1(x)])← Ej [p

i
t(j)], for any training sample (x, y) ∈ Si.

6: end for
7: ϕt([x, ft−1(x)])← Ei,j [p

i
t(j)], for any test sample (x, y) ∈ D.

8: return The function computed by the random forests block in the t-th layer: ϕt.

ft−1(xi), i ∈ [m], and the reweighting distribution Dt:

ϕt =

{
Arfb ([xi; yi]

m
i=1,D1) t = 1,

Arfb ([xi, ft−1(xi); yi]
m
i=1,Dt) t > 1.

(4)

Using these random forests block functions ϕts, we can define the t-layer casForest model as:

ht(x) =

{
ϕt(x) t = 1,

ϕt ([x, ft−1(x)]) t > 1,
(5)

ft : X → C is defined as follows:

ft(x) =

{
αtht(x) t = 1,

αtht (x) + ft−1(x) t > 1,
(6)

where αt and Dt need to be optimized and updated.
Here, we find that the t-layer casForest model is defined by a recursive formula:

ht(x) = ϕt ([x, ft−1(x)]) = ϕt

([
x,

t−1∑
l=1

αlhl(x)

])
. (7)

Unlike all the weak classifiers of AdaBoost which are chosen from the same hypothesis set H, the
hypothesis set of the t-layer casForest model contains that of the (t− 1)-layer, similar to the hypothesis
sets of the deep neural networks (DNNs) at different depths, i.e.,Ht−1 ⊂ Ht, ∀t ≥ 2.

The PRECONC process is difficult to analyze. For simplicity, here we do not consider the influence of
the feature augmentation process though it is very crucial for deep forest. Instead, we only consider the
hypotheses based on the original feature space, and thus the entire additive cascade model F̃ : X → Y
is defined as follows:

F̃ (x) = σ̃(F (x)) = argmax
j∈{1,2,...,s}

[
T∑
t=1

αth
j
t (x)

]
, (8)

where F (x) is the final prediction vector of the casForest model for classification and σ̃ denotes a map
from average prediction score vector to a label.

With such a simplicity, the casForest structure has relation to Cortes, Mohri, and Syed [CMS14] and
Cortes et al. [Cor+17] and Huang et al. [Hua+18]. However, in the next section we will see that we
prove that the generalization error of casForest can be bounded by O(lnm/m + λ

√
lnm/m), when

the margin ratio related to the margin standard deviation against the margin mean is sufficient small.
This bound is tighter than the generalization bound O(lnm/m) for Deep Boosting [CMS14; Cor+17;
Hua+18].
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3 Generalization Analysis

In this section, we analyze the generalization error to understand the sample complexity of the casForest
model. For simplicity, we consider the binary classification2 task. We define the strong classifier (the
T -layer casForest model) as F (x) =

∑T
t=1 αtht(x), i.e., casForest is formulated as an additive model.

Now we define the margin for sample (x, y) as yF (x) ∈ [−1, 1], which implies the confidence of
prediction. We assume that the hypothesis setH of base classifiers {h1, h2, . . . , hT } can be decomposed
as the union of T families H1,H2, . . . ,HT ordered by increasing complexity, where ∀t ≥ 1,Ht ⊂
Ht+1 and ht ∈ Ht. Remarkably, the complexity term of our bound admits an explicit dependency in
terms of the mixture coefficients defining the ensembles. Thus, the ensemble family we consider is
F = conv(

⋃T
t=1Ht), which is the family of functions F (x) of the form F (x) =

∑T
t=1 αtht(x), where

α = (α1, . . . , αT ) is in the simplex ∆.
For a fixed mg = (g1, . . . , gT ), any mα ∈ ∆ defines a distribution over {g1, . . . , gT }. Sampling

from {g1, . . . , gT } according to mα and averaging leads to functions G = 1
n

∑T
i=1 ntgt for some n =

(n1, . . . , nT ), with
∑T

t=1 nt = n, and gt ∈ Ht. For any N = (N1, . . . , NT ) with |N| = n, we consider
the family of functions

GF ,N =

 1

n

T∑
k=1

Nk∑
j=1

gk,j

∣∣∣∣∣∣ ∀(k, j) ∈ [T ]× [Nk], gk,j ∈ Hk

 , (9)

and the union of all such families GF ,n =
⋃

|N=n| GF ,N. For a fixed N, the size of GF ,N can be bounded

as follows: ln |GF ,N| ≤ n ln
∑T

t=1 αt|Ht|. Our margin distribution theory is based on a bound based on
the margin mean and a Bernstein-type bound follows:

Lemma 3.1. ([GZ13]) For F =
∑T

t=1 αtht ∈ F and G ∈ GF ,n, we have

Pr
S,GF,n

[yG(x)− yF (x) ≥ ϵ] ≤ exp

(
−nϵ2

2− 2E2
S [yF (x)] + 4ϵ/3

)
. (10)

Lemma 3.2. ([GZ13]) For independent random variables X1, X2, . . . , Xm(m ≥ 5) with values in
[0, 1], and for δ ∈ (0, 1), with probability at least 1− δ we have

1

m

m∑
i=1

E[Xi]−
1

m

m∑
i=1

Xi ≤

√
2V̂m ln(2/δ)

m
+

7 ln(2/δ)

3m
(11)

where V̂m =
∑

i ̸=j(Xi −Xj)
2/2m(m− 1)

Since the gap between the margin of strong classifier yF (x) and that in the union family GF ,N is
bounded by a function related to the margin mean ES [yF (x)], we can further obtain a margin distribution
theorem as follows:

Theorem 3.3. Let D be a distribution over X × Y and S be a training set of m samples drawn from
D. With probability at least 1 − δ, for r > 0, the strong classifier F (x) (the T -layer casForest model)
satisfies that

Pr
D
[yF (x) < 0] ≤ inf

r∈(0,1]

[
Pr
S
[yF (x) < r] +

1

md
+

3
√
µ

m3/2
+

7µ

3m
+ λ

√
3µ

m

]
2In the binary classification, we can redefine the output of the strong classifier F (x) as a variable in [−1, 1], e.g. the

difference between two prediction scores, where F̃ (x) = sign(F (x)) is the predicted label. The previous bounds [CMS14;
Cor+17; Hua+18] are based on binary classification, therefore, our result is comparable with them.

5



where

d =
2

1− E2
S [yF (x)] + r/9

> 2, µ = lnm ln(2

T∑
t=1

αt|Ht|)/r2 + ln
2

δ
, λ =

√
Var[yF (x)]

E2
S [yF (x)]

.

Proof. For F =
∑T

t=1 αtht ∈ F and G ∈ GF ,n, we have EG∈GF,n
[G] = F . For β > 0, the Chernoff’s

bound gives

Pr
D

[yF (x) < 0] = Pr
D,GF,n

[yF (x) < 0, yG(x) ≥ β] + Pr
D,GF,n

[yF (x) < 0, yG(x) < β]

≤ exp(−nβ2/2) + Pr
D,GF,n

[yG(x) < β]. (12)

Recall that |GF ,N | ≤
∏T

t=1 |Ht|Nt for a fixed N . Therefore, for any δn > 0, combining the union bound
with the Lemma 3.2 guarantees that with probability at least 1 − δn over sample S, for any G ∈ GF ,N

and β > 0

Pr
D
[yG(x) < β] ≤ Pr

S
[yG(x) < β] +

√√√√ 2

m
V̂m ln

(
2

δ

T∏
t=1

|Ht|Nt

)
+

7

3m
ln

(
2

δ

T∏
t=1

|Ht|Nt

)
(13)

≤ Pr
S
[yG(x) < β] +

√√√√2n

m
V̂m

T∑
i=1

αt ln

(
2|Ht|
δ

)
+

7n

3m

T∑
i=1

αt ln

(
2|Ht|
δ

)
(14)

≤ Pr
S
[yG(x) < β] +

√√√√2n

m
V̂m ln

(
2
∑T

i=1 αt|Ht|
δ

)
+

7n

3m
ln

(
2
∑T

i=1 αt|Ht|
δ

)
(15)

where

V̂m =
∑
i ̸=j

(I[yiG(xi) < β]− I[yjG(xj) < β])2

2m(m− 1)
, (16)

The inequality (14) is a large probability bound when n is large enough and inequality (15) is ac-
cording to the Jensen’s Inequality. Since there are T at most Tn possible T -tuples N with |N | = n, by
the union bound, for any δ > 0, with probability at least 1− δ, for all G ∈ GF ,n and β > 0:

Pr
D
[yG(x) < β] ≤ Pr

S
[yG(x) < β]+

√√√√2n

m
V̂m ln

(
2
∑T

i=1 αt|Ht|
δ/Tn

)
+

7n

3m
ln

(
2
∑T

i=1 αt|Ht|
δ/Tn

)
(17)

Meantime, we can rewrite V̂m

V̂m =
∑
i ̸=j

(I[yiG(xi) < β]− I[yjG(xj) < β])2

2m(m− 1)
(18)

=
2m2 PrS [yG(x) < β] PrS [yG(x) ≥ β]

2m(m− 1)
(19)

=
m

m− 1
V̂ ∗
m (20)

For any θ1, θ2 > 0, we utilize Chernoff’s bound to get:

V̂ ∗
m = Pr

S
[yG(x) < β] Pr

S
[yG(x) ≥ β] (21)
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≤ 3 exp(−nθ21/2) + Pr
S
[yF (x) < β + θ1] Pr

S
[yF (x) ≥ β − θ1] (22)

≤ 3 exp(−nθ21/2) + Pr
S
[yF (x) < β + θ1 |ES [yF (x)] ≥ β + θ1 + θ2 ] (23)

· Pr
S
[yF (x) ≥ β − θ1|ES [yF (x)] ≥ β + θ1 + θ2]

≤ 3 exp(−nθ21/2) +
Var[yF (x)]

θ22
According to Chebyshev’s Inequality

≤ 3 exp(−nθ21/2) +
Var[yF (x)]

(ES [yF (x)]− β + θ1)2
≃ 3 exp(−nθ21/2) +

Var[yF (x)]

E2
S [yF (x)]

(24)

where Var[yF (x)] = ES [(yF (x))2]− E2
S [yF (x)] is the variance of the margins.

From Lemma 3.1, we obtain that

Pr
S
[yG(x) < β] ≤ Pr

S
[yF (x) < β + θ1] + exp

(
−nθ21

2− 2E2
S [yF (x)] + 4θ1/3

)
(25)

Let θ1 = r/6, β = 5r/6 and n = lnm/r2, we combine (12)(15)(24)(25), the proof is completed.

Remark 3.4. From Theorem 3.3, we know that the gap between the generalization error and the em-
pirical margin loss is generally bounded by the term O(λ

√
lnm/m + lnm/m), which is controlled

by the ratio related to the margin standard deviation against the margin mean λ. This ratio implies that
the larger margin mean and the smaller margin variance can reduce the generalization error of models
properly, which is crucial to alleviating the overfitting problem. When the margin distribution is good
enough (the margin mean is large and the margin variance is small), O(lnm/m) will dominate the
sample complexity. Then, this bound is tighter than the O(

√
lnm/m) rate as demonstrated in previous

theoretical works about Deep Boosting [CMS14; Cor+17; Hua+18].

Remark 3.5. As for the overfitting risk of the model (due to the large complexity), our bound inherits the
result of Cortes, Mohri, and Syed [CMS14]. The cardinality of the hypothesis set F = conv(

⋃T
t=1Ht)

is controlled by the mixture coefficients αts in (1).
∑T

t=1 αt|Ht| in our bound implies that it is not detri-
mental to generalization if the corresponding mixture weight is relatively small, while some hypothesis
sets used for learning could have large complexity. In other words, the coefficients αts need to minimize
the expected margin distribution loss ES [ℓmd(

∑t
l=1 αlγl(x))], which estimates the generalization error

of the additive casForest model.

4 Optimization

The generalization analysis shows the importance of optimizing the margin ratio λ and the mixture
coefficients αts. Since we formulate casForest as an additive model, we utilize the reweighting approach
to minimize the expected margin distribution loss

ES

[
ℓmd

(
t∑

l=1

αlγl(x)

)]
, (26)

where the margin distribution loss function ℓmd is designed to utilize the first- and second-order statistics
of margins, and γl(x) denotes the margin in the l-th layer. The scalar αt is determined by minimizing
the expected loss for the t-layer model.

The mdDF algorithm (Algorithm 2). We denote a prediction score space by C = Rs, where s is the
number of classes. When each sample passes through the forest model, we will get an average prediction
vector in each layer: ht(·) =

[
h1t (·), h2t (·) . . . , hst (·)

]
∈ C. According to Crammer and Singer [CS01],
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Algorithm 2 mdDF (margin distribution Deep Forest)

Input: Training set S = {(x1, y1), . . . , (xm, ym)} and random forests block algorithm Arfb.
Output: The final additive cascade model F̃ .

1: Initialize α0 ← 1, f0 ← ∅
2: Initialize sample weights: D1(i)← 1

m ,∀i ∈ [m]
3: for t = 1, 2, . . . , T do
4: ϕt ← the random forests block returned by Arfb([xi, ft−1(xi); yi]

m
i=1,Dt).

5: ht(xi)← ϕt ([xi, ft−1(xi)]) ,∀i ∈ [m].
6: γt(xi)← hyt (xi)−maxj ̸=y h

j
t (xi),∀i ∈ [m].

7: αt ← argmin
αt

ES [ℓmd(
∑t

l=1 αlγl(x))]

8: ft(xi)← αtht (xi) + ft−1(xi),∀i ∈ [m].

9: Dt+1(i)←
ℓmd(

∑t
l=1 αlγl(xi))∑m

i=1 ℓmd(
∑t

l=1 αlγl(xi))
,∀i ∈ [m].

10: end for
11: return F̃ ← argmax

j∈{1,2,...,s}

[∑T
t=1 αth

j
t

]
.

we can define the margin of sample γt(·) for multi-class classification as: γt(·) := hyt (·)−maxj ̸=y h
j
t (·),

i.e., the confidence of prediction.
The initial sample weights are [1/m, 1/m, . . . , 1/m], and we update the i-th weight by

Dt+1(i) =
ℓmd
(∑t

l=1 αlγl(xi)
)∑m

i=1 ℓmd
(∑t

l=1 αlγl(xi)
) , (27)

where the margin distribution loss function ℓmd(·) is defined by Zhang and Zhou [ZZ17] to optimize the
first- and second-order statistics of margins as follows:

ℓmd(z) =

{
(z−γ)2

γ2 z ≤ γ,
µ(z−γ)2

(1−γ)2
z > γ,

(28)

where hyper-parameter γ is a parameter as the margin mean and µ is a parameter to trade off two
different kinds of deviation (keeping the balance on both sides of the margin mean). Obviously, this
margin distribution loss function will enforce the band that has a lower loss to contain the sample points
as many as possible. In practice, we generally choose these two hyper-parameters from the finite sets
γ ∈ {0.7, 0.75, 0.8, 0.85, 0.9, 0.95} and µ ∈ {0.01, 0.05, 0.1}. The algorithm utilizing the margin
distribution optimization is summarized in Algorithm 2.

5 Experiments

Datasets and configuration. We choose eight classification benchmark datasets with different scales.
The datasets vary in size: from 1484 up to 78823 instances, from 8 up to 784 features, and from 2 up to
26 classes. From the literature, these datasets come pre-divided into training and testing sets. Therefore
in our experiments, we use them in their original format. PROTEIN, SENSIT, and SATIMAGE datasets
are obtained from LIBSVM datasets [CL11]. Except for MNIST [LeC+98] dataset, others come from
the UCI Machine Learning Repository [DK17]. Based on the attribute characteristics of the dataset,
we classify the datasets into three categories: categorical, numerical, and mixed modeling tasks. We
conjecture that some numerical modeling tasks such as image or audio recognition are very suitable for
DNNs. Some operations, such as convolution, exactly fit well with numerical signal modeling. The
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deep forest model is not developed to replace DNNs for such tasks; instead, it offers an alternative when
DNNs are not superior, e.g., deep forests are good at the categorical/symbolic or mixed modeling tasks
especially [ZF19].

In mdDF, we take two random forests and two completely-random forests in each layer, and each
forest contains 100 trees, whose maximum depth of trees in random forests grows with the layer, i.e.,
d
(t)
max ∈ {2t + 2, 4t + 4, 8t + 8, 16t + 16}. To reduce the risk of overfitting, the representation learned

by each forest is generated by k-fold cross-validation (k = 5 in our experiments). In Algorithm 1, each
instance will be used as training data for (k − 1) times, and produce the final class vector as augmented
features for the resulting in (k − 1) class vectors, that are averaged to the next layer.

We compare mdDF with the other four common used algorithms on different datasets: multilayer
perceptron (MLP), random forest (RF) [Bre01], XGBoost [CG16] and gcForest [ZF17]. Here, we set
the same number of forests as mdDF in each layer of gcForest. For random forests, we set 400 × k
trees; and for XGBoost, we also take 400 × k trees. As for other hyper-parameters, we set them as
the default values. For the multilayer perceptron (MLP) configurations, we use ReLU for the activation
function, cross-entropy for the loss function, adadelta for optimization, no dropout for hidden layers
according to the scale of training data. The network structure hyper-parameters, however, could not
be fixed across tasks. Therefore, for MLP, we examine a variety of architectures on the validation set,
and pick the one with the best performance, then train the whole network again on the training set and
report the test accuracy. The examined architectures are listed as follows: (1) input-1024-512-output;
(2) input-16-8-8-output; (3) input-70-50-output; (4) input-50-30-output; (5) input-30-20-output.

Test accuracy on benchmark datasets. Table 1 shows that mdDF achieves better accuracy than the
other methods on several datasets. Compared with the MLP method, the deep forest models almost
outperform on these datasets and obtain the top 2 test accuracy on categorical or mixed modeling tasks.
Obviously, gcForest and mdDF perform better than the shallow ones, and mdDF with reweighting and
boosting representations outperforms gcForest across these datasets. The empirical results show that the
deep models provide an improvement in performance with in-model transformation, compared to the
shallow models that only have invariant features.

Comparison with the other mdDF structures In Table 1, we compare our mdDF structure with the
three other mdDF structures on different datasets: (1) mdDF using same forests (use 4 random forests)
named mdDFSF; (2) mdDF using stacking (only transmit the prediction vectors to next layer) named
mdDFST; (3) mdDF without PRECONC (only transmit the input feature vector to next layer) named

Table 1: Left: Comparison results between mdDF and the other tree-based algorithms on test accuracy
with different datasets. The best accuracy on each dataset is highlighted in bold type. • indicates the
second best accuracy on each dataset. The average rank is listed at the bottom. Right: Comparison
results between the standard mdDF structure and the other mdDF structures.

Dataset Attribute MLP RF XGBoost gcForest mdDF mdDFSF mdDFST mdDFNP

ADULT Categorical 80.597 85.818 85.904 86.276 • 86.560 86.200 85.710 85.650
YEAST Categorical 59.641 61.886 59.161 63.004 • 63.340 63.000 62.780 62.556

LETTER Categorical 96.025 96.575 95.850 97.375 • 97.500 96.475 97.300 96.975
PROTEIN Categorical 68.660 68.071 71.214 • 71.009 71.247 71.127 70.291 68.509

HAR Mixed 94.231 • 92.569 93.112 94.224 94.600 93.926 94.290 94.060
SENSIT Mixed 78.957 80.133 81.874 82.334 • 82.534 82.014 80.412 80.320

SATIMAGE Numerical 91.125 91.200 90.450 91.700 • 91.750 91.600 91.300 90.800
MNIST Numerical 98.621 • 96.831 97.730 98.252 98.734 98.254 98.101 98.240

Avg. Rank - 3.650 4.000 3.750 2.375 1.000 - - -
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Figure 2: The relation between the margin ratio and learning ability in the different layers.

mdDFNP. In this way, we explore the importance of internal structures of the mdDF. When we remove
a concrete structure and control other variables, the performance of the mdDF algorithm will be worse.
The empirical results demonstrate the effectiveness of these specific structures.

Relation between the margin ratio and learning ability. Figure 2(a) plots the accuracy and margin
ratio of mdDF on the HAR dataset. It demonstrates clearly that the performance is consistent with the
margin ratio. When the margin ratio is smaller, i.e., the margin std/mean is smaller, the performance is
better. Figure 2(b) plots the t-SNE visualization of mdDF on the HAR dataset. We also use the variance
decomposition in the 2D space. The result shows that the intra-class compactness and inter-class sepa-
rability are getting better as the layers becomes deeper. Such a correlation validates the theoretical result
of our refined margin distribution analysis.

6 Conclusion

Recent studies propose a few tree-based deep models to learn the representations from a broad range
of tasks and achieve good performance. By formulating casForest as an additive model, we partially
explain the success of it from the perspective of the margin theory. The theoretical results inspire us to
design a margin distribution reweighting approach that improves the generalization performance. Then,
the empirical studies validate our theoretical results. We will explore how to understand the effectiveness
of the PRECONC operation (which is crucial for feature enrichment) in future work.
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