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Abstract

Random Forest (RF) is an ensemble learning algorithm proposed by Breiman [1]
that constructs a large number of randomized decision trees individually and aggre-
gates their predictions by naive averaging. Zhou and Feng [2] further propose Deep
Forest (DF) algorithm with multi-layer feature transformation, which significantly
outperforms random forest in various application fields. The prediction concate-
nation (PreConc) operation is crucial for the multi-layer feature transformation
in deep forest, though little has been known about its theoretical property. In
this paper, we analyze the influence of Preconc on the consistency of deep forest.
Especially when the individual tree is inconsistent (as in practice, the individual
tree is often set to be fully grown, i.e., there is only one sample at each leaf node),
we find that the convergence rate of two-layer DF w.r.t. the number of trees M can
reach O(1/M2) under some mild conditions, while the convergence rate of RF is
O(1/M). Therefore, with the help of PreConc, DF with deeper layer will be more
powerful than the shallower layer. Experiments confirm theoretical advantages.

1 Introduction

Random forest (RF) [1] is a state-of-art classification and regression algorithm that constructs a
number of randomized individual decision trees during a parallel training phase and predicts by
naive averaging the results. Recently, Zhou and Feng [2] propose Deep Forest (DF) algorithm with
multi-layer feature transformation to investigate the possibility of tree-based representation learning.
Benefiting from the multi-layer feature transformation in the cascade structure with prediction
concatenation (PreConc), DF outperforms various tree-based algorithms [1, 3–5] in empirical study,
and have been involved in real applications such as medicine [6], computer vision [7], remote sensing
[8], financial fraud detection [9], etc. Numerous variants have been extended to various tasks and
meet with remarkable success in [10–13]. There are also variants [14, 15] aiming at improving
performance and reducing computational cost.

Empirical successes have attracted attention to the theoretical analysis of DF. Since its PreConc
operation transforms features layer by layer, and each layer consists of complex non-parametric
random forest estimators, analyzing the impact of the new features extracted from these estimators
on generalization performance is important. To start theoretical analysis on DF, Lyu et al. [16]
prove a margin-based generalization bound for additive new features in DF. Then, Pang et al. [14]
prove an upper bound on the sample efficiency and inspire an efficient improvement for reducing
computational cost of DF. In the direction of consistency, Arnould et al. [17] provide tight lower and
upper bounds on the excess risk of a shallow centered random tree network, which leverages the new
features to improve the performance of a single centered random tree. Assuming that the original and
new features are separated and independently used in two stages, Lyu et al. [18] prove that the new
features based on prediction are easy to cause overfitting risk, and propose to use the interaction of
decision rules to alleviate it.
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However, previous theoretical studies often choose to ignore the impact of the new features on
generating forests. For example, recent works [16, 18, 14] assume that the forest estimator in each
layer is a black-box model and Arnould et al. [17] assume that there is only a single centered random
tree in each layer. Such strong assumptions are in favor of theoretical analysis, but widen the gap
between the theoretical results and practical deep forest architecture. To properly analyze DF, we
must notice that, among the complex architecture in DF, both prediction concatenation (PreConc) [16]
and the classification and regression trees (CART)-split criterion [19] play critical roles. Therefore,
in order to open the black box of DF, we need to study the subtle combination of different techniques,
i.e., analyze the properties of the new feature and study how CART generates and utilizes it.

Contributions. We compare the advantages of depth (cascade structure with PreConc in deep
forest) over width (bagging of trees in random forest) in the scope of L2

2-consistency, based on the
assumptions of the additive regression functions and uniform distribution over input space. The main
contributions can be summarized as follows:

• We are the first to establish a consistency analysis of the prediction concatenation (PreConc)
operation which is crucial for multi-layer feature transformation in deep forest, though based on a
simplified version.

• We prove the universal consistency of deep forest when the total number of leaves of individual
trees is chosen properly.

• In the practical setting, when the individual trees are fully grown, we prove that the convergence
rate of two-layer deep forest reach O(1/M2) w.r.t. the increasing number of trees M , while that
of random forest is O(1/M). This result reflects that deep forest with deeper layer will be more
powerful than shallower layer.

Organization. The rest of this work is organized as follows: Section 3 shows the setting and
notations related to tree-based estimators in this work. Section 4 recalls the original deep forest
architecture and simplifies it into a two-layer deep forest. Section 5 contains the properties of cascade
structure with prediction concatenation. Section 6 proves the main result that depth is more powerful
than width in deep forest architecture in the scope of consistency. Section 7 is devoted to the empirical
studies of deep forest by verifying the theoretical results above. Section 8 concludes with future
work. More experimental results and detailed proofs for theorems and propositions are given in the
supplementary material due to page limitation.

2 Related work

Despite the widespread use and remarkable success of random forest in real world applications, the
theoretical properties of it are still not fully understood [20, 21]. Breiman [1] offers an upper bound
on the generalization error of random forest in terms of correlation and accuracy of the individual
trees. Lin and Jeon [22] establish a connection between random forest and a particular class of nearest
neighbor predictors, which are further studied by Biau and Devroye [23]. Meinshausen [24] studies
the consistency of the quantile random forest for regression. In recent years, various theoretical works
[20, 25–28] have been performed, analyzing the consistency of various simplified forests, and moving
ever closer to practice. Denil et al. [21] narrows the gap between theory and practice of random
forests for regression. Scornet et al. [29] prove the first L2

2-consistency of Breiman’s original random
forest with CART-split criterion based on the assumptions of the additive regression functions and
uniform distribution over input space. Scornet [30] prove that infinite forest consistency implies
finite forest consistency. Gao and Zhou [31] then present the convergence rate of purely randomized
trees and a simplified variant of Breiman’s original CART trees. Gao et al. [32] further expand it to
multi-class setting. In addition, another research route is the theory analysis of feature importance
[33–35]. Recently, Li et al. [36] derive non-asymptotic lower and upper bounds on the expected
bias of MDI importance for random forests. Sutera et al. [37] establish a connection between MDI
importance of pure random forest and Shapley values.

However, while deep forests further improve generalization performance, there is no theory to
prove the advantages brought by depth. Therefore, studying the influence of depth is the theoretical
cornerstone for distinguishing deep forests from random forests. For example, in the well-known deep
neural networks (DNNs), there are a lot of theoretical works to study the effect of depth and width
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on its representation ability and generalization performance, which show the theoretical advantages
of deep neural networks over shallow neural networks [38–42]. These works all contribute to the
understanding of deep learning and provide insight for designing algorithms.

3 Setting and notations

We first describe the setting and notations related to tree-based estimators in this work. For the sake
of conciseness, we consider the regression setting.

Setting. We consider a regression framework, where the training set Sn = {(x1, y1), . . . , (xn, yn)}
consists of [0, 1]d × R-valued independent random variables distributed as the prototype sample
(x, y) with E[y2] <∞. This underlying distribution, characterized by the marginal distribution DX
on [0, 1]d and by the conditional distribution DY|X , can be written as

y = f(x) + ϵ , (1)

where f(x) = E[y|x] is the conditional expectation of y given x, and ϵ is a noise satisfy-
ing E[ϵ] = 0 and Var[ϵ] < σ2. The task considered in this paper is to output a randomized
estimator hn(·,Θ, Sn) : [0, 1]

d → R where Θ is a random variable that accounts for the ran-
domization procedure and independent of the training set Sn. To simplify notation, we denote
hn(x,Θ) = hn(x,Θ, Sn). The quality of a randomized estimator hn is measured by its L2 risk

R(hn) = E
[
(hn(x,Θ)− f(x))

2
]
, (2)

where the expectation is taken with respect to (x,Θ), conditionally on Sn. As the training data size n
increases, we get a sequence of estimators {h1, h2, . . . , hn, . . . }. A sequence of estimators {hn}∞n=1
is said to be consistent if R(hn)→ 0 as n→∞.

Trees and forests. A random forest estimator hM,n(x,Θ) outputs the average prediction over M
individual randomized trees hn(x,Θj), ∀j ∈ [M ]. Here, [M ] = {1, 2, . . . ,M} denotes the indexes
of all individual randomized trees, where Θ1, . . . ,ΘM are distributed identically and independently
and denoted by a generic random variable Θ. The random variable Θ can be used to sample the
training set and select the candidate dimensions and positions for splitting. Specifically, a recursive
partition Π of [0, 1]d is built by performing successive axis-aligned splits according to Θ:

hn(x,Θ) =

n∑
i=1

yi · 1(xi ∈ CΠ,n(x))

Nn(CΠ,n(x))
, (3)

where CΠ,n(x) is the cell of the tree partition containing x and Nn(CΠ,n(x)) is the number of
training samples falling into CΠ,n(x) with convention that the estimation equals to zero if the cell
CΠ,n(x) is empty. These trees are combined to form a finite forest estimation:

hM,n(x,Θ) = hM,n(x,Θ1, . . . ,ΘM ) =
1

M

M∑
i=1

hn(x,Θi) . (4)

By the law of large numbers, for any fixed x, conditionally on Dn, the finite forest estimation
converges to the infinite forest estimation:

h∞,n(x) = lim
M→∞

hM,n(x,Θ) = EΘ[hn(x,Θ)] . (5)

When the number of samples tends to∞, we denote by h∞(x,Θ) the randomized tree with infinite
samples and hM,∞(x,Θ) the random forest with M trees and infinite samples.

4 Deep forest

We recall the original deep forest algorithm in Section 4.1, and describe the simplified two-layer deep
forest algorithm in Section 4.2.
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Figure 1: Deep forest architecture (the scheme is taken from Zhou and Feng [2]).

4.1 Original deep forest

Deep forest [2] is a tree-based deep model made up of non-differentiable forest modules without
back-propagation. Each layer of DF is composed of two Breiman’s random forest (RF) and two
Completely-Random Forest (CRF). The RF is composed of CARTs and CRF is composed of pure
random trees. In the regression setting, each forest of each layer outputs a prediction for any query
point x, corresponding to the average response in the leaf node (cell) containing x. At a given layer,
the predictions of all forests of this layer are concatenated together with raw features. This prediction
concatenation process is called PreConc, which is repeated for each layer until the best layer and
construct a deep forest. For an overview of the architecture of deep forest, we refer readers to the
work [43, 2].

4.2 Simplified two-layer deep forest

In order to narrow the gap between theoretical and empirical studies of deep forest, we retain CART-
split criterion and PreConc when simplifying the model. We define a simplified two-layer deep forest,
whose each layer is composed of one Breiman’s random forest. We denote by h

(1)
M,n(x,Θ, Sn) the

first-layer forest estimator and h
(2)
M,n([x, h],Θ, Sn) the second-layer forest estimator, where [x, h] is

the concatenation of the raw features x and the new feature h. Then we can define the two-layer deep
forest as follows:

h̄2M,n(x,Θ, Sn) = h
(2)
M,n ◦ h

(1)
M,n(x,Θ, Sn) . (6)

The complete algorithm is shown in Algorithm 1. This algorithm has three parameters: mtry ∈
{1, . . . , d} is the number of pre-selected directions for splitting, an ∈ {1, . . . , n} is the number of
samples in each tree, tn ∈ {1, . . . , an} is the number of leaves in each tree. In the default procedure,
the parameters are set as follows: mtry is set to d. an is set to n/k, where k is the k-fold cross-
validation in Zhou and Feng [2]’s deep forest. tn = an means we use fully grown CART. Notice that
k controls the subsampling rate an/n = 1/k, which is proved by Scornet et al. [29] to be the key
component for imposing tree diversity.

Given the above parameters, the most basic part of Algorithm 1 is the training process of each CART.
Let C be a cell and Nn(C) be the number of data points falling in C. A split in C is a pair (j, z),
where j is a dimension in {1, . . . , d} and z is the position of the split along the j-th dimension in cell
C. Let SC be the set of all possible splits in C. The CART-split criterion [19] takes the form

L̂n(j, z) =
1

Nn(C)

∑
i:xi∈C

(yi − µn(C))2

− 1

Nn(CL)

∑
i:xi∈CL

(yi − µn(CL))
2 − 1

Nn(CR)

∑
i:xi∈CR

(yi − µn(CR))
2 ,

(7)

where CL = {x ∈ C : x(j) < z}, CR = {x ∈ C : x(j) ≥ z}, and µn(C) = 1
Nn(C)

∑
i:x∈A yi

denotes the average response in any cell C (resp. µn(CL), µn(CR)), with the convention 0/0 = 0.
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Algorithm 1: A simplified variant of Zhou’s original deep forest
Require: A training set Sn = {(x1, y1), . . . , (xn, yn)}, the number of trees 2M ,

mtry ∈ {1, . . . , d}, an ∈ {1, . . . , n}, tn ∈ {1, . . . , an} and the query point x ∈ [0, 1]d.
Ensure: Two-layer deep forest h̄2M,n(·) = h

(2)
M,n ◦ h

(1)
M,n(·) and the prediction of x.

1: for layer ℓ in {1, 2} do
2: if ℓ = 2 then
3: Sn ← {([x1, h

(1)
M,n(x1)], y1), . . . , ([xn, h

(1)
M,n(xn)], yn)}. ▷ Prediction concatenation.

4: end if
5: for tree j ∈ {1, 2, . . . ,M} do
6: Select an data points, without replacement, uniformly in Sn.
7: Set Π0 = {[0, 1]d} the partition associated with the root of the tree.
8: For all 1 ≤ i ≤ an, set Πi = ∅.
9: Set nnodes = 1 and level = 0.

10: while nnodes < tn do
11: if Πlevel = ∅ then
12: level = level + 1.
13: else
14: Let C be the first element in Πlevel.
15: if C contains exactly one point then
16: Πlevel ← Πlevel \ {C}.
17: Πlevel+1 ← Πlevel+1 ∪ {C}.
18: else
19: Select the best split (j∗n, z

∗
n) in C by optimizing the CART-split criterion along the

dimension D in {1, . . . , d}. ▷ See details in Eq. (7).
20: Split cell C along D according to the best split (j∗n, z

∗
n). Call CL and CR.

21: Πlevel ← Πlevel \ {C}.
22: Πlevel+1 ← Πlevel+1 ∪ {CL} ∪ {CR}.
23: nnodes ← nnodes + 1.
24: end if
25: end if
26: end while
27: Compute the predicted value h

(ℓ)
n (x,Θj , Sn) at the query point x equaling the average of

the Yi’s falling in the cell of x in partition Πlevel ∪Πlevel+1.
28: end for
29: Compute the random forest estimation h

(ℓ)
M,n(x,Θ, Sn) at the query point x according to

Eq. (4).
30: end for
31: Compute the two-layer deep forest estimation h̄2M,n(x,Θ, Sn) at the query point x according

to Eq. (6).

At each cell C, the best split (j∗n, z
∗
n) is selected by maximizing L̂n(j, z) overMtry and SC , that is,

(j∗n, z
∗
n) ∈ argmax

(j∗,z∗)∈SC

j∈Mtry

L̂n(j, z) . (8)

5 Properties of prediction concatenation

In this section we show that the properties of the simplified deep forest enable us to analyze the
influence of the concatenated new feature in deep forest and the local variation related to the empirical
CART-split criterion.

We consider an additive regression model satisfying the following assumption:
Assumption 1. The response y follows

y =

d∑
j=1

fj(x
(j)) + ϵ , (9)
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where x =
(
x(1), . . . , x(d)

)
is uniformly distributed over [0, 1]d, ϵ is an independent centered

Gaussian noise with finite variance σ2 > 0 and each component fj is continuous.

Stone [44], Hastie and Tibshirani [45] popularize these models, which decompose the regression
function as a sum of univariate functions. Especially, Scornet et al. [29] prove the consistency of
Breiman’s original random forest under this assumption. On this basis, we study the impact of the
new feature generated in the deep forest.

To start with, we analyze the priority of the new features generated by the previous layer in the
selection of splitting features under the CART-split criterion, in both infinite sample regime and finite
sample regime respectively.

Proposition 1 (Priority of the new feature). Assume the data set follows Assumption 1 and the
first-layer forest is consistent. The following results hold for any CART in the second-layer forest.

1. In the infinite sample regime (n =∞), we consider a single second-layer CART h
(2)
∞ (·,Θ). All

splits in this CART are performed along the new feature only.

2. In the finite sample regime (n < ∞), we consider a single second-layer CART h
(2)
n (·,Θ). Fix

k ∈ N∗ and ξ, ρ > 0. Then, with probability ≥ 1− ρ, for all n large enough, we have, the error
of the first-layer forest is bound by ξ. As a consequence, the first k splits (jq,n(x), 1 ≤ q ≤ k) in
this CART are performed along the new feature only.

Proof sketch. (P1.1). In the infinite sample regime, the random forest estimation of the first layer has
zero error. Therefore, the new feature of the second layer is the target function h

(1)
M,∞(x) = f(x).

Obviously, the new feature is the most informative dimension. Therefore, when splitting in any cell,
CART algorithm will select the new feature as the splitting dimension. (P1.2). In the finite sample
regime, the random forest estimation of the first layer is not precise. Therefore, there is an error
related to n between the new feature and the target function. Firstly, we prove that the distance
between the theoretical (n = ∞) and empirical (n < ∞) first k splits of the CART algorithm is
bounded by cξ with probability ≥ 1 − ρ, when n is large enough. Connecting with the result of
theoretical split above, the proof is completed.

Remark 1. Proposition 1 shows that the trees in the second layer primarily choose the new feature to
split and the degree of this priority depends on the error of the first-layer forest estimator. This also
reveals that the advantages of deep forest depend on the performance of the first layer. If the forest
of the first layer does not return an estimation with noise reduction, the performance of deep forest
cannot be further improved through PreConc operation. This is consistent with the empirical results
in previous work [2, 17].

In order to control the risk of deep forest, we need study the local variation property of the empirical
CART-split criterion. For any cell C, the variation of regression function f(x) within C is defined as

∆(f, C) = sup
x,x′∈C

|f(x)− f(x′)| . (10)

Proposition 2 (Variation of f in the empirical cell). Assume that Assumption 1 holds and the
first-layer forest is consistent. The following results hold for any CART in the second-layer forest
h
(2)
n (·,Θ). After splitting along the new feature, the CART will estimate the residual of the first-layer

forest estimation. Then for all ρ, ξ > 0, there exists N ∈ N∗ such that, for all n > N ,

Pr [∆ (f, CΠ,n(x,Θ)) ≤ ξ] ≥ 1− ρ . (11)

Proof sketch. Firstly, we prove the variation of f(x) within the cell obtained by the theoretical
CART-split criterion converges to zero. Secondly, we prove that the distance between the theoretical
and empirical first k splits of the CART convergence to zero. Finally, we prove that the variation of
f(x) within the empirical cell is close to the theoretical cell.

Proposition 2 shows that the variation of the regression function f(x) within a cell of a random
tree CΠ,n is small provided n is large enough, thereby forcing the approximation error of DF to
asymptotically approach zero.
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6 Depth is more powerful than width

Our first result considers the tn < an regime, where the number of samples in each leaf node tends
to∞ as tn →∞ and an →∞. We prove that controlling the depth of the trees through the number
of leaves tn is sufficient to achieve consistency of deep forest.
Theorem 3 (Universal consistency). Let M ≥ 1. Consider two-layer deep forest h̄2M,n given
by Eq. (6) and Breiman’s random forest hM,n given by Eq. (4) for the random CARTs satisfying
an → ∞, tn → ∞ and tn(log an)

9/an → 0. Then under the setting described in Section 3 and
assume the data set follows Assumption 1,

1. [29, Theorem 1] the Breiman’s random forest h2M,n is consistent for any M ≥ 1,

2. the two-layer deep forest h̄M,n is consistent for any M ≥ 1.

Proof sketch. (T3.1). The universal consistency of Breiman’s random forest is proved by Scornet
et al. [29]. (T3.2). Firstly, we already know that the variation of the target regression function f(x)
within a cell of a randomized CART in the second-layer forest is small when n is large enough via
Proposition 2. Similar as Scornet et al. [29], we utilize Proposition 2 to control the approximation
error of the two-layer deep forest. And the parameter tn allows us to control the size of the leaves of
CART, which allows us to have enough samples in each leaf node to smooth the impact of noise, so
as to control the estimation error. Connecting the approximation and estimation error, the consistency
of a CART of second-layer deep forest is proved. The universal consistency can be proved via [25,
Proposition 1], which guarantees that the error of forest estimator is no more than twice that of
individual randomized CART.
Remark 2. Notice that under this setting, random forest and even deep forest have no obvious
advantages over single CART in theory. When we use forests in practice, we do not choose to control
the depth of the trees. Empirical studies in Section 7.2 show that the forest with tn = an always
outperforms the forest with tn < an. Actually, the fully grown trees tn = an is the setting close to
practical forest algorithm.

In order to deal with the tn = an regime, we need to introduce an assumption first proposed by
Scornet et al. [29]. We denote by Zi = 1(xi ∈ CΠ,n(x)) the indicator that xi falls into the same
cell as x in the random tree designed with Dn and the random parameter Θ. Z ′

j = 1(xi ∈ CΠ′(x))
is another independent indicator. Then, we define the correlation between these two indicators
conditionally on yi, yj or not, respectively

ϕi,j(yi, yj) = E[Zi, Z
′
j |x,x1, . . . ,xn, yi, yj ] and ϕi,j = E[Zi, Z

′
j |x,x1, . . . ,xn] . (12)

Assumption 2. Let Zi,j = (Zi, Zj). Then one of the following two conditions holds:

1. One has

lim
n→∞

(log an)
2d−2(log n)2E

[
max
i ̸=j
|ϕi,j(yi, yj)− ϕi,j |

]2
= 0 . (13)

2. There exists a constant C > 0 and a sequence (γn)n → 0 such that, almost surely,

max
ℓ1,ℓ2=0,1

|Cor [(yi − f(xi)),1(Zi,j = (ℓ1, ℓ2)|xi,xj , yj)]|
Pr1/2[Zi,j = (ℓ1, ℓ2)|xi,xj , yj ]

≤ γn , (14)

and

max
ℓ1=0,1

∣∣Cor [(yi − f(xi))
2,1(Zi = ℓ1|xi)

]∣∣
Pr1/2[Zi = ℓ1|xi]

≤ C . (15)

(A2.1.) means that the influence of two labels yi, yj on the probability of connection of two couples
of random points converge to zero as n→∞. (A2.2.) means that the correlation between the noise
and the probability of connection of two couples of random points vanishes quickly enough, as
n→∞. However, this assumption is too strong for the Breiman’s original random forest [1]. Scornet
et al. [29] emphasize that they cannot know whether or not Assumption 2 is satisfied in random forest.
In this paper, we recall this assumption and state that this assumption is mild for the second-layer
forest estimation in deep forest algorithm.
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Since deep forest concatenates the prediction with the raw features as the input for the next layer,
the label information is encoded into the new feature of second layer. In this way, the influence of
two labels on the connection probability of this pair of samples tends to zero, so (A2.1.) is mild for
the second-layer forest estimation. From another point of view, Proposition 1, the priority of new
feature also shows that the partition can be independent of labels, and the information of new feature
is enough to obtain appropriate partition results, so (A2.2.) is mild too.
Theorem 4 (Depth is more powerful than width). Let M ≥ 1. Consider two-layer deep forest h̄2M,n

given by Eq. (6) and Breiman’s random forest hM,n given by Eq. (4) for the random CARTs satisfying
an →∞, tn →∞, tn = an and an log n/n→ 0. Then under the setting described in Section 3 and
assume the data set follows Assumption 1 and 2, the following results hold

1. [29, Theorem 2] [30, Theorem 3] The Breiman’s random forest h∞,n is consistent, and for all
M,n ∈ N,

0 ≤ R(h2M,n)−R(h∞,n) ≤
8∥f∥2∞ + 8σ2(1 + 4 log n)

M
. (16)

2. The two-layer deep forest h̄∞,n is consistent, and for all M,n ∈ N, if ∆(f, CΠ,n(x,Θ)) is
small enough, then

0 ≤ R(h̄2M,n)−R(h̄∞,n) ≤
64∥f∥2∞ + 64σ2(1 + 4 log n)

M2
. (17)

Proof sketch. (T4.1). The consistency of the infinite Breiman’s random forest is proved by Scornet
et al. [29]. And the convergence rate of the finite random forest with the number of trees M is
proved by Scornet [30]. (T4.2). Similar to Scornet et al. [29], we recall Proposition 2 to control the
approximation error of the two-layer deep forest. Then the estimation error is controlled by forcing
the subsampling rate an/n to be o(1/ log n). Different from the bagging-style mechanism in random
forest, the residual-style mechanism shown in Proposition 2 makes the second-layer forest in DF can
reuse the first-layer estimation and focus on the residual learning.
Remark 3. In the tn = an setting, Scornet et al. [29] show that the sub-sampling rate an/n is the
key component in random forest. Because the small rate ensures that query point x is connected with
enough different data points through different trees, the convergence rate of RF is O(1/M) w.r.t. the
number of trees M . Theorem 4 proves that, if the first layer forest can encode the regression function
f(x) into the new feature with noise reduction, the cascade structure with PreConc in DF can further
accelerate the convergence. Because the second layer forest estimates the residual of the first layer,
the trees in each layer of forest are more different. As a result, the convergence rate of deep forest
will be improved to O(1/M2). This result reflects that deep forest with deeper layer will be more
powerful than shallower layer.

7 Simulation experiments

7.1 Priority of the new feature

This experiment aims to verify the priority of the new feature in choosing which feature to split as
suggested in Proposition 1. We focus on a second layer decision tree built upon the first layer random
forest. Since a regression forest has only one output dimension, there is only one new feature for the
second layer tree. More specifically, we count the maximum consecutive levels from root node that
use the new feature to split, which we call effective depth for short.

The synthetic data set is generated as y = f(x) + ϵ, where

f(x) =
1

5

∑
1≤j≤5

xj , (18)

x is uniformly distributed over [0, 1]5, ϵ ∼ N
(
0, σ2

)
, where σ = 0.02. We vary the number of

training samples and the number of trees in the first layer forest, and report the average effective
depth of 5 runs in Figure 2(a). It is easy to observe that no matter what the first layer’s setting is,
the effective depth of new feature is at least 2.4. That is to say, at the beginning of the growing of
the second layer tree, CART will always choose the new feature to split. And we can see that with
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Figure 2: Illustrations of the effective depth of the new feature (the consecutive levels from root node
that split on the new feature only). The larger the effective depth, the higher priority the new feature
takes in being chosen as the split feature under the CART-split criterion.
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Figure 3: Root mean square error with the increasing of trees.

the increase of trees in the first layer and training samples, the CART’s preference of new feature
extend to deeper layers. Figure 2(b) further plots the effective depth against the predictive error of
the first layer measured by root mean square error (RMSE), showing that the better the prediction
performance of the first layer, the more favored the new feature is for splitting.

7.2 Convergence rate w.r.t. the number of trees

To study the convergence rate of predictive error with respect to the number of trees in the whole
model, we fix the number of training samples to be 50,000. We compare a 2-layer deep forest (DF)
with M trees each layer to a random forest (RF) with 2M trees, and we adopt 3-fold split in training
both DF and RF to ensure fairness. The performance is measured by RMSE with respect to the
noise-free version of data generating function. Since the training data are with noise, a fully grown
tree is inconsistent. In Figure 3(a), we set the minimum leaf size of the trees to be

√
n, i.e., 233 in the

case when training data size is 50,000. In Figure 3(b) the trees are fully grown with only one sample
in each leaf. We plot the average RMSE of 5 runs against the increasing number of trees, with the
colored band indicating the standard deviation.

Theorem 3 reveals that when the component trees are consistent, random forest and deep forest
are both consistent. However, the consistency analysis result cannot guarantee the finite sample
performance in practice. Comparing Figure 3(a) to Figure 3(b), we can see that even though the
training set is as large as 50,000, the performances of RF and DF using consistent trees are still
much worse than using inconsistent trees. This observation confirms the efficacy of the default
experimental setting that uses fully grown trees in RF and DF. Figure 3(b) shows that DF enjoys
a faster improvement in RMSE with the increasing of M . More specifically, DF with M = 20
outperforms RF with M = 500. This experimental result matches our theoretical result in Theorem 4
that DF has a faster convergence rate w.r.t. the number of trees M .
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8 Conclusion

In this paper, we prove that a two-layer deep forest has a faster convergence rate w.r.t. the number
of component trees M than random forest. This work provides the first theoretical analysis of the
prediction concatenation (PreConc) operation which is crucial for feature transformation in deep
forests, although based on a very simplified structure where the concatenation of multiple random
forests’ predictions and completely-random forests’ predictions in each layer of deep forest has not
been taken into account.

On the one hand, this paper focuses on the asymptotic consistency of deep forests, so the result is
strictly true only when the number of samples tends to infinity. As for the generalization analysis of
deep forests with finite samples, we leave it to future work. On the other hand, the two assumptions
used in this paper have certain limitations. Experiments on simulation and real-world data sets show
that our theoretical results are valid in many objective function classes other than Assumption 1. How
to further relax the conditions in Assumption 1 will be an interesting problem. As for Assumption
2, it is still not strictly verified. However, quantifying the trade-off between label information and
partition randomness will be a very important topic in future work.
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Supplementary Materials for
Depth is More Powerful than Width in Deep Forest

A Table of notations

Category Sign Description

Setting

D The unknown distribution
f(x) The target regression function
ϵ The Gaussian noise
Sn Data set with n samples

(x, y) A sample drawn from D
R(h) L2 risk of the estimator h

Tree and forest

Θ A random variable that accounts for the randomization
procedure and independent of Sn

hn(x,Θ, Sn) A randomized decision tree
Π The partition built by performing successive axis-aligned

splits according to Θ
CΠ,n(x) The cell of the tree partition containing x

Nn(CΠ,n(x)) The number of training samples falling into CΠ,n(x)
hM,n(x,Θ, Sn) A random forest

Wni(x) The probability that x and xi fall into a same cell.
1
x

Θ↔xi
The indicator where x and xi are connected.

Deep forest
[x, h] PreConc: The concatenation of the raw features x and the

new feature (prediction) h
h̄2M,n(x,Θ, Sn) A two-layer deep forest with 2M trees
h
(ℓ)
M,n(x,Θ, Sn) The ℓ-th layer forest of two-layer deep forest with M trees,

ℓ ∈ {1, 2}

CART-split

t = (j, z) A split where j is a dimension in {1, . . . , d} and z is the
position of the split along the j-th dimension

C, CL and CR Any cell C, its left node and right node
µn(·) The average response in any cell

L̂n(j, z) The empirical version of CART-split criterion function
(j∗n, z

∗
n) The best split selected by maximizing L̂n(j, z)

L∗(j, z) The theoretical version of CART-split criterion function
(j∗, z∗) The best split selected by maximizing L∗

n(j, z)
tk = (t1, . . . , tk) A sequence of first k splits

Tk(x) The collection of all possible k ≥ 1 consecutive splits
used to build the cell containing x

d∞(tk, T ) The infinite distance d∞ between tk ∈ Tk(x) and any
T ⊂ Tk(x)

Statistics
Cor(x1, x2) The correlation between x1 and x2

Var(x) The variance of x
Unif([0, 1]d) The uniform distribution on [0, 1]d

Table S1: Notations of this work.
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B Proofs

In this section, we provide the detailed proofs for the main theorems and corollaries. First, we present
a series of useful lemmas as follows:
Lemma 5. For any a, b, z ∈ R, let f(x) be a continuous and bounded function, and F (z) =∫ z

a
f(t) dt be the integral function of f(x) over a to z, and given

∫ b

a
f(t) dt = 0. We denote by

µa≤x≤z the average of f(x) between a and z, and µz≤x≤b the average of f(x) between z and b.

1

(z − a)(b− z)
F 2(z) =

(z − a)(b− z)

(b− a)2
(µa≤x≤z − µz≤x≤b)

2 . (19)

Proof of Lemma 5.
1

(z − a)(b− z)
F 2(z) =

z − a

b− a
(F (z)/(z − a))2 +

b− z

b− a
(F (z)/(b− z))2

=

(
z − a

b− a
µ2
a≤x≤z +

b− z

b− a
µ2
z≤x≤b

)(
z − a

b− a
+

b− z

b− a

)
−
(
z − a

b− a
µa≤x≤z +

b− z

b− a
µz≤x≤b

)2

=
(z − a)(b− z)

(b− a)2
(µa≤x≤z − µz≤x≤b)

2 .

(20)

Lemma 6. For any a, b ∈ R, let f(x) be a continuous and bounded function, and given
∫ b

a
f(t) dt =

0. Let µΩ be the average of f(x) in the area CΩ satisfying the condition Ω. For any z∗, existing a z⋆

such that
(z∗ − a)(b− z∗)

(b− a)2
(µa≤x≤z∗−µz∗≤x≤b)

2 ≤
|Cf(x)≤f(z⋆)||Cf(x)≥f(z⋆)|

|Cf(x)|2
(µf(x)≤f(z⋆)−µf(x)≥f(z⋆))

2 .

(21)

Proof of Lemma 6. For any z∗, we let z⋆ be the value satisfying |Cf(x)≤f(z⋆)|
|Cf(x)|

= z∗−a
b−a and

|Cf(x)≥f(z⋆)|
|Cf(x)|

= b−z∗

b−a . Then we just need to prove that

(µa≤x≤z∗ − µz∗≤x≤b)
2 ≤ (µf(x)≤f(z⋆) − µf(x)≥f(z⋆))

2 . (22)

Essentially, this is to compare the inter-class variance between two child nodes after split in different
dimensions (x or f(x)). We denote by Z =

∫
CL

f(t) dt < 0 the integral of f(x) in the left node,
then the inter-class variance equals to (Z/pleft − (−Z)/(1− pleft))

2 = Z2/(pleft · (1− pleft))
2 ∝ Z2.

Because pleft is fixed, we just need to consider Z2. According to the rearrangement inequality, we
know that the ordered sum is less than the disordered sum. Therefore, split along the dimension
of f(x), i.e., Zf(x)≤f(z⋆) can be view as an ordered sum of f(x), is smaller than the disorder sum
Za≤x≤z∗ . We have

Zf(x)≤f(z⋆) ≤ Za≤x≤z∗ ≤ 0 , (23)

so Z2
f(x)≤f(z⋆) ≥ Z2

a≤x≤z∗ . Since Eq. (22) is proved, then lemma is proved.

Lemma 7 (The distance between theoretical and empirical splits). Assume that Assumption 1 is
satisfied and the first-layer forest is consistent. Fix ξ, ρ > 0 and k ∈ N∗. Then in the second layer,
there exists N ∈ N∗ such that, for all n ≥ N ,

Pr
[
t∞
(
t̂k,n(x,Θ), T ∗

k (x,Θ)
)
≤ ξ
]
≥ 1− ρ . (24)

Proof of Lemma 7. We prove by induction that, for all k, with probability 1− ρ, for all ξ > 0 and
all n large enough,

d∞(t̂k,n(x,Θ), T ∗
k (x,Θ)) ≤ ξ . (25)

Call this property Hk. Fix k > 1 and assume that Hk−1 is true. For all tk−1 ∈ Tk−1(x), let

t̂k,n(tk−1) ∈ argmin
tk

L̂n(x, tk−1, tk) , (26)
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and
t∗k(tk−1) ∈ argmin

tk

L∗(x, tk−1, tk) , (27)

where the minimum is evaluated over {tk ∈ SC(x,tk−1) : t
(1)
k ∈Mtry}. Fix ρ > 0. In the rest of the

proof, we assume that Θ is fixed.

d∞
(
t̂k,n(t̂k−1,n), T ∗

k

)
≤ d∞

(
t̂k,n(t̂k−1,n), t

∗
k(t̂k−1,n)

)
+ d∞

(
t∗k(t̂k−1,n), T ∗

k

)
. (28)

According to Scornet et al. [29, Lemma 2 and preliminary result in Lemma 3], we have, with
probability ≥ 1− 2ρ, for all n large enough,

d∞
(
t̂k,n(t̂k−1,n), t

∗
k(t̂k−1,n)

)
≤ ξ . (29)

Therefore, we just need to prove that d∞
(
t∗k(t̂k−1,n), T ∗

k

)
→ 0 in probability as n → ∞. Let

{t∗,ik−1 : i ∈ I} be the set of best first k − 1th theoretical splits and t∗k({t
∗,i
k−1) be the kth theoretical

spits given that the k − 1 previous ones are t∗,ik−1.

Let
Li,∗(x, tk) = L∗

k(x, t
∗,i
k−1, tk) and L̂∗(x, tk) = L∗

k(x, t̂k−1,n, tk) , (30)

t∗k(t
∗,i
k−1) ∈ argmin

tk

Li,∗(x, tk) and t∗k(t̂k−1,n) ∈ argmin
tk

L̂i,∗(x, tk) . (31)

Then the original problem equals to that:

inf
i∈I

d∞(t∗k(t
∗,i
k−1), t

∗
k(t̂k−1,n))→ 0, in probability, as n→∞ . (32)

According to Scornet et al. [29, Technical Lemma 2], we just need to prove that, with probability
≥ 1− ρ,

inf
i
|Li,∗(x, t∗k(t̂k−1,n))− Li,∗(x, t∗k(t

∗,i
k−1))| ≤ 6ξ . (33)

inf
i
|Li,∗(x, t∗k(t̂k−1,n))− Li,∗(x, t∗k(t

∗,i
k−1))| ≤2 infi sup

tk

|L̂∗(x, tk)− Li,∗(x, tk)|

▷ According to the continuity of L∗
k ≤4ξ + 2 inf

i
sup
j
|L̂∗(x, c′j,x)− Li,∗(x, c′j,x)|

▷ According to Proposition (1.1) =2 inf
i
|L∗

k(x, t̂k−1,n, c
′
d+1,x)− L∗

k(x, t
∗,i
k−1, c

′
d+1,x)|

+ 4ξ ,
(34)

where C′δ,x = {c′j,x : 1 ≤ j ≤ d + 1} is a finite subset such that, for all tk, d∞(tk, C′δ,x) ≤ δ, by
default d+ 1-th dimension is the new feature. When the first-layer forest is consistent, the second-
layer CART always theoretically split along the new feature. Since L∗

k is uniformly continuous, by
assumption Hk−1, infi ∥t̂k−1,n − t∗,ik−1∥∞ → 0, we have

inf
i
|Li,∗(x, t∗k(t̂k−1,n))− Li,∗(x, t∗k(t

∗,i
k−1))| ≤ 6ξ . (35)

The lemma is proved.

B.1 Proof of Proposition 1 and Proposition 2

Proposition 1 (Priority of the new feature). Assume the data set follows Assumption 1 and the
first-layer forest is consistent. The following results hold for any CART in the second-layer forest.

1. In the infinite sample regime (n =∞), we consider a single second-layer CART h
(2)
∞ (·,Θ). All

splits in this CART are performed along the new feature only.

2. In the finite sample regime (n < ∞), we consider a single second-layer CART h
(2)
n (·,Θ). Fix

k ∈ N∗ and ξ, ρ > 0. Then, with probability ≥ 1− ρ, for all n large enough, we have, the error
of the first-layer forest is bound by ξ. As a consequence, the first k splits (jq,n(x), 1 ≤ q ≤ k) in
this CART are performed along the new feature only.
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Proof of Proposition 1. First, we consider the infinite sample regime (n =∞), which the first-layer
forest estimation is precise, i.e., hM,∞(x) = f(x).

Recall that, for any cell A, the empirical CART criterion used to split A in the random forest is
defined in Eq.(7). For any split (j, z), we denote the theoretical version of L∗(j, z) by

L∗(j, z) =Var[y|x ∈ A]− Pr[x(j) < z] Var[y|x(j) < z ∧ x ∈ A]

− Pr[x(j) ≥ z] Var[y|x(j) ≥ z ∧ x ∈ A] .
(36)

According to the strong law of large numbers, we have Ln(j, z)→ L∗(j, z) almost surely as n→∞
for all splits (j, z) ∈ SA. Thus we have the best theoretical split (j∗, z∗) of the cell A

(j∗, z∗) ∈ argmax
(j∗,z∗)∈SA

j∈Mtry

L∗(j, z) . (37)

In the random forest and deep forest,Mtry is also an important parameter. Unlike random forests,
where we give all features the same probability to be selected, deep forests often choose new
features with higher probability or even make new features mandatory in order to make use of the
representation information brought by new features. Therefore, the deep forest or CART analyzed in
this paper selects new features by default. Otherwise, the tree and forest in the second layer will be
equivalent to the random forest, because it does not inherit any information in the first layer.

1. Infinite sample region (n =∞)

We start by proving the result in dimension d = 1. Letting Cx = [a, b] be any cell, and recalling that
y = f(x(1)) + ϵ, then in the infinite sample regime we define the theoretical version of CART’s split
criterion function on the raw feature as

L∗(1, z) =Var[y|x(1) ∈ Cx]− Pr[a ≤ x(1) ≤ z|x(1) ∈ Cx] Var[y|a ≤ x(1) ≤ z]

− Pr[z ≤ x(1) ≤ b|x(1) ∈ Cx] Var[y|z ≤ x(1) ≤ b]

=− 1

(b− a)2

(∫ b

a

f(t) dt

)2

+
1

(b− a)(z − a)

(∫ z

a

f(t) dt

)2

+
1

(b− a)(b− z)

(∫ b

z

f(t) dt

)2

.

Let I =
∫ b

a
f(t) dt and F (z) =

∫ z

a
f(t) dt. Then, the theoretical criterion function

L∗(1, z) =
1

(z − a)(b− z)

(
F (z)− I · z − a

b− a

)2

. (38)

According to the consistency of original random forest [29], we have the new feature h(1)
∞ (x) = f(x),

which is a consistent estimation of the target function. Thus the theoretical criterion function on the
new feature takes the form

L∗(h, z) =Var[y|h ∈ Ch]− Pr[h ≤ z|h ∈ Ch] Var[y|h ≤ z]

− Pr[h ≥ z|h ∈ Ch] Var[y|h ≥ z]

=− 1

|Ch|2

(∫
Ch

f(t) dt

)2

+
1

|Ch≤z||Ch|

(∫
Ch≤z

f(t) dt

)2

+
1

|Ch≥z||Ch|

(∫
Ch≥z

f(t) dt

)2

=− 1

|Cf |2

(∫
Cf

f(t) dt

)2

+
1

|Cf≤z||Cf |

(∫
Cf≤z

f(t) dt

)2

+
1

|Cf≥z||Cf |

(∫
Cf≥z

f(t) dt

)2
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Let I =
∫
Cf

f(t) dt =
∫ b

a
f(t) dt and G(z) =

∫
Cf≤z

f(t) dt. Then, the theoretical criterion function
becomes

L∗(h, z) =
1

|Ch≥z||Ch≤z|

(
G(z)− I · |Ch≤z|

|Ch|

)2

. (39)

Without loss of generality, we let I = 0, then the optimal split along the raw feature is

z⋆ = argmax
z∈[a,b]

L∗(1, z) = argmax
z∈[a,b]

1

(z − a)(b− z)
G2(z) . (40)

We compare the maximum value of the CART-split criterion along the raw feature and the new
feature:

max
z

L∗(1, z) =
1

(z∗ − a)(b− z∗)
F 2(z∗)

▷ According to Lemma 5 =
(z∗ − a)(b− z∗)

(b− a)2
(µa≤x≤z∗ − µz∗≤x≤b)

2

▷ According to Lemma 6 ≤
|Ch≤f(z⋆)||Ch≥f(z⋆)|

|Ch|2
(µh≤f(z⋆) − µh≥f(z⋆))

2

▷ According to Lemma 5 =
1

|Ch≤f(z⋆)||Ch≥f(z⋆)|
G2(f(z⋆))

≤ max
z

L∗(h, z) ,

(41)

and the d = 1 case is proved.

Next, we consider the d > 1 case, where A =
∏d

j=1[aj , bj ] ⊂ [0, 1]d. We know that, for all
1 ≤ j ≤ d, there exists a constant I such that∫ b1

a1

· · ·
∫ bd

ad

f(x) dx(1) . . . x(j−1)x(j+1) . . . x(d)

=fj(x
(j)) +

∫ b1

a1

· · ·
∫ bd

ad

∑
ℓ ̸=j

fℓ(x
(ℓ)) dx(1) . . . x(j−1)x(j+1) ,

(42)

which can be simply denoted as∫
C

x(−j)

f(x) dx(−j) = fj(x
(j)) +

∫
C

x(−j)

∑
ℓ̸=j

fℓ(x
(ℓ)) dx(−j) . (43)

Let Ij =
∫
C

x(−j)

∑
ℓ ̸=j fℓ(x

(ℓ)) dx(−j), which does not depend on x(j). Since f(·) is an additive

model, for all j and all x(j),∫ zj

aj

∫
C

x(−j)

fj(x) dx
(−j) dx(j) =

∫ zj

aj

f(x(j)) dx(j) + (zj − aj)Ij . (44)

Let zj = z, aj = a, bj = b, the theoretical criterion function on the raw feature takes the form

L∗(j, z) =Var[y|x(j) ∈ Cx]− Pr[a ≤ x(j) ≤ z|x(j) ∈ Cx] Var[y|a ≤ x(j) ≤ z]

− Pr[z ≤ x(j) ≤ b|x(j) ∈ Cx] Var[y|z ≤ x(j) ≤ b]

=− 1

(b− a)2

(∫
C

x(−j)

∫ b

a

f(x(j)) dx(j) dx(−j)

)2

+
1

(b− a)(z − a)

(∫
C

x(−j)

∫ z

a

f(x(j)) dx(j) dx(−j)

)2

+
1

(b− a)(b− z)

(∫
C

x(−j)

∫ b

z

f(x(j)) dx(j) dx(−j)

)2

=
1

(z − a)(b− z)

(
F (z)− I · z − a

b− a

)2

+
(b− a)2 + (b− z)2 + (z − a)2

2(b− a)2(b− z)(z − a)
Ij
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According to the proof of d = 1, we can fix z − a and b − z. Then we just need consider
1

(z−a)(b−z)

(
F (z)− I · z−a

b−a

)2
, which is same as d = 1.

Intuitively, in the multi-dimensional case, the correlation between y and x is scattered to each
dimension due to the assumption that each dimension is independent and y = f(x) + ϵ is an additive
model. Therefore, when splitting is calculated separately in each dimension, the gain is not as large as
that caused by the only dimension splitting in the case of one dimension L∗(1, z) above. According
to the result of d = 1, we have

max
j,z

L∗(j, z) < max
z

L∗(h, z) , (45)

and the d > 1 case is proved.

2. Finite sample region (n <∞)

Fix k ∈ N∗ and ρ, ξ > 0. According to Lemma 7, with probability 1 − ρ, for all n large enough,
there exists a sequence of theoretical first k splits t∗k(x,Θ) such that

d∞
(
t∗k(x,Θ), t̂k,n(x,Θ)

)
≤ ξ . (46)

Therefore, with probability ≥ 1 − ρ, for all n large enough and all 1 ≤ j ≤ k, the j-th empirical
split t̂∗j,n(x,Θ) is performed along the same dimension as t∗j (x,Θ). According to the result of
theoretical criterion splits, the splits are always performed along the new features, which is the most
informative variable. Consequently, for all x,Θ and for all 1 ≤ j ≤ k, each empirical split t̂∗j,n(x,Θ)
is performed along the new features only. Then the proposition is proved.
Proposition 2 (Variation of f in the empirical cell). Assume that Assumption 1 holds and the
first-layer forest is consistent. The following results hold for any CART in the second-layer forest
h
(2)
n (·,Θ). After splitting along the new feature, the CART will estimate the residual of the first-layer

forest estimation. Then for all ρ, ξ > 0, there exists N ∈ N∗ such that, for all n > N ,

Pr [∆ (f, CΠ,n(x,Θ)) ≤ ξ] ≥ 1− ρ . (11)

Proof of Proposition 2. According to Proposition 1, we know that in the theoretical version
(n = ∞), the CART in the second layer will always split along the new feature. Since f(x) is
uniformly continuous, the result is clear if diam(C∗

k(x,Θ)) tends to 0 as k tends to infinity. Thus, in
the following proof, we assume that diam(C∗

k(x,Θ)) does not tend to 0. We denote by h the new
feature dimension. (C∗

k(x,Θ)) is a decreasing sequence of compact sets, there exist a∞(h,Θ) and
b∞(h,Θ) such that

C∗
∞(x,Θ) ≜ ∩∞k=1C

∗
k(x,Θ) = [a∞(h,Θ), b∞(h,Θ)] . (47)

Since diam(C∗
k(x,Θ)) does not tend to zero, we have a∞(h,Θ) < b∞(h,Θ). If the criterion L∗ is

identically zero for all cuts z in C∗
∞(x,Θ) then recall Eq. (39), we have

G(z) ∝
z − a

b− a
. (48)

This proves that G(z) is linear in z, so f is a constant on [a, b]. This implies that ∆(f, C∗
∞(x,Θ)) = 0.

Since f is uniformly continuous,

lim
k→∞

∆(f, C∗
k(x,Θ)) = ∆(f, C∗

∞(x,Θ)) = 0 . (49)

Fix ξ, ρ > 0. Since almost sure convergence implies convergence in probability, according to the
result above, there exists k0 ∈ N∗ such that

Pr[∆(f, C∗
k0
(x,Θ) ≤ ξ] ≥ 1− ρ . (50)

According to Lemma 7, for all ξ′ > 0, there exists N ∈ N∗ such that, for all n ≥ N ,

Pr[d∞(t̂k0,n(x,Θ), T ∗
k0
(x,Θ)) ≤ ξ′] ≥ 1− ρ . (51)

since f is uniformly continuous, we set ξ′ sufficiently small such that, for all x ∈ [0, 1]d, for all
tk0

, t′k0
satisfying d∞(tk0

, t′k0
) ≤ ξ′, we have

|∆(f, C(x, tk0
)−∆(f, C(x, t′k0

)| ≤ ξ . (52)
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Combining Eq. (51) and (52), we obtain

Pr[|∆(f, Ck0,n(x,Θ))−∆(f, C∗
k0
(x,Θ))| ≤ ξ] ≥ 1− ρ . (53)

Then we can obtain the result from ∆(f, C) ≤ ∆(f, C ′) whenever C ⊂ C ′,

Pr[∆(f, CΠ,n(x,Θ)) ≤ ξ] ≥ 1− 2ρ . (54)

B.2 Proof of Theorem 3

Theorem 3 (Universal consistency). Let M ≥ 1. Consider two-layer deep forest h̄2M,n given
by Eq. (6) and Breiman’s random forest hM,n given by Eq. (4) for the random CARTs satisfying
an → ∞, tn → ∞ and tn(log an)

9/an → 0. Then under the setting described in Section 3 and
assume the data set follows Assumption 1,

1. [29, Theorem 1] the Breiman’s random forest h2M,n is consistent for any M ≥ 1,

2. the two-layer deep forest h̄M,n is consistent for any M ≥ 1.

Proof of Theorem 3. (T3.1). The universal consistency of Breiman’s random forest is proved by
Scornet et al. [29, Thoerem 1].

(T3.2). Similar as Scornet et al. [29, Thoerem 1], we can use the bounded variation of f in the
empirical cell in Proposition 2 to control the approximation error. Let Hn(Θ) be the set of all
functions h : [0, 1]d+1 → R piecewise constant on each cell of the partition Πn(Θ). Thus the
second-layer CART estimator h(2)

n (x,Θ) satisfies

h(2)
n (x,Θ) ∈ argmin

h∈Hn(Θ)

1

an

∑
i∈In,Θ

|h([xi, h
(1)
M,n(xi)])− yi|2 . (55)

Let (βn)n be a positive sequence, and define the truncated operator Tβn by{
Tβn

u = u, if |u| < βn ,

Tβn
u = sign(u)βn, if |u| ≥ βn .

(56)

Then, we define Tβn
h
(2)
n (x,Θ), yL = TLy and yi,L = TLyi.

For all n large enough, we have

E inf
h∈Hn(Θ)
∥h∥∞≤βn

Ex[h(x)− f(x)]2 ≤ E inf
h∈Hn(Θ)

∥h∥∞≤∥f∥∞

Ex[h(x)− f(x)]2

≤ E[∆(f, CΠ,n(x,Θ))]2

≤ ξ2 + 4∥f∥2∞ Pr[∆(f, CΠ,n(x,Θ)) ≥ ξ] .

(57)

Connecting with Proposition 2, we have

E inf
h∈Hn(Θ)
∥h∥∞≤βn

Ex[h(x)− f(x)]2 ≤ 2ξ2 . (58)

This proves that the approximation error tends to zero.

The proof of estimation error and untruncated estimate is same as Scornet et al. [29, Thoerem 1]. The
parameter tn allows us to control the size of the leaves of CART, which allows us to have enough
samples in each leaf node to smooth the impact of noise, so as to control the estimation error.

Pr

 sup
h∈Hn(Θ)
∥h∥∞≤βn

∣∣∣∣∣∣ 1an
∑

i∈In,Θ

[h(xi)− yi,L]
2 − E[h(x)− yL]

2

∣∣∣∣∣∣ ≥ ξ

 ≤ 8 exp

(
−anCξ,n

β4
n

)
, (59)

where

Cξ,n =
ξ2

2048
+O

(
tn(log an)

9

an

)
. (60)
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According to the condition tn(log an)
9/an → 0, we have Cξ,n → ξ2

2048 . Then, we can bound the
estimation error as follow

E

 sup
h∈Hn(Θ)
∥h∥∞≤βn

∣∣∣∣∣∣ 1an
∑

i∈In,Θ

[h(xi)− yi,L]
2 − E[h(x)− yL]

2

∣∣∣∣∣∣
 ≤ ξ + 16(βn + L)2 exp

(
−anCξ,n

β4
n

)
≤ 2ξ .

(61)
This proves that the estimation error tends to zero. Connecting the approximation and estimation
error together with Györfi et al. [46, Theorem 10.2], the consistency of a CART of second-layer deep
forest is proved.

The universal consistency can be proved via Biau et al. [25, Proposition 1], which guarantees that the
error of forest estimator is no more than twice that of individual randomized CART.

B.3 Proof of Theorem 4

Theorem 4 (Depth is more powerful than width). Let M ≥ 1. Consider two-layer deep forest h̄2M,n

given by Eq. (6) and Breiman’s random forest hM,n given by Eq. (4) for the random CARTs satisfying
an →∞, tn →∞, tn = an and an log n/n→ 0. Then under the setting described in Section 3 and
assume the data set follows Assumption 1 and 2, the following results hold

1. [29, Theorem 2] [30, Theorem 3] The Breiman’s random forest h∞,n is consistent, and for all
M,n ∈ N,

0 ≤ R(h2M,n)−R(h∞,n) ≤
8∥f∥2∞ + 8σ2(1 + 4 log n)

M
. (16)

2. The two-layer deep forest h̄∞,n is consistent, and for all M,n ∈ N, if ∆(f, CΠ,n(x,Θ)) is
small enough, then

0 ≤ R(h̄2M,n)−R(h̄∞,n) ≤
64∥f∥2∞ + 64σ2(1 + 4 log n)

M2
. (17)

Proof of Theorem 4. (T4.1). The consistency of the infinite Breiman’s random forest is proved by
Scornet et al. [29]. And the convergence rate of the finite random forest with the number of trees M
is proved by Scornet [30].

(T4.2). Because each cell contains only one sample in this regime, we define
Wni(x) = EΘ[1xi∈CΠ,n(x,Θ)] , (62)

the infinite two layer deep forest estimation can rewriten as

h̄∞,n(x) = h(2)
∞,n([x, h

(1)
∞,n(x)]) =

n∑
i=1

Wni([x, h
(1)
M,n(x)])yi . (63)

Thus,

E[h̄∞,n(x)− f(x)] ≤2E

[
n∑

i=1

Wni([x, h
(1)
∞,n(x)])(yi − f(xi))

]2

+ 2E

[
n∑

i=1

Wni([x, h
(1)
∞,n(x)])(f(xi)− f(x))

]2
≜2In + 2Jn .

(64)

Similar as Scornet et al. [29], we recall Proposition 2 to control the approximation error of the
two-layer deep forest.

Jn ≤E

[
n∑

i=1

1
[xi,h

(1)
∞,n(x1)]∈CΠ,n([x,h

(1)
∞,n(x)],Θ)

∆2(f, CΠ,n([x, h
(1)
∞,n(x)],Θ))

]
≤E[∆2(f, CΠ,n([x, h

(1)
∞,n(x)],Θ))]

≤ξ(4∥f∥2∞ + 1) ▷ According to Proposition 2.

(65)
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The proof of estimation error is same as Scornet et al. [29, Thoerem 2]. the estimation error is
controlled by forcing the subsampling rate an/n to be o(1/ log n). For simplification, we denote
[x, h

(1)
∞,n(x)] as X

In = E

 n∑
i,j=1

Wni(X)Wnj(X) (yi − f (xi)) (yj − f (xj))


= E

[∑
i=1

W 2
ni(X) (yi − f (xi))

2

]
+ I ′n ,

(66)

where

I ′n = E

∑
i,j
i̸=j

1
X

Θ↔Xi
1
X

Θ′
↔Xj

(yi − f (xi)) (yj − f (xj))

 . (67)

By Assumption 2 and Scornet et al. [29, Lemma 4], for all n large enough, |I ′n| ≤ ξ. Then,

|In| ≤ξ + E
[
max
1≤ℓ≤n

Wnℓ(X) max
1≤i≤n

ε2i

]
≤ξ + max

1≤i≤n
Pr
Θ

[
X

Θ↔ Xi

]
E
[
max
1≤i≤n

ε2i

]
≤ξ + an

n
E
[
max
1≤i≤n

ε2i

]
≤ξ + C

an log n

n
≤ 2ξ . ▷ According to an/n ∼ o(1/ log n) .

(68)

Connecting the approximation and estimation error together, the consistency of an infinite two layer
deep forest is proved.

Different from the bagging-style mechanism in random forest, the residual-style mechanism shown
in Proposition 2 makes the second-layer forest in DF can reuse the first-layer estimation and focus on
the residual learning. According to Scornet [30, Theorem 3.3], we have

R(hM,n)−R(h∞,n) ≤
8

M
×
(
∥f∥2∞ + σ2(1 + 4 log n)

)
, (69)

for the first-layer forest estimation. When n is large enough, we have R(h∞,n) < ξ and

R(hM,n) ≤ ξ +
8

M
×
(
∥f∥2∞ + σ2(1 + 4 log n)

)
. (70)

According to Proposition 1, the first k splits are only along the new feature dimension. This is
equivalent to using a piecewise constant function of h(1)

M,n to copy the first-layer forest estimation,
which is independent of Θ. After the size of piece is small than the first-layer error, the raw features
are used to estimate the residual r(x) = f(x)− h

(1)
M,n(x). Thus, we obtain the bound for residual :

∥r∥2∞ ≤
8

M
×
(
∥f∥2∞ + σ2(1 + 4 log n)

)
. (71)

As for the noise of the residual, we first consider the R(h
(1)
M,n) ≥ E[ϵ2] = σ2 case: The first-layer

estimator is too weak to filter noise, so the noise of the residual is still ϵ. Next, we consider the
R(h

(1)
M,n) < E[ϵ2] = σ2 case: Since the first-layer estimator smoothes part of the noise, the noise ϵ′

is reduced in the residual. When n is large enough, the size of noise can be bounded by the variation
of f in the empirical cell of the first-layer forest

Eϵ′2 ≤ c∆2(f, CΠ,n(x,Θ)) . (72)
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Then we obtain the risk of the finite second-layer forest,

R(h
(2)
M,n) =ξ +

1

M
× E

[
VarΘ

[
n∑

i=1

Wni(x,Θ) (r(xi) + ε′i)

]]

≤ξ + 1

M
×

[
8∥r∥2∞ + 2E

[
VΘ

[
n∑

i=1

Wni(x,Θ)ε′i

]]]

≤ξ + 1

M
×

[
8∥r∥2∞ + 8σ′2E

[
max
1≤i≤n

ε′i
σ′

]2]

≤ξ + 64∥f∥2∞ + 64σ2(1 + 4 log n)

M2
+

c∆2(f, CΠ,n(x,Θ)

M
.

(73)

Thus, if the variation of f in the empirical cell is small enough, then the two layer deep forest can
obtain a faster convergence rate w.r.t. M . This theorem is proved.

C Additional Results for Simulation Experiments

The experimental setting is the same as in Section 7, except that we set f(x) to be a nonlinear
function, that is,

f(x) =
1

5
(sin 2πx1 + cos 2πx2 + sin(2πx3 + π/3) + cos(2πx4 + π/3) + sin 6πx5) . (74)

As plotted in Figure S5, we also observe the same tendency as in Section 7.2, that using inconsistent
trees is better in practice, and the 2-layer deep forest (DF) convergences faster w.r.t. the number of
trees M . We also check the effect depth as in Section 7.1, and Figure S4 convinces us that the new
feature has priority in splitting. Furthermore, we set f(x) to be an interacted function,

f(x) =
1

5

(
x1 + x2x3 + x2

2x
1/2
3 + x3 sin 2πx4 + sin(2πx4) cos(6πx5 + π/4)

)
. (75)

As plotted in Figure S7, using inconsistent trees is better in practice, and the 2-layer deep forest (DF)
convergences faster w.r.t. the number of trees M . Figure S6 convinces us that the new feature has
priority in splitting.
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Figure S4: Illustrations of the effective depth of the new feature (the consecutive levels from root
node that split on the new feature only). The larger the effective depth, the higher priority the new
feature takes in being chosen as the split feature under the CART-split criterion.
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Figure S5: Root mean square error with the increasing of number of trees M .
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(a) Heatmap of the effective depth of new feature under
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(b) Effective depth of new feature against the predic-
tive error of the first layer.

Figure S6: Illustrations of the effective depth of the new feature (the consecutive levels from root
node that split on the new feature only). The larger the effective depth, the higher priority the new
feature takes in being chosen as the split feature under the CART-split criterion.
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Figure S7: Root mean square error with the increasing of number of trees M .
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D Results on real world regression problems

In this section, we conduct experiments on real-world data sets. It should be noted that when we do
experiments on real-world data sets, the number of samples is finite and the true underlying function
is unknown, so there is gap from the theoretical analysis of consistency. Even so, the generalization
performance on real data sets still shows a tendency for 2-layer deep forest to be more efficient than
1-layer random forest.

Data sets. We conduct experiments on 3 real-world regression problems and the detail statistics of
the data sets are shown in Table S2.

1. housing data set: This dataset contains information collected by the U.S Census Service
concerning housing in the area of Boston Mass. It was obtained from the StatLib archive1, and
has been used extensively throughout the literature to benchmark algorithms. However, these
comparisons were primarily done outside of Delve and are thus somewhat suspect.

2. cadata data set: This data set gathers information on housing prices using all neighborhood
groups in California from the 1990 census. It calculates the distance between the centroids of each
block group measured in latitude and longitude. It excludes all block groups reporting zero entries
for the independent and dependent variables.

3. acoustic data set: This data set is collected from simulation result of COMSOL platform.
It aims at predicting the energy focusing effect of an acoustic system based on 21 angle parameters.

Data set # of samples # of features
housing 506 13
cadata 20,640 8
acoustic 4,000 21

Table S2: The average test error measured by RMSE of 5 runs on benchmark data sets. DF is better
than RF in test error.

Generalization performance. M is set to 500 and the trees are fully grown as is commonly used
in the literature. The average RMSE on test set of 5 runs is reported in Table S3.

Data set RF DF
housing 3.62 3.56
cadata 50208 49363
acoustic 2.47 2.34

Table S3: The average test error measured by RMSE of 5 runs on benchmark data sets. DF is better
than RF in test error.

Priority of new features. We vary the number of training samples from 10% to 100% and vary
the number of trees M to get different first-layer models. If we check the effective depth in the
second-layer tree as shown in Figure S8, S9 and S10, we can also observe that the second layer tree
will always choose the new feature to split. This verifies that Proposition 1 also holds in real world
data sets.

Convergence rate w.r.t. M . Figure S11 shows that DF enjoys a faster improvement in RMSE
with the increasing of M in these three real-world data sets. These experimental results match our
theoretical analysis in Theorem 4 that DF has a faster convergence rate w.r.t. the number of trees M .

1http://lib.stat.cmu.edu/datasets/boston
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Figure S8: Priority of new features in housing data set.
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Figure S9: Priority of new features in cadata data sets.
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Figure S10: Priority of new features in acoustic data set.
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Figure S11: Root mean square error with the increasing of number of trees M in real-world data sets.

E Dependence on label information in Assumption 2

In this section, we design a simple comparative experiment to show that the new features make
the second-layer forest estimator much less dependent on label information. Specifically, we use a
Completely Random Forest (CRF) to replace the random forest in the second layer of the deep forest,
and CRF-split criterion does not depend on label information at all. The synthetic and real-world data
sets used here are the same as Section 7.1, C and D. In Figure S12, we can find that the performance
of the second-layer CRF can be close to the second-layer RF, and significantly outperforms the CRF
trained on the original features. This implies that the new features play a positive role in reducing the
model’s dependence on label information.
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Figure S12: Root mean square error with the increasing of number of trees M . CRF_1 represents the
completely random forest trained on the original feature space. CRF_2 represents the completely
random forest trained on the new feature space. RF_2 represents the Breiman’s random forest trained
on the new feature space. As the number of samples in the dataset is larger, the performance of CRF
and RF at layer 2 is more similar.
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