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Background

By realizing that the essence of deep learning lies in the layer-by-layer
processing, in-model feature transformation, and sufficient model complexity,
recently Zhou & Feng propose the deep forest model and the gcForest
algorithm to achieve forest representation learning. It can achieve excellent
performance on a broad range of tasks, and can even perform well on small or
middle-scale of data.
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Cascade Forest

The casForest model can be formalized as follows. We use a quadruple form

e Forest block: ¢ = (¢1,¢s, ..., d7) ., hr)

e casForest: h = (hq, ho, ..

e Augmented feature: f = (f1, fo,..., fr) e Sample distribution: D = (D1, Do, ..., D)
¢ is the function returned by the random forests block (Algorithm 1).
Algorithm 1 Random forests block A.p [33]

Input: A training set S drawn from D; and the augmented feature f; 1 (x;), Vi € [m].
Output: The function computed by the random forests block in the ¢-th layer: ¢;.

1: Divide S to k-fold subsets {.51, ..., Sk} randomly.

2: for Sfa n {81, SQ, Ce e Sk} do

3:  Using S/S; to train two random forests and two completely random forests.

4:  Compute the prediction rate p;(j) for the j-th leaf node generated by S/.S;.

5 Oz, fi1(2)]) <= E;[pi(j)], for any training sample (x,y) € .5;.

6: end for |

7. O¢([x, fr—1(x)]) < E; ;[p;(j)], for any test sample (z,y) € D.
8: return The function computed by the random forests block in the ¢-th layer: ¢,.
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We find that the t-layer casForest model is defined by a recursive formula
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The entire additive cascade model is defined as follows

he(x) = ¢ (2, fi—1(x)]) = &4

j€4{1,2,...,s}

- _
F(z)=6(F(x)) = argmax Zathg(x)

Generalization Analysis

Theorem 1. Let D be a distribution over X x Y and S be a training set of m samples drawn from
D. With probability at least 1 — 6, for r > 0, the strong classifier F'(x) (the T-layer casDF model)
satisfies that
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Remark 1. From Theorem 1, we know that the gap between the generalization
error and empirical loss is generally bounded by the rate O(\\/Inm/m + Inm/m)
, Which shows minimizing the margin ratio is the key to good generalization.
Remark 2. The hypothesis term In Zle a;|H¢| admits an explicit dependency on
the mixture coefficients. Though some hypothesis sets used for learning could
have large complexity, it will not be detrimental to generalization when the
corresponding mixture weight is relatively small.

Optimization

Since we formulate casForest as an additive model, we utilize the reweighting
approach to minimize the expected margin distribution loss

lmd (Z sz’}/z(fc)) :

Es

where the margin distribution loss function ¢4 is designed to utilize the first-
and second-order statistics of margins.

Algorithm 2 mdDF (margin distribution Deep Forest)

Input: Training set S = {(z1,41),. .., (Zm, ym)} and random forests block algorithm A,p,.

g

Output: The final additive cascade model F'.

I: Initialize ag < 1, fo < ()

2: Initialize sample weights: Dy (i) « -, Vi € [m]

3 fort=1.,2,....7T do

. ¢ < the random forests block returned by A ([, fi—1(2:): yiliy, Dy).
hi(wi) < ¢ ([x4, fr—1(2i)]) , Vi € [m].
Ve(wi) < Dy (i) — max;oy, by (2;), Vi € [m].
(v < arg min ES[Emd(ZLl a7y (z))]

fi(x;) a e (i) + fi—1(x;),Vi € Im)].
gmcI(Z?:1 Xl (33?))
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10: end for
. ) . T J
11: return F < argmax [Zt_l &tht}.
j€e{1,2,....s}
Dataset Attribute MLP RF XGBoost gcForest mdDF | mdDFsg mdDFst mdDFnp
ADULT  Categorical 80.597 85.818  85.904 86.276 @«  86.560 | 86.200 85.710 85.650
YEAST  Categorical 59.641 61.886 59.161 63.004 ¢ 63.340 | 63.000 62.780 62.556
LETTER  Categorical 96.025 96.575 95.850 97.375e 97.500 | 96.475 97.300 96.975
PROTEIN  Categorical 68.660 68.071 71214 e 71.009 71.247 | 71.127 70.291 68.509
HAR Mixed 94.231e 92569 93.112 04.224 94.600 | 93.926 94.290 94.060
SENSIT Mixed 78.957 80.133 81.874 82.334e 82534 | 82.014 80.412 80.320
SATIMAGE Numerical 91.125 91.200  90.450 91.700 @ 91.750 | 91.600 91.300 90.800
MNIST Numerical 98.621 e 96.831 97.730 08.252 98.734 | 98.254 08.101 08.240
Avg. Rank 3.650 4.000 3.750 2.375 1.000
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