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Abstract

Conventional machine learning typically assume a fixed learning

objective throughout the learning process. However, for real-world

tasks in open and dynamic environments, objectives can change

frequently. For example, in autonomous driving, a car has several

default modes, but a user’s concern for speed and fuel consumption

varies depending on road conditions and personal needs. We for-

mulate this problem as learning with varied objectives (LVO), where
the goal is to optimize a dynamic weighted combination of multiple

sub-objectives by sequentially selecting actions that incur different

losses on these sub-objectives. We propose the VaRons algorithm,

which estimates the action-wise performance on each sub-objective

and adaptively selects decisions according to the dynamic require-

ments on different sub-objectives. Further, we extend our approach

to cases involving contextual representations and propose the Con-

VaRons algorithm, assuming parameterized linear structure that

links contextual features to the main objective. Both the VaRons and

ConVaRons are provably minimax optimal with respect to the time

horizon 𝑇 , with ConVaRons showing better dependency with the

number of sub-objectives 𝐾 . Experiments on dynamic classifier and

real-world cluster service allocation tasks validate the effectiveness

of our methods and support our theoretical findings.
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1 Introduction

Conventional machine learning workflows typically have a pre-

defined and fixed learning objective throughout the learning pro-

cess, such as maximizing accuracy. However, the learning objectives

in real-world applications could vary continuously due to changes

in the specific task at hand. Considering model updating in au-

tonomous driving, the main objective could be a dynamic com-
bination of several sub-objectives, such as increasing speed and

improving energy efficiency according to specific vehicle states,

such as fuel level, road, and weather conditions. Meanwhile, clas-

sifiers trained for a fixed objective may be less effective when the

objective change happens. It is important to formalize this problem

and design corresponding machine learning algorithms with the

ability to adapt to the arbitrarily changing learning objectives in

the open-environment machine learning [45].

In this paper, we investigate the problem of learning with vary-

ing objectives, where the main objective can be represented by a

dynamic combination of several sub-objectives. Consider the illus-

tration in Figure 1: for the autonomous driving system, one can

switch to “high-performance mode” when the main objective is

driving performance and to “power saving mode” when the main

objective changes to endurance. In practice, however, the user usu-

ally needs both performance and endurance; the main objective

is neither but a weighted combination of the two. Meanwhile, the

weights could vary over time according to the user’s needs. In this

case, the best choice may not be either modes but other customized

modes. Nevertheless, it is also hardly impossible to define a default

mode for each combination. Therefore, it is desirable not only to be

able to learn about other custom modes but also to be able to make

decisions about which modes to select according to the knowledge

learned and specific requirements that may be constantly changing.

Some works consider similar problems by optimizing multi-

ple sub-objectives simultaneously, such as multi-objective multi-
armed bandits (MO-MAB) [11, 26] and multi-objective optimization
(MOO) [13, 23]. MOMAB assumes the main objective is a static,

predefined weighted combination of sub-objectives, which does

not consider a dynamic setting where the weights can vary over

time. Thus, MO-MAB approaches are unsuitable for handling varied

objectives with time-varying weights.

On the other hand, the goal of MOO approaches is to identify

the Pareto front, which is the set of modes where no other modes

can outperform across all sub-objectives. However, as we usually

have a specific main objective at each time, the best choice in most
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Driving performance

Energy efficiency

Mode 1 Mode 2

1.0

0.2

High performance mode Power-saving mode

0.2

1.0

Mode 𝑖𝑖
Customized modes

0.7

0.7

Action set

Scenario 1: short range travel

Objective = 1 · performance + 0 · energy efficiency mode 1

Scenario 2: low energy level

Objective = 0 · performance + 1 · energy efficiencymode 2

Scenario 3: long range cruise

Objective = 0.5 · performance +0.5 · energy efficiency

mode 𝑖𝑖

Figure 1: An illustrative example. The driver can choose

“high-performance mode” when the main objective is driv-

ing performance; when the main objective varies to en-

durance, “power saving mode” is then a better choice; when

both objectives are required, i.e., main objective = 0.5 ·
performance + 0.5 · efficiency, other customized modes are

better choices.

cases is unique. In this case, as the Pareto front contains all Pareto

optimal modes rather than a single best choice, decisions made

according to the Pareto front may not always achieve the best

performance [35, 43]. We illustrate this by the example in Figure 1,

where we focus on the third scenario where the two sub-objectives

are equally weighted. In this case, modes 1 and 2, though both being

Pareto optimal, are not the best choice compared to the customized

mode 𝑖 . In this case, the Pareto front found byMOO approaches may

be sub-optimal due to the inability to select a single best choice.

Considering these limitations in dealing with a specific yet arbi-

trarily varied objective, we try to take a step towards bridging this

gap by trying to answer the following question:

Can we develop a decision-making strategy that consistently guar-
antees the selection of a single, optimal choice, one that is adaptive to
an arbitrarily varied objective?

In this paper, we formalize the problem discussed above as

learning with varied objectives (LVO) within an online decision-

making framework and provide a positive answer to the above

question. Specifically, we follow the basic assumption in the works

of Drugan and Nowé [11], Murata et al. [26] that the main objec-

tive can be represented by the weighted combination of several

sub-objectives. Still, we additionally assume that the weights can

be continuously changing, representing changing emphasis on dif-

ferent sub-objectives. We formulate this problem by the following

decision-making process: the learner first defines several modes

that can possibly handle sub-objectives, and we refer to these modes

as the action set of the decision-making procedure if no further

confusion arises. At each time, after receiving the main objective

defined by the explicitly known weights, the learner chooses a
single action from the action set. By choosing the action, feedback

indicating whether this choice is good or not is returned, enabling

the learner to update for better future selections. The goal is to

maximize the performance (or, equivalently, minimize the loss) on

the main objective by such decision-making procedure. A brief

comparison between LVO, MOMAB, and MOO is given in Table 1.

Based on our formulation of the LVO problem, we propose the

varied-objective online Newton step (VaRons) algorithm for LVO.

Table 1: Comparisons between LVO, MO-MAB and MOO.

Problem settings LVO (Ours) MO-MAB [11, 26] MOO [13, 23]

Handle varied-objectives ✓ × ✓
Select single best action ✓ ✓ ×

In particular, since the main objective (the weights of each sub-

objective) could change over time, the loss distribution on the main

objective can be time-varying even for the same action, making it

difficult to estimate the main objective accurately. Alternatively,

we avoid directly estimating the main objective and turn to esti-

mating the action-wise performance of each sub-objective, based

on which we then utilize the weighted combination structure to

recover the estimation of the main objective. According to this

estimation, we then construct an estimated loss distribution over

all actions, from which we employ a randomized sampling strategy

to select an action. After such a choice, feedback representing loss

on the main objective is returned, allowing us to update the above

estimations. By this repeated estimation-sampling-updating pro-

cedure, we prove the algorithm is minimax optimal with respect

to the total time horizon 𝑇 up to logarithmic factors. Furthermore,

we extend our learning problem to the contextual scenario, where

actions can be featured by additional contextual information, such

as the real-time states and parameters of the action. By introducing

the additional parameterized linear structure connecting the con-

textual features and the main objectives, we propose a variant of the

VarRons algorithm named contextual varied-objective online Newton
step (ConVaRons) algorithm to handle this problem. The proposed

variant takes the same randomized sampling strategy but with ad-

vanced estimation method to achieve better dependency on the

number of actions 𝐾 . We empirically test the proposed algorithms

on dynamic classifier selection tasks, where the performance mea-

sure is changing so the corresponding optimal classifier changes

over time, which is an suitable task for LVO.We further test our pro-

posed algorithms on real-world dynamic cluster service allocation

tasks, verifying the effectiveness of our proposed approaches.

2 Problem Formulation

In this section, we formalize the LVO problem, introduce our per-

formance measure, and discuss the main challenges in this problem.

The LVO problem.We assume the main objective is a dynamic

weighted combination of 𝑑 pre-defined sub-objectives. Different

from traditional scalarized models in multi-objective optimization

where weights are fixed, our focus now is a time-varying weight

w𝑡 ∈ Δ𝑑−1

1
, that represents the different focuses on the sub-

objectives at each time. At each time 𝑡 ∈ [𝑇 ] := {1, ...,𝑇 }, once
the weights decided by specific requirements have been obtained,

the learner chooses an action 𝑎𝑡 from a candidate action setA, from

this decision the 𝑖-th sub-objective will suffer an action-dependent

loss 𝑙𝑖 (𝑎𝑡 ). Notice the specific losses on each sub-objective are not

always available; we focus on the worst case when the learner only

observes the (possibly noisy) feedback 𝑦𝑡 on the main objective

ℓ𝑡 (𝑎𝑡 ), which we assume to be bounded in [0, 1], such that

E[𝑦𝑡 ] = ℓ𝑡 (𝑎𝑡 ) = w⊤𝑡 L(𝑎𝑡 ), (1)

1
We denote by Δ𝑑−1 as the (𝑑 − 1)-simplex, defined as the set of all 𝑑-dimensional

vectors [w1

𝑡 ,w
2

𝑡 , . . . ,w
𝑑
𝑡 ] such that w𝑖𝑡 ≥ 0 for all 𝑖, and

∑𝑑
𝑖=1

w𝑖𝑡 = 1
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The general assumptions. Given an action set A of size 𝐾 , there exists a ground truth objective vector L(𝑎) ∈ [0, 1]𝑑 for each action

𝑎 ∈ A, implying the abilities of handling sub-objectives for each action.

The online decision making procedure. At each time 𝑡 = 1, · · · ,𝑇 :
1: The learner receives the weight vector w𝑡 ∈ Δ𝑑−1

from specific task or environment. and the corresponding main objective

ℓ𝑡 (𝑎) = w⊤𝑡 L(𝑎) for all 𝑎 ∈ A, where L(𝑎) is the loss vector of action 𝑎 and is unknown to the learner.

2: The learner chooses an action 𝑎𝑡 ∈ A and incurs loss on the main objective ℓ𝑡 (𝑎𝑡 ), which is not observed by the learner.

3: A bounded noisy feedback 𝑦𝑡 satisfying E[𝑦𝑡 ] = w⊤𝑡 L(𝑎𝑡 ), 𝑦𝑡 ∈ [0, 1] is observed by the learner.

The target of the learner: minimizing the cumulative (pseudo) dynamic regret over time horizon 𝑇 : ¯R𝑇 :=
∑𝑇
𝑡=1
E[w⊤𝑡 (L(𝑎𝑡 ) − L(𝑎∗𝑡 )],

where 𝑎∗𝑡 is the optimal selection in hindsight defined as 𝑎∗𝑡 := arg min𝑎∈Aw
⊤
𝑡 L(𝑎)

Figure 2: The formalized Learning with Varied Objective (LVO) by online decision making.

where L(𝑎𝑡 ) = [𝑙1 (𝑎𝑡 ), . . . , 𝑙𝑑 (𝑎𝑡 )] is the ground truth vectorized

loss on sub-objectives incurred by selecting action 𝑎𝑡 . We formulate

the detailed learning process in Figure 2.

Performance measures. We compare learner’s performance

against the best decision in hindsight each time. Specifically, we first
define the instantaneous regret at time 𝑡 as

𝑟𝑡 := ℓ𝑡 (𝑎𝑡 ) − ℓ𝑡 (𝑎∗𝑡 ) = w⊤𝑡
(
L(𝑎𝑡 ) − L(𝑎∗𝑡 )

)
, (2)

where 𝑎∗𝑡 is the best action with respect to the main objective at

each time 𝑡 , formally defined as

𝑎∗𝑡 := arg min

𝑎∈A
ℓ𝑡 (𝑎) = arg min

𝑎∈A
w⊤𝑡 L(𝑎) . (3)

Similar to most online learning works, by choosing the right action

with respect to the time-varying weight vector, the learner’s goal

is to minimize the following cumulative (pseudo) dynamic regret,

¯R𝑇 :=

𝑇∑︁
𝑡=1

𝑟𝑡 =

𝑇∑︁
𝑡=1

E
[
w⊤𝑡

(
L(𝑎𝑡 ) − L(𝑎∗𝑡 )

) ]
, (4)

which is the expected sum of the instantaneous regret over the total

time horizon 𝑇 , and the expectation is taken with respect to the

randomness of the algorithmic realization.

Challenges.We analyze the main challenges of the LVO prob-

lem into the following three aspects:

• Non-i.i.d. Loss Distribution: the main objective is determined

by the weight vector w𝑡 at each time, which we do not put any

assumption on, as it is decided by realistic requirements and tasks.

The weight vector w𝑡 can be arbitrarily assigned or even fully

adversarial in the worst case. Consequently, selecting the same
action at different time steps may incur different losses on the main
objective, and thus, the feedback 𝑦𝑡 does not follow a consistent

distribution for the same action. This lack of consistency makes

it difficult to estimate the main objective accurately.

• Partial Observability: the learner receives feedback that is re-

lated to themain objective of the selected action only. This implies

the learner not only has to handle the exploration-exploitation
trade-off in traditional bandit learning but also has to handle
the indirect feedback that is only related to the main objective,

without directly revealing the actual losses on the sub-objectives.

• Dynamic Best Action: the best action defined in (3), is dynamic

with respect to the time-varying weight vectorw𝑡 . This dynamic

nature presents two main challenges. Algorithmically, the al-

gorithm should adapt robustly to the weight at each time, as

different weight corresponds to different optimal actions with-

out a static convergence target. Technically, the regret metrics

introduced in (2) and (4) are special cases of dynamic regret [47].

The analysis is much more challenging compared with the static

regret that is most analyzed in existing literature. .

Independently solving one of the above challenges is relatively

easy, while it is not the case when they arise simultaneously in a

single problem, especially when we additionally seek the optimal

approaches with provable guarantees.

3 Our approaches

In this section, we introduce the proposed varied-objective online
Newton step (VaRons) algorithm. Theoretical analysis shows that the

proposed algorithm is minimax optimal up to logarithmic factors

of the time horizon 𝑇 . We then extend the proposed algorithm to

the contextual scenario where actions can be represented by some

contextual features, and propose a variant of the VaRons algorithm

and also discuss the corresponding theoretical guarantees.

3.1 VaRons for the LVO problem

Recall that according to the LVO problem formulation, at each time

step, the learner receives the weights for the sub-objectives that

represent the real-time requirements. After receiving the weights,

the learner has to choose an action from the action set. By choosing

such an action, a loss on the main objective is incurred and returned

to the learner, after which the learner can learn about the chosen

action and prepare for future decisions.

Specifically, the algorithm starts with the learning rate𝛾 as input;

how to choose such a learning rate will be specified later in the

theorems. Throughout the whole process, the algorithm maintains

two critical estimations: the estimated objective vector L̂ in (1) for

each action, representing the performance of the action on all sub-

objectives; and the estimated Hessian H that is used to approximate

second-order partial derivatives of the loss function. The algorithm

starts by initializing the above estimation-related variables and the

regularization parameter 𝜖 . For each time 𝑡 ∈ [𝑇 ] := {1, ...,𝑇 }, the
algorithm first receives the weight vector w𝑡 , which represents

the specific emphasis on each sub-objective from the environment,

according to which the algorithm can estimate the main objec-

tive for each action according to the current estimations. The al-

gorithm then computes a 𝐾-dimensional distribution 𝑝𝑡 , which

 

2132



KDD ’24, August 25–29, 2024, Barcelona, Spain. Lanjihong Ma, Zhen-Yu Zhang, Yao-Xiang Ding, and Zhi-Hua Zhou

Algorithm 1 VaRons: varied-objective online Newton step

Require: learning rate 𝛾 > 0

1: initialize: 𝜖 = 256

𝑑
, L̂(𝑎) = 0𝑑 , H(𝑎) = 𝜖𝐼𝑑 for all 𝑎 ∈ A

⊲ variables for estimations and Hessians of each action

2: for 𝑡 = 1, · · · ,𝑇 do

3: Receive weight vector w𝑡 ;
4: Estimate main objective ℓ̂𝑡 (𝑎) = w⊤𝑡 L̂(𝑎),∀𝑎 ∈ A;

5: Compute 𝑝𝑡 (𝑎) = 1

𝛾 (ℓ̂𝑡 (𝑎)+𝜆) ,∀𝑎 ∈ A, where 𝜆 is a scalar

found by binary search such that 𝑝𝑡 is a valid distribution;

6: Sample 𝑎𝑡 ∼ 𝑝𝑡 ; ⊲ FTRL

7: Observe feedback 𝑦𝑡 ;

8: Update L̂(𝑎𝑡 ) and H(𝑎𝑡 ) according to w𝑡+1; ⊲ ONS update
9: end for

serves as the estimated loss distribution of the current main ob-

jective. Specifically, given the construction of such a probability

distribution proposed by Abe and Long [2], which describes the

probability of arbitrary action 𝑎 as 𝑝𝑡 (𝑎) = 1

𝛾 (ℓ̂𝑡 (𝑎)+𝜆) , where 𝛾 is

the input learning rate, and 𝜆 is an unknown parameter such that∑𝐾
𝑎=1

𝑝𝑡 (𝑎) = 1 to ensure that 𝑝𝑡 is a valid distribution. Notice that

𝑓 (𝜆) :=
∑𝐾
𝑎=1

𝑝𝑡 (𝑎) =
∑𝐾
𝑎=1

1

𝛾 (ℓ̂𝑡 (𝑎)+𝜆) is strictly monotone for any

𝛾 > 0, the correct parameter 𝜆 can be found efficiently by binary

search. Once the algorithm obtains the estimated loss distribution

on the main objective 𝑝𝑡 , it selects an action 𝑎𝑡 through random

sampling from this distribution. Sampling actions according to

such an estimated loss distribution is also known as follow-the-
regularized-leader (FTRL) with log-barrier regularizer [3].

By this decision-making of choosing the sampled 𝑎𝑡 , a loss on the

main objective with respect to 𝑎𝑡 is incurred, representing whether

such a choice is good or not; meanwhile, feedback 𝑦𝑡 related to

such a loss, as is assumed in (1), is returned to the algorithm. Upon

receiving the feedback, the algorithm conducts online Newton step
(ONS) [16] to update the estimation of the current choice 𝑎𝑡 . Specif-

ically, the ONS update involves two steps: the first step is to update

the Hessian estimation of the current choice 𝑎𝑡 by

H(𝑎𝑡 ) ← H(𝑎𝑡 ) + 4

(
𝑦𝑡 − ℓ̂𝑡 (𝑎𝑡 )

)
2 w𝑡w⊤𝑡 , (5)

and the second step is to update the estimated sub-objective vector

of the action 𝑎𝑡 ,

L̂(𝑎𝑡 ) ← Π
H(𝑎𝑡 )
[0,1]𝑑

[
L̂(𝑎𝑡 ) + 32

(
𝑦𝑡 − ℓ̂𝑡 (𝑎𝑡 )

)
H(𝑎𝑡 )−1w𝑡

]
, (6)

where Π
H(𝑎𝑡 )
[0,1]𝑑 [·] := arg minx∈[0,1]𝑑

√︁
(x − ·)⊤H(𝑎𝑡 ) (x − ·) is the

projection operator onto [0, 1]𝑑 in the norm induced by H(𝑎𝑡 ).
After updating the estimations with respect to the current choice

𝑎𝑡 by ONS, the algorithm steps into the next time and repeat the

above estimating-sampling-updating procedures until time 𝑇 . We

present our proposed algorithm in Algorithm 1.

As we can see, the proposed VaRons algorithm is mainly com-

posed of two critical components: ONS and FTRL with log-barrier

regularizer. What’s interesting about these two components is that

they not only handle different difficulties respectively but also are

mutually complementary. Specifically, as discussed previously, the

main challenges of the LVO problem are three-folded: non-i.i.d. loss

distribution of the main objective and partial observability make

it difficult to estimate the main objective accurately, the dynamic
best action requires an adaptive selection strategy without much

dependence on historical choices. Accordingly, as a second-order

optimization method that achieves fast rate convergence estimation,

ONS treats the non-i.i.d. loss distribution with sufficient conver-

gence rate to track such variations; meanwhile, ONS avoids directly

estimating the loss on the main objective. Instead, ONS maintains

action-wise loss estimations on all sub-objectives L̂ for each action,

according to which ONS can then recover the loss on themain objec-

tive based on the linear structure in (1), solving the difficulty posed

by partial observability. Meanwhile, FTRL with log-barrier regular-

izer, samples an action accordingly by constructing a distribution.

Since this sampling distribution is adaptive to the loss estimation

provided by ONS, the actions sampled by FTRL with log-barrier are

also adaptive to the ONS estimations, thus overcoming the difficulty

posed by a dynamic best action. However, as a second-order opti-

mization method, ONS requires the exponential-concave condition

of the loss function, which our regret definition in (2) and (4) do not

satisfy. In light of the analysis in Foster and Rakhlin [12], we state

that the randomized sampling strategy of FTRL with log-barrier can

provide exponential-concavity for the ONS, which guarantees ONS

can be correctly conducted. We put the corresponding theoretical

discussion of this statement in Appendix A.

The following theorem ensures that our proposed approach is

minimax optimal up to logarithmic factors of 𝑇 .

Theorem 3.1. Choosing learning rate𝛾 = O
(√︃

𝑇
𝑑 log(𝑇 /𝐾)

)
, Algo-

rithm 1 ensures a cumulative (pseudo) dynamic regret for the general
LVO that is upper bounded by

¯R𝑇 = O ©«𝐾
√︄
𝑑𝑇 log

(
𝑇

𝐾

)ª®¬ .
Remark 1 (Minimax optimality.). We construct the lower bound

for the general LVO by considering the following special case: setting
the weight vector w𝑡 = [1, 0, . . . , 0] for all 𝑡 ∈ [𝑇 ], and thus only
the first sub-objective matters and the main objective is exactly the
first sub-objective. In this case, the general problem reduces to the
traditional 𝐾-armed bandits problem, whose minimax lower bound is
Ω(
√
𝐾𝑇 ) given by [5, 15]. This means there exists a problem instance

(the above instance) that no algorithm can enjoy regret better than
our results in terms of total time horizon 𝑇 , and thus, our result is
minimax optimal up to logarithmic factors of 𝑇 .

Notice that the dependency on the number of actions 𝐾 in our

result is linear and thus sub-optimal. When the number of actions𝐾

is large, this could result in additional computational intractability.

In the following part, we extend our approach to scenarios where

the actions are represented by𝑚-dimensional feature vectors. We

demonstrate that, with an additional assumption, the linear depen-

dency of O(𝐾) can be further improved to O(
√
𝐾).

3.2 The contextual variant of LVO

In this part, we extend our learning problem to the contextual

scenario, where actions are described with extra information. For

example, each individual mode can be treated as a combination of
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several parameter settings and states. This parameterized combina-

tion can then be treated as the contextual feature of the action.

We formulate the contextual LVO problem where actions are

represented by contextual features as follows: we follow the as-

sumptions of linear bandits [1, 2], where each action is represented

by an𝑚-dimensional bounded contextual feature X(𝑎) ∈ [0, 1]𝑚 ,

and each sub-objective can be linearly represented by such contex-

tual features. Formally, for each of the sub-objectives, there exists a

parameter 𝜃𝑖 ∈ R𝑚 such that

𝑙𝑖 (𝑎) = 𝜃⊤𝑖 X(𝑎),∀𝑖 ∈ [𝑑] . (7)

Again, the 𝑙𝑖 (𝑎) is the loss on the 𝑖-th sub-objective for action 𝑎.

Based on the proposed VaRons algorithm, we proposed its vari-

ant for the contextual LVO: the ConVaRons algorithm, short for

contextual varied-objective online Newton step. The algorithm first

initializes the inversed learning rate 𝛽 and the regularization pa-

rameter 𝜖 . Similar to the procedure in VaRons, for each time 𝑡 ∈ [𝑇 ],
the algorithm receives the weight vectorw𝑡 and estimates the main

objective for each action, and the sampling distribution 𝑝𝑡 is cal-

culated, according to which an action is sampled, then the loss

on the main objective is incurred with corresponding feedback

returned to the learner. The above procedure is almost the same

as in Algorithm 1, except that we need a small adaptation when

estimating the main objective from the view of sub-objectives: the

algorithm first reshapes the estimated parameter, which is a (𝑑𝑚)-
dimensional vector, into a𝑑×𝑚matrix Θ̂, such that Θ̂𝑖, 𝑗 = ˆ𝜃 (𝑖−1)𝑚+𝑗
for 𝑖 ∈ [𝑑], 𝑗 ∈ [𝑚]. The physical intuition of the matrix is obvious:

each roll corresponds to a sub-objective, and each column corre-

sponds to the linear parameter in (7). When the feedback ℓ𝑡 (𝑎𝑡 ) is
returned, the algorithm performs the ONS update as follows: the

algorithm first constructs the dummy vector z𝑡 ∈ R𝑑𝑚 as follows,

z𝑡,𝑘 = w𝑡,𝑖X𝑗 (𝑎), 𝑖 =
⌈
𝑘

𝑚

⌉
, 𝑗 = 𝑘 −𝑚(𝑖 − 1), 𝑘 ∈ [𝑑𝑚], (8)

where the footnote regarding 𝑖, 𝑗, 𝑘 specifies the corresponding

entries in the vector z𝑡 . After transforming the contextual features

to a dummy vector, we update corresponding estimations as follows,

H← H + 4

(
𝑦𝑡 − ˆ𝜃⊤z𝑡

)
2

z𝑡 z⊤𝑡 , (9)

ˆ𝜃 ← ΠH
R𝑑𝑚

[
ˆ𝜃 + 2

𝛽

(
𝑦𝑡 − ˆ𝜃⊤z𝑡

)
H−1z𝑡

]
. (10)

With the updated estimation, the algorithm repeats the above

estimating-sampling-updating procedure until the time horizon 𝑇 .

We summarize the proposed ConVaRons algorithm in Algorithm 2.

The difficulty within contextual LVO is how to deal with the

correlations between actions brought by the contextual structure

in (7). Specifically, in the general LVO, we make no assumptions

about the relationships within actions, and thus, they are estimated

independently, with updating only for the current choice 𝑎𝑡 ; in con-

trast, due to the contextual structure, actions within the action set

are no longer independent to each other but share the same under-

lying linear model. In this case, we adopt different ONS estimations

of the loss on the main objective. Unlike maintaining action-wise

estimations in Algorithm 1 that total 𝐾 independent estimations

are needed, ONS in ConVaRons maintains a single estimation of the

underlying linear parameter
ˆ𝜃 ∈ R𝑑𝑚 , as well as the corresponding

Algorithm 2 ConVaRons: Contextual Varied-objective

Online Newton Step

Require: learning rate 𝛾 > 0

1: initialize: 𝛽 = min{ 1

4
, 𝑑

16𝑚 }, 𝜖 =
𝑑
𝛽2𝑚

,
ˆ𝜃 = 0𝑑𝑚,H = 𝜖𝐼𝑑𝑚

⊲ estimations and Hessians

2: for 𝑡 = 1, · · · ,𝑇 do

3: Receive weight vector w𝑡 ;
4: Reshape the estimation

ˆ𝜃 into a 𝑑 by𝑚 matrix Θ̂ ∈ R𝑑×𝑚 ,

such that Θ̂𝑖, 𝑗 = ˆ𝜃 (𝑖−1)𝑚+𝑗 for 𝑖 ∈ [𝑑], 𝑗 ∈ [𝑚]
5: Estimate ℓ̂𝑡 (𝑎) = w⊤𝑡 Θ̂X(𝑎),∀𝑎 ∈ A;

6: Compute 𝑝𝑡 (𝑎) = 1

𝛾 (ℓ̂𝑡 (𝑎)+𝜆) ,∀𝑎 ∈ A, where 𝜆 is a scalar

found by binary search such that 𝑝𝑡 is a valid distribution,

sample 𝑎𝑡 ∼ 𝑝𝑡 ; ⊲ FTRL

7: Observe feedback 𝑦𝑡 ;

8: Calculate the dummy vector z𝑡 according to (8)

9: Update according to (9) and (10); ⊲ ONS update

10: end for

Hessian estimation 𝐻 ∈ R𝑑𝑚×𝑑𝑚 . By combining all estimations

into the same parameter, selecting any action provides information

about the underlying linear parameters.

Formally speaking, the following theorem states that the O(𝐾)
dependence of Algorithm 1 can be improved by to O(

√
𝑚𝐾) by

Algorithm 2, and meanwhile preserves the minimax optimality,

Theorem 3.2. Choosing optimal learning rate 𝛾 = O
(√︃

𝐾𝑇
𝑑𝑚 log𝑇

)
,

Algorithm 2 ensures a cumulative (pseudo) dynamic regret for the
contextual LVO that is upper bounded by

¯R𝑇 = O
(√︁
𝑑𝑚𝐾𝑇 log𝑇

)
.

Remark 2 (Minimax optimality). The sub-optimal linear depen-

dency of O(𝐾) for Algorithm 1 is improved to O
(√
𝐾

)
. Meanwhile,

as for the 𝑇 dependent term, similar to what we do in the general
case, we can construct the special case by settingW𝑡 = [1, 0, . . . , 0]
for all 𝑡 ∈ [𝑇 ], and thus only the first sub-objective matters and
the main objective is exactly the first sub-objective. In this case, the
general problem reduces to the stochastic linear bandits with finitely
many arms, whose minimax lower bound is Ω(

√︁
𝑚𝑇 log(𝑇 /𝑚)) given

by [22]. This implies the ConVaRons algorithm preserves the minimax
optimality in terms of 𝑇 up to logarithmic factors.

4 Experiments

In this section, we conduct experiments on two applications of the

proposed LVO problem, estimating the efficacy of our approaches.

4.1 Dynamic classifier selection

Classifiers optimal for one objective may be sub-optimal for an-

other [45], necessitating adaptive selection as data characteristics

and performance metrics change, a process known as dynamic clas-

sifier selection (DCS) [17, 44]. DCS is an ensemble method where,

after training multiple classifiers, one or a combination of classifiers

is dynamically selected for test instances. In our experiments, we

simplify DCS by selecting one classifier at a time, modeling it as an
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example of the LVO problem. This approach has many real-world

applications. For instance, in an autonomous driving system (Fig-

ure 1), different modes can be seen as trained classifiers performing

variably across metrics. On simple roads, accuracy and F1 score are

primary, while on complex roads, the End-to-End Lateral Deviation

(E2E-LD) metric is more suitable [30].

In this part, we conduct experiments on an application of the

LVO problem: the dynamic classifier selecting tasks, where data

come with a stream with varied performance metrics.

4.1.1 Selecting Non-contextual Classifiers. In this part, we conduct

classifier selection tasks on non-contextual classifiers.

Basic Settings. We conduct the experiment on the IJCNN1

dataset [8]. Specifically, we first train 10 Core Vector Machine clas-

sifiers [34] on the training data. These classifiers are served as the

action set of online decision-making problem. For each classifier, the

evaluation metrics include accuracy, f1-score, Area Under the ROC

Curve (AUC), and average precision (AP), which are taken as the

sub-objectives. The main objective combines these sub-objectives

into a composite measure. For each time step 𝑡 = 1, . . . , 1000, we

generate a weight vector to represent potential variations in these

sub-objectives. Upon receiving the weight vector, the algorithm

selects one classifier from the 10 trained classifiers. Then, we ran-

domly sample 5% of the test data to simulate the mini-batch in

streaming data for evaluation. The selected classifier is tested on

the mini-batch and incurs the loss on the main objective, which is

then returned to the algorithm for future selections. The goal is to

minimize the loss concerning the main objective.

Simulated weights variations. We establish the following two

variation environments for the weights in the main objective:

• Drift: the environment simulates the cases when the weight

vector varies smoothly. Specifically, the weight vector initially

starts at w𝑡 = [1, 0, 0, 0] and gradually transitions to the uniform

distribution and then tow𝑡 = [0, 1, 0, 0]. The procedure continues
for the third and fourth sub-objectives for several times till end.

• Random: the environment simulates user-specific tasks, with

each user having distinct requirements for the classifier. Conse-

quently, the weight vector at each time is randomly generated in

a 4-dimensional simplex.

To quantify the variation of the main objective, we define the

weight path length as P𝑇 :=
∑𝑇−1

𝑡=1
∥w𝑡+1 −w𝑡 ∥2

2
. The weight path

length for drift P𝑇 = 14 represents a mild variation; the weight path

length for Random P𝑇 = 470 represents a more drastic variation.

Contenders. We compare the VaRons algorithm with the fol-

lowing state-of-the-art decision-making algorithms in the most

related topics; the specific reason for such choosing is given in

Appendix B. Parameters are set optimally according to theoretical

guidance.

• Ground truth Pareto front (GT-PF). Thismethod randomly chooses

one action from the ground truth Pareto front. Notice that MOO

methods searching for the Pareto front will always converge

to the ground truth result, and thus, this approach includes the

best MOO algorithms by assuming they successfully identify the

Pareto front at the beginning.

• EXP3.S [5]. The EXP3.S algorithm handles adversarial rewards,

which makes it possible to handle decision-making with time-

varying bandit feedback on the main objective.
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Figure 3: Cumulative regret results on the non-contextual

dynamic classifier selection task, the error presents the stan-

dard deviation region. The lower the results, the better. We

conduct for 𝐾 = 6, 8, 10 actions under both ’drift’ and ’ran-

dom’ environmental settings. Our algorithm, VaRons, ex-

hibits lower regret compared to contenders in most cases.

• SW-UCB [14] and D-UCB [20]. The SW-UCB and D-UCB han-

dle non-stationary stochastic bandit feedback, and thus is also

possible to handle time-varying main objective.

Results. We present the average cumulative regret results in

Figure 3, the results are averaged over 20 independent trials. As is

presented, VaRons obtains the lowest cumulative regrets in most

scenarios; compared with the GT-PF when the number of actions 𝐾

is small when the cardinality of the Pareto front is small, GT-PF out-

performs our approach, it is emphasized that such results are caused

by the selection of too small time horizon 𝑇 , as regrets incurred by

GT-PF are always proportion to𝑇 with small scope, regrets incurred

by VaRons is converging and thus is sub-linear in 𝑇 . Meanwhile,

VaRons has similar performance when the variation environment

is different, implying a regret that is irrelevant to the extent of

variation, matching the theoretical findings in Theorem 3.1.

4.1.2 Selecting Parameterized Classifiers. In this part, we focused

on the parameterized classifier selection, where classifiers are pa-

rameterized and described as an application for the contextual LVO.

Data and task description.We select classifiers, which are pa-

rameterized represented, on the SNW data set [48] and the NoC

data set [4]. The SNW dataset contains 206 different designs syn-

thesized for a Field-Programmable Gate Array (FPGA) platform,

each characterized by a 4-dimensional contextual representation.

The sub-objectives are two conflicting aspects of chip designs: area
and throughput. The NOC dataset contains 259 different NoC im-

plementations, each represented by a 5-dimensional contextual

representation. The sub-objectives of these implementations are en-
ergy consumption and running time. Similarly, we generated weights

at each time to simulate possible variation scenarios.

Simulated weights variations Similarly, we set 2 variation

environments: the drift scenario with weight path length P𝑇 =

30, and the random scenario with weight path length P𝑇 = 470,

representing mild and drastic variation environments, respectively.

Meanwhile, we randomly select 𝐾 = 10, 20, 40 designs as the action

sets, each represented by its corresponding contextual features.

Contenders. We compare the proposed ConVaRons algorithm

(Algorithm 2) with the following state-of-the-art algorithms of the

most related topics; all parameters are set optimally according to
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Table 2: Cumulative regret results on the SNWdataset of the

contextual dynamic classifier selection tasks in mean ± std

(rank) format, the smaller the results and ranks, the better.

Scenarios ConVaRons (OURS)

Contenders

GT-PF SW-LinUCB D-LinUCB RestartUCB

10D 13.71±0.76 (1) 18.29±0.91 (2) 24.66±1.18 (3) 34.83±5.24 (5) 28.25±0.92 (4)
10R 13.62±0.92 (1) 18.09±0.78 (2) 25.15±0.95 (4) 20.33±1.77 (3) 29.41±1.25 (5)
20D 14.01±0.77 (1) 23.70±0.46 (2) 34.72±1.17 (3) 45.85±6.17 (5) 34.81±1.46 (4)
20R 17.32±1.99 (1) 23.77±0.55 (2) 35.51±1.53 (4) 26.39±1.55 (3) 35.74±1.87 (5)
40D 16.47±1.44 (1) 32.98±0.29 (2) 46.05±1.07 (4) 52.82±4.96 (5) 43.98±1.34 (3)
40R 21.52±2.66 (1) 32.99±0.34 (2) 46.75±1.39 (5) 35.42±2.60 (3) 46.48±1.95 (4)

Avg. Rank 1.00 2.00 3.83 4.00 4.17

Table 3: Cumulative regret results on the NOC dataset of the

contextual dynamic classifier tasks in mean ± std (rank) for-

mat, the smaller the results and ranks, the better.

Scenarios ConVaRons (OURS)

Contenders

GT-PF SW-LinUCB D-LinUCB RestartUCB

10D 21.68±1.04 (1) 23.15±0.99 (2) 41.10±1.76 (4) 49.20±3.54 (5) 39.37±1.48 (3)
10R 23.99±1.31 (2) 22.69±0.83 (1) 43.42±1.49 (5) 35.92±1.99 (3) 41.78±1.53 (4)
20D 30.28±1.67 (1) 33.42±0.60 (2) 46.69±1.56 (4) 48.13±3.30 (5) 43.64±1.13 (3)
20R 33.67±1.34 (2) 33.20±1.48 (1) 49.65±1.88 (5) 41.35±1.65 (3) 48.73±1.33 (4)
40D 41.08±3.03 (1) 41.84±0.63 (2) 47.65±1.31 (5) 45.95±3.20 (4) 43.59±1.05 (3)
40R 44.03±1.52 (2) 41.81±1.79 (1) 53.30±1.80 (5) 45.56±1.51 (3) 51.21±1.40 (4)

Avg. Rank 1.50 1.50 4.67 3.83 3.50

theoretical guidance or grid search on validation data. Similarly, we

give the reason of choosing these contenders is given in Appendix B,

• GT-PF. This approach selects one of the ground truth Pareto front

randomly, representing the MOO-type of methods.

• SW-LinUCB [9], D-LinUCB [28] and RestartUCB [41]. All handle

the non-stationary stochastic linear bandits, implying the poten-

tial to handle the changing main objectives when actions are

represented by contextual features.

Results.The cumulative results on the two tasks are presented in

Table 2 and Table 3 inmean± std (rank) format. Similarly, the results

are averaged on 20 independent trials. Again, GT-PF outperforms

our approach in some tasks in the NOC dataset. We explain this by

the existence of noisy data such that the linear assumption in (7)

does not entirely hold in this dataset, and thus approximating sub-

objectives with this linear structure introduces extra inaccuracy in

estimations. However, our proposed ConVaRons still obtains the

best (or tied for best) averaged performance over all tasks.

4.2 Cluster service allocation

In this part, we focus on large-scale cluster service allocation tasks.

4.2.1 Task description. We conduct experiments on the online ser-

vice cluster trace data from the Alibaba Cluster Trace Program,
2

which contains 1.4𝑀 users’ requirements on online service in time

sequence. The task focuses on designing algorithms for cluster

service providers to allocate computational tasks to different ma-

chines. Specifically, the service provider first categorizes available

machines into several clusters according to configurations, each

has different performance on processing abilities, memory size,

and storage capabilities. We take each cluster as an optional action

in the action set. With the timestamp, users continuously submit

their computational tasks to the service provider, each with dif-

ferent requirements for CPU, memory, and disk space, which we

2
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-

v2017/trace_201708.md
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Figure 4: Cumulative regret results on the dynamic cluster

service allocation task, the error presents the standard de-

viation region. A lower regret indicates a better allocation

strategy. Notice that the SW-UCB and D-UCB algorithms

are deterministic strategies decided by user requests in the

records; there are no error regions for these two algorithms.

take as the sub-objectives. For each submitted task, the service

provider first obtains the weights for sub-objectives according to

the specific requirements and then allocates this task to the most

suitable cluster. The main objective is to maximize the overall Qual-

ity of Service (QoS), which is assumed to be a weighted combina-

tion of sub-objectives as different clusters may prioritize different

sub-objectives, resulting in different overall QoS. We note that the

cluster service allocation task is also related to the recently pro-

posed new paradigm called CoRE-Learning [46], which takes the

computational resource into account of machine learning theory.

4.2.2 Constructing the LVO problem. In this part, we introduce

how we process available data to construct an LVO problem.

Assigning weights for sub-objectives. We allocate weights

based on user-defined requirements for CPU, memory, and disk

space according to the Bradley–Terry model [7]. Specifically, we

rescale these requests to standard distributions. Then, we assign

weights in proportion to the exponential of their scaled values. This

approach ensures a sensitive weight distribution, reflecting the

relative significance of each requirement. For instance, the weight

for CPU is assigned as:

w𝑡 (CPU) =
exp(scaled sub-objective 1 requirement)∑
3

𝑖=1
exp(scaled sub-objective 𝑖 requirement)

.

Constructing the Decision-Making Framework. To avoid

mismatches between the algorithm’s selections and historical allo-

cations, we follow the evaluation method of Li et al. [21], Mehrotra

et al. [24]. This method validates a task only if the selected cluster by

the algorithm aligns with its historical allocation. Non-valid tasks

are skipped until 𝑇 = 1000 tasks are reached. For each valid match,

we take QoS as the returned feedback 𝑦𝑡 . Specifically, the QoS is

categorized into five levels: Excellent (Ex), Satisfactory (Sa), Stan-

dard (St), Substandard (Su), and Unsatisfactory (Un), corresponding

to loss intervals of [0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8],[0.8, 1], re-
spectively. For analytical convenience, we convert these levels into

scalar losses at the midpoint of intervals: 0.1, 0.3, 0.5, 0.7,0.9.

The contextual LVO settings. For each cluster, we can char-

acterize it with some performance metrics, such as cycles per in-

struction (CPI), misses per thousand instructions (MPKI), and real-

time disk load that represent the execution time, cache usage, and

response times, respectively. We take these critical states as the

cluster’s contextual feature and additionally conduct contextual

LVO experiments on the proposed ConVaRons algorithm.

 

2136



KDD ’24, August 25–29, 2024, Barcelona, Spain. Lanjihong Ma, Zhen-Yu Zhang, Yao-Xiang Ding, and Zhi-Hua Zhou

Contenders. Similar to the experiments in Section 4.1, we select

EXP3.S [5], SW-UCB [14], D-UCB [20] and GT-PF as the contenders

for VaRons in the general LVO, and SW-LinUCB [9], D-LinUCB [28],

RestartUCB [41] and GT-PF as the contenders for ConVaRons in

the contextual LVO.

4.2.3 Results. We present the cumulative regret results in Figure 4

and additionally illustrate the loss of each user’s request in Figure 5.

For better illustration, we combined the results of other contenders

except GT-PF. As the loss for each user request represented by the

shadow is too noisy, we additionally draw the smoothed average

loss, that averaged on the past 50 user requests, as well as the overall

averaged loss. In both cases, our proposed algorithm presents lower

losses than contenders, indicating a better allocation strategy with

higher adaptivity to each user’s specific requirements.

5 Related work

The LVO problem shares characteristics with multi-dimensional

and non-stationary losses. Here, we briefly discuss two related areas

and explain why existing algorithms cannot directly address the

LVO problem. Detailed discussions are presented in Appendix B.

The LVO problem arises in open-environment machine learning

(open ML) [45], which fundamentally differs from conventional

static machine learning. Open ML faces unique challenges such as

the emergence of new classes [10, 38, 42], evolving features [18, 39],

shifting data distributions [31, 40], and varied learning objectives.

Handling varied objectives is a crucial yet underexplored problem

within this context. As objectives shift with specific requirements,

open environments necessitate machine learning models that are

highly flexible and adaptable. Effectively handling varied objectives

is fundamental to addressing practical problems in open ML.

One related area is multi-objective decision-making methods,

particularly multi-objective multi-armed bandits [11, 26, 32], which
focus on actions with multi-dimensional losses. Drugan and Nowé

[11] proposed both Pareto and scalarized optimality settings. While

most subsequent works [6, 25] focus on Pareto optimality, scalarized

optimality, which combines sub-objectives using fixed weights, is

more relevant to our problem. However, as the weights are assumed

to be fixed, it is not suitable to handle changing weights.

Another relevant area is decision-making based on non-stationary

losses. This approach treats the main objective as a non-stationary

target, with action-wise loss changing based on varying weight

vectors. The LVO problem can be viewed as a special case of non-

stationary decision-making, where each action corresponds to a

non-stationary reward or loss. Algorithms like Exp3.S [5] guaran-

tee an optimal O(
√
𝑆𝑇𝑇 ) regret bound, where 𝑆𝑇 is the number

of distribution shifts by time 𝑇 . Subsequent algorithms, such as

D-UCB and SW-UCB [14, 20], share this optimality.

For the contextual extension of LVO, the linear structure assump-

tion is similar to those in stochastic linear bandits [1, 2], especially

non-stationary stochastic linear bandits [9, 36]. Algorithms like SW-

LinUCB [9], D-LinUCB [28], and RestartUCB [41] share sub-optimal

O(𝑃
1

4

𝑇
𝑇

3

4 ) regret, where 𝑃𝑇 measures environmental changes. How-

ever, 𝑆𝑇 = Θ(𝑇 ) and 𝑃𝑇 = Θ(𝑇 ) in the worst case, the regret bound

is linearly dependent on 𝑇 , implying that selections do not con-

verge to the best action. Hence, handling LVO with reduction to

non-stationary linear bandits are not suitable.
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Figure 5: Loss according to QoS of VaRons algorithm against

GT-PF and an average of other contenders on the cluster allo-

cation tasks. Lower loss represents better allocation strategy.

In the non-contextual case, VaRons shows consistent loss

minimization, closely followed by GT-PF, with the overall

average loss for each algorithm indicated by dashed lines;

for the contextual case, ConVaRons and GT-PF exhibit sim-

ilar trends, with VaRons maintaining a lower loss profile as

evidenced by the overall average.

6 Conclusion and Future work

We present a formulation of two settings within the problem of

Learning with Varied Objectives (LVO): the general LVO, which

lacks contextual representation for each action, and the contextual

LVO, where actions are characterized by contextual features. For

these respective settings, we introduce the VaRons and ConVaRons

algorithms, both of which are provably minimax optimal in terms

of𝑇 , up to logarithmic factors. Empirically, we validate the efficacy

of our approaches through dynamic classifier selection and clus-

ter service allocation tasks, providing empirical evidence for our

theoretical findings. As discussed in the experiment part, our pro-

posed algorithms for LVO may be useful for CoRE-learning [19, 46],

particularly when considering varying objectives during resource

allocation. We leave this for future investigation.
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Supplementary Materials

In the appendix, we provide theoretical analysis in Appendix A,

and provide the full content of related works in Appendix B.

A Theoretical Analysis

In this section, we provide the theoretical proofs for the main theo-

rems: Theorem 3.1 for VaRons and Theorem 3.2 for ConVaRons.

A.1 Proof of Theorem 3.1

We first focus on Theorem 3.1 for VaRons in the general Learning

with Varied objectives (LVO) problem. As mentioned in the main

text, our algorithm comprises two key components: Follow-the-

Regularized-Leader (FTRL) with a log-barrier regularizer, and the

Online Newton Step (ONS). The following lemma states that the

cumulative (pseudo) regret defined in (4) can be upper bounded by

the square loss of ONS, plus an additional constant term.

Lemma A.1. Sampling actions according to 𝑝𝑡 (𝑎) = 1

𝛾 (ℓ̂𝑡 (𝑎)+𝜆)
(FTRL with log-barrier) guarantees an upper bound on the cumulative
pseudo regret of:

¯R𝑇 ≤
𝛾

4

𝑇∑︁
𝑡=1

E
[
(ℓ̂𝑡 (𝑎𝑡 ) − 𝑦𝑡 )2 − (ℓ𝑡 (𝑎𝑡 ) − 𝑦𝑡 )2

]
+ (𝐾 − 1)𝑇

𝛾

=
𝛾

4

∑︁
𝑎∈A

∑︁
𝑡 :𝑎𝑡=𝑎

E
[
(ℓ̂𝑡 (𝑎) − 𝑦𝑡 )2 − (ℓ𝑡 (𝑎𝑡 ) − 𝑦𝑡 )2

]
︸                                               ︷︷                                               ︸

Term A

+ (𝐾 − 1)𝑇
𝛾

,

where ℓ𝑡 (𝑎) = w⊤𝑡 L(𝑎) and ℓ̂𝑡 (𝑎) = w⊤𝑡 L̂(𝑎) are the main objective
and its estimation for action 𝑎 according to line 4 of VaRons (Algo-
rithm 1).

As shown, the effectiveness of FTRLwith a log-barrier regularizer

is two-fold. Firstly, the cumulative (pseudo) regret is upper bounded

by the estimation error on the square loss (Term A), with additional

constant term. If Term A satisfies the exponential-concavity condi-

tion for ONS, it can be considered a surrogate loss function for ONS.

Secondly, the right side of the inequality eliminates the term related

to the dynamic competitor 𝑎∗𝑡 , defined in (3), thereby addressing

the technical difficulties posed by the dynamic competitor.

We now focus on Term A. The following lemma guarantees the

exponential-concavity condition of Term A.

Lemma A.2. For any x ∈ [0, 1]𝑑 and w𝑡 ∈ Δ𝑑−1
, the loss function

defined by 𝑓 (x) := (w⊤𝑡 x − 𝑦𝑡 )2 is a 1

2
-exponential-concave function

with ∥∇𝑓 (x)∥2 ≤ 2√
𝑑
. Furthermore, for any y ∈ [0, 1]𝑑 , the following

holds:

𝑓 (x) ≥ 𝑓 (y) + ∇𝑓 (y)⊤ (x − y) + 1

32

(∇𝑓 (y)⊤ (x − y))2 .

Once Term A fulfills the exponential-concave requirements, we

are now able to estimate the action-wise sub-objective vector L(𝑎)
for all 𝑎 ∈ A independently. Recall that L(𝑎) = [𝑙1 (𝑎), . . . , 𝑙𝑑 (𝑎)] is
a vectorized representation of the losses on sub-objectives of action

𝑎, for an action 𝑎 ∈ A, the following bound holds according to the

analysis in Hazan et al. [16],

Lemma A.3. Denote by I(𝑎) as the set of time when 𝑎𝑡 = 𝑎. The
Online Newton Step (line 7 in algorithm 1) guarantees the following
upper bound for Term A,

Term A ≤ 8𝑑 log

(
|I(𝑎) |

64

+ 1

)
+ 8

With the lemmas above, it is sufficient to analyze Theorem 3.1.

Proof of Theorem 3.1. According to LemmaA.1 and LemmaA.3,

the cumulative pseudo regret is upper bounded by:

¯R𝑇 ≤
𝛾

4

∑︁
𝑎∈A

(
8𝑑 log

(
|I(𝑎) |

64

+ 1

)
+ 8

)
+ (𝐾 − 1)𝑇

𝛾

=
𝛾

4

(
8𝑑 log

( ∏
𝑎∈A

|I(𝑎) | + 64

64

)
+ 8𝐾

)
+ (𝐾 − 1)𝑇

𝛾

≤ 𝛾
4

(
8𝑑𝐾 log

(
𝑇

64𝐾
+ 1

)
+ 8𝐾

)
+ (𝐾 − 1)𝑇

𝛾
.

The last inequality utilizes the AM-GM inequality, and use the

fact that

∏
𝑎∈A |I(𝑎) | ≤

(∑
𝑎∈A |I (𝑎) |

𝐾

)𝐾
and

∑
𝑎∈A |I(𝑎) | = 𝑇

by definition. Thus,

∏
𝑎∈A ( |I(𝑎) | + 64) ≤

(
𝑇+64𝐾
𝐾

)𝐾
. Finally, by

setting the optimal learning rate 𝛾 =

√︄
(𝐾−1)𝑇

2𝑑𝐾 log

(
𝑇

64𝐾
+1

)
+2𝐾

, we have:

¯R𝑇 ≤ 2𝐾

√︄
2𝑑𝑇 log

(
𝑇

64𝐾
+ 1

)
+ 2𝑇 = O ©«𝐾

√︄
𝑑𝑇 log

(
𝑇

𝐾

)ª®¬ .
□

A.2 Proof of Theorem 2

The reshaping step in line 4 of ConVaRons (Algorithm 2) and

constructing the dummy vector z𝑡 as in (8) ensures that ℓ̂𝑡 (𝑎) =
w⊤𝑡 Θ̂X(𝑎) = ˆ𝜃⊤z𝑡 , and thus 𝑓 (Θ) = (w⊤𝑡 ΘX − 𝑦𝑡 )2 corresponds

to 𝑔(𝜃 ) = (z⊤𝑡 𝜃 − 𝑦𝑡 )2. Therefore, one can replace w𝑡 and 𝜃 in

Lemma A.2 with z𝑡 and 𝜃 . Hence, most proofs are based on the

analysis of Theorem 1. We have the following lemma, which is an

adaptation of the original Lemma A.1, Lemma A.2, and Lemma A.3

in the contextual LVO.

Lemma A.4. Sampling actions according to 𝑝𝑡 (𝑎) = 1

𝛾 (ℓ̂𝑡 (𝑎)+𝜆)
(FTRL with log-barrier) guarantees an upper bound on the cumulative
pseudo regret of:

¯R𝑇 ≤
𝛾

4

𝑇∑︁
𝑡=1

∑︁
𝑎∈A
E

[
(ℓ̂𝑡 (𝑎) − 𝑦𝑡 )2 − (ℓ𝑡 (𝑎𝑡 ) − 𝑦𝑡 )2

]
︸                                                  ︷︷                                                  ︸

Term E

+ (𝐾 − 1)𝑇
𝛾

,

where ℓ𝑡 (𝑎) = w⊤𝑡 ΘX(𝑎) = 𝜃⊤z𝑡 and ℓ̂𝑡 (𝑎) = w⊤𝑡 Θ̂X(𝑎) = ˆ𝜃⊤z𝑡 are
the main objective and its estimation for action 𝑎 according to line 5
of ConVaRons (Algorithm 2).

Similarly, when it comes to the conVaRons (algorithm 2), the loss

function shares the same
1

2
-exponential-concavity as in Lemma A.2.

Formally, we conclude the results as the following lemma:
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Lemma A.5. For any 𝜃 ∈ [0, 1]𝑑𝑚 , z𝑡 constructed as in (8), where
w𝑡 ∈ Δ𝑑−1

and X ∈ [0, 1]𝑚 , the loss function defined by 𝑓 (𝜃 ) :=

(z⊤𝑡 𝜃 − 𝑦𝑡 )2 is a 1

2
-exponential-concave function with ∥∇𝑓 (𝜃 )∥2 ≤

2

√︃
𝑚
𝑑
. Further, for any 𝜂 ∈ [0, 1]𝑑𝑚 , taking 𝛽 = min

{
1

4
, 𝑑

16𝑚

}
yields

the following inequality:

𝑓 (𝜃 ) ≥ 𝑓 (𝜂) + ∇𝑓 (𝜂)⊤ (𝜃 − 𝜂) + 𝛽
2

(∇𝑓 (𝜂)⊤ (𝜃 − 𝜂))2 .

Lemma A.6. The Online Newton Step (line 9 in Algorithm 2) guar-
antees the following upper bound for Term E:

Term E ≤ 8𝑑𝑚 log

(
𝑇

64

+ 1

)
+ 8.

Notice that the action-wise analysis in Lemma A.3 is based on

the ONS estimation being action-specific. When applying this to

ConVaRons, we replace the 𝐾 estimations in VaRons with a single

estimation for the entire action setA, treatingA as a super-action.

This approach still holds since Lemma A.3 focuses solely on esti-

mations, not on the decision-making or sampling process. There-

fore, if Lemma A.3 holds for any arbitrary action 𝑎 over the time

interval I(A), it should also hold for the super-action A. With

𝑛𝑇 = |I(A)| = 𝑇 , ∥∇𝑓 (𝜃 )∥2 ≤ 2

√︃
𝑚
𝑑

and
ˆ𝜃 ∈ [0, 1]𝑑𝑚 (different

from the estimation in Lemma A.3 where L̂ ∈ [0, 1]𝑑 ), the analysis
is almost the same, we omit this part.

With above lemmas, the proof of Theorem 3.2 follows:

Proof of Theorem 3.2. Combining the results in Lemma A.4

and Lemma A.6, we have:

¯R𝑇 ≤
𝛾

4

· 8𝑑𝑚 log

(
𝑇

64

+ 1

)
+ 8 + (𝐾 − 1)𝑇

𝛾
.

Selecting the optimal 𝛾 =

√︄
(𝐾−1)𝑇

2𝑑𝑚 log

(
𝑇
64
+1

) , we have:
¯R𝑇 ≤ 2

√︄
2𝑑𝑚(𝐾 − 1)𝑇 log

(
𝑇

64

+ 1

)
+ 8 = O

(√︁
𝑑𝑚𝐾𝑇 log𝑇

)
.

□

B Full Related Works

As our problem shares the characteristic of varying objective in-

cluding several sub-objectives and constantly changing weight

vectors that defines the main objective, we separate possible related

decision-making approaches that may help to solve the LVO prob-

lem into two categories: the multi-objective type of methods, and

the non-stationary type of methods.

We first focus on themulti-objective type ofmethods. Decision-

making approach that handles multiple objectives is the Multi-
objective multi-armed bandits (MO-MAB). As each action corre-

sponds to a multi-dimensional reward, LVO is closely related to the

MO-MAB problem, formally proposed by Drugan and Nowé [11].

Drugan and Nowé [11] propose both the Pareto and scalarized opti-

mality settings. While most subsequent works [6, 25] focus on the

Pareto optimality setting, where the goal is to find the Pareto opti-

mal set of actions, the scalarized optimality setting, which assumes

the main objective can be represented by the weighted combina-

tion of sub-objectives, is more related to our problem. The only

difference is that LVO problem considers time-varying weights. To

handle the scalarized MO-MAB problem, Drugan and Nowé [11]

proposed the ScalarizedMO-UCB algorithm that finds the scalarized

optimal action, Yahyaa and Manderick [37] propose the LS-KG and

SMOMAB algorithms that utilize knowledge gradient policy [29]

and Thompson sampling [33] to handle linear scalarized MO-MAB.

These works assume the scalarization function is known in advance,

based on which Roijers et al. [27] propose the ITS algorithm that

learns the scalarization function by interacting with users. However,

to the best of our knowledge, no prior work addresses a time-varying
scalarization function, particularly a time-varying weight.

Another line of decision-making research that may help solve

the LVO problem is the non-stationary type of methods. These

methods ignore the internal structure of sub-objectives and treat

the action-wise main objective as a non-stationary target. Thus, the

LVO problem can be viewed as a special case of non-stationary

multi-armed bandits, where each action corresponds to a non-

stationary reward or loss. Auer et al. [5] propose the Exp3.S al-

gorithm, which guarantees an optimal O(
√
𝑆𝑇𝑇 ) regret bound for

adversarial bandits, where 𝑆𝑇 is the number of distribution shifts by

time 𝑇 . Kocsis and Szepesvári [20] propose the D-UCB algorithm

for stochastic non-stationary bandits, introducing a discount factor

so that recent observations have more weight than older ones in

the estimation. Garivier and Moulines [14] further prove that the

D-UCB algorithm shares the same optimality as Exp3.S in the sto-

chastic non-stationary bandits problem. Additionally, Garivier and

Moulines [14] propose the SW-UCB algorithm, which considers

only the most recent observations within a fixed-length sliding

window for reward estimation, and prove that SW-UCB shares

the same-order optimality as Exp3.S and D-UCB. For the contex-

tual extension of LVO, the linear structure in (7) is very similar

to the linear structural assumption in stochastic linear bandits

[1, 2], especially non-stationary stochastic linear bandits [9] when

the reward distribution changes over time. Inspired by the slid-

ing window and discounted ideas of Garivier and Moulines [14]

and Kocsis and Szepesvári [20], Cheung et al. [9] propose the SW-

LinUCB algorithm, and Russac et al. [28] propose the D-LinUCB

algorithm. Subsequently, Zhao et al. [41] propose the RestartUCB

algorithm, which restarts the reward estimation whenever the dis-

tribution changes significantly. All the above algorithms guarantee

a sub-optimal O(𝑃
1

4

𝑇
𝑇

3

4 ) regret, where 𝑃𝑇 is the path length of

the linearization parameter that quantifies the extent of distribu-

tion changes. Wei and Luo [36] improve the bound to an optimal

O(𝑃
1

3

𝑇
𝑇

2

3 ) by combining a non-stationarity detector with base algo-

rithms that perform well in stationary environments. The central

difficulty lies in handling the arbitrarily changing weight vectors.

In the worst case, the number of switching times can be 𝑆𝑇 = Θ(𝑇 ),
resulting in anO(𝑇 ) regret bound that is linearly dependent on time

𝑇 . This implies that the algorithm does not eventually converge to

the correct action. A similar difficulty arises in the contextual case,

where 𝑃𝑇 = Θ(𝑇 ) leads to a linear regret bound of O(𝑇 ). Therefore,
directly applying existing algorithms for non-stationary bandits is

infeasible in the worst case. However, in milder scenarios where

𝑆𝑇 or 𝑃𝑇 are smaller, there remains a possibility that this approach

could partially address the LVO problem.
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