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ABSTRACT
We focus on the dueling bandits problem,which has recently drawn
significant attention due to its wide-ranging applications in on-
line recommendation systems and the alignment of large language
models (LLMs), considers an online preference learning scenario
where the learner iteratively selects arms based on pairwise com-
parison feedback to infer user preferences. Two primary objectives
are typically considered in dueling bandits: Regret Minimization
(RM), which aims to improve the overall quality of selected arms
over time, and Best Arm Identification (BAI), which seeks to effi-
ciently identify the best item with minimal user feedback. For in-
stance, RM is exemplified by the objective of consistently provid-
ing high-quality items, while BAI reduces the required human feed-
back by minimizing the number of necessary comparisons. Con-
ventional research treats RM and BAI as two conflicting objectives,
optimizing one at the expense of the other. In this paper, we pro-
pose a novel framework that demonstrates the near-consistency
of RM and BAI in dueling bandits by reducing the BAI in duel-
ing bandits into a sequential noisy identification problem. Based
on our formulation, we propose a black-box reduction technique
that transforms any RM algorithm into a BAI algorithm, and prove
that such reduction with optimal RM algorithm achieves optimal
sample complexity and nearly-optimal cumulative weak regret si-
multaneously. Our proposed algorithm acheives a nearly-optimal
BAI sample complexity and attains a cumulative weak regret that
is order-wise equivalent to the best-known result simultaneously.
Experiments on both synthetic benchmarks and real-world online
recommendation tasks validate the effectiveness of the proposed
method, providing empirical evidences for our theoretical findings.
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Figure 1: Preferece-based learning from comparison feed-
back.The generativemodels first generate several responses,
among which the central algorithm selects two responses
and return to the user. After the user gives his/her prefer-
ence, the comparison result is returned to the central algo-
rithm, updating the preferences for better future choices.
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1 INTRODUCTION
Preference-based learning is a machine learning approach that fo-
cuses on understanding and predicting user preferences through
interactions. Unlike conventionalmethods that rely heavily on fixed
datasets, preference-based learning relies on the real-time user feed-
back to adjust and improve the model’s predictions dynamically.
This method is particularly relevant in contexts where personal-
ization is key, such as in online recommendation systems [6, 36,
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37] and human-machine interactions. Recent advancements have
drawn significant interest in preference-based learning, particu-
larly for its critical role in training and fine-tuning Large Language
Models (LLMs) [22, 23, 26]. LLMs leverage preference-based learn-
ing to adapt to individual user needs by processing feedback and
refining their responses, thereby enhancing user experience and
engagement. This capability is crucial in applications where user
satisfaction and engagement are paramount, as it allows LLMs to
provide more relevant and context-aware responses.

According to the types of human feedback, the central algorith-
mic designs can vary significantly [15]. In this paper, we focus on
the scenario where users provide implicit comparison feedback of
the chosen arms, also known as the dueling bandits problem [3, 33].
We take how dueling bandits works in fine-tuning LLMs as an il-
lustrative example in Figure 1. Specifically, after generating sev-
eral possible responses to form a response set, the learning system
chooses two of the responses and returns them to the user, the user
then selects one of them, indicating which of the responses may be
preferred by the user. By simplifying the type of user feedback to
simple “which one is better?” rather than ratings, demonstrations
or prompts, the dueling bandits problem offers straightforward in-
teractions to understand and adapt to the users’ preferences.

The central concern within dueling bandits is to sequentially de-
cide which two of the arms are selected to present to users. Mainly
two essential but potentially conflicting objectives are considered
to guide this selection: regret minimization (RM) and best arm iden-
tification (BAI). Specifically, in RM, the learner aims to minimize
the quality difference between the current selection and the best
selection in hindsight, and thus focus more on the overall quali-
ties of the selection sequance; while for BAI, the learner aims to
minimize the number of interactions to identify the best response
within the response set, and thus whether the current responses
are explored is more important than their qualities. Taking the on-
line recommendation tasks [6, 36, 37] for instance: RM ensures that
the recommendations provided to users are of high quality, thereby
enhancing user satisfaction and engagement over time; while BAI,
on the other hand, focuses on efficiently identifying the most pre-
ferred items or products within minimal interactions, reducing the
amount of feedback needed from users and thus improving the
overall user experience by quickly adapting to their preferences.
Similarly, in fine-tuning process of LLMs [23], after generating sev-
eral responses, pairs of responses are returned to the human raters
for comparison. The raters’ preferences are used to train a reward
model, which is further used to evaluate and refine LLMs. Within
the process, the objective of RM represents providing high-quality
responses during the interaction, corresponding to the quality of
the learned reward model; meanwhile, BAI represents minimizing
the number of feedback required from human raters’ choices, cor-
responding to the workloads of human raters. In both scenarios,
RM and BAI play important roles during these processes.

The pioneer work of Audibert et al. [2] established that regret
minimization (RM) and best-arm identification (BAI) are conflict-
ing objectives in conventional multi-armed bandits (MAB)with nu-
merical rewards, where algorithms optimal for RM are sub-optimal
for BAI, and vice versa. Given that MAB represents the founda-
tional model in bandit learning, it is widely accepted that RM and

BAI may also conflict in other bandit learning scenarios. Most ex-
isting research on dueling bandits focuses sorely on either RM or
BAI. To the best of our knowledge, our work is the first to system-
atically investigate the potential compatibility of these two objec-
tives in various bandit scenarios. In this paper, we try to take a step
towards bridging this gap by answering the following question:

Can we design a single algorithm for dueling bandits that can
achieve near-optimal performance in both objectives of regret min-
imization (RM) and best arm identification (BAI)?

We provide a positive answer to the above question, by propos-
ing a dueling bandits algorithm that is nearly-optimal in both re-
gret for RM and sample complexity for BAI. Specifically, we first
reduce the BAI in dueling bandits in the to a sequential noisy iden-
tification problem, where we present the intuitions on how du-
eling bandits problem in the objective of BAI and RM is nearly-
consistent. Based on these findings, we then propose a black-box
reduction framework that transforms any RM algorithm into a BAI
algorithm under fixed confidence, that can achieve dual optimality:
it safeguards a nearly optimal BAI sample complexity and attains
a cumulative weak regret that is order-wise equivalent to the best-
known result simultaneously. To the best of our knowledge, this is
the first dueling bandit algorithm that achieves such kind of dual
optimality via a single algorithm. Finally, we conduct extensive
experiments on synthetic benchmarks and real-world tasks to val-
idate the efficacy of the proposed approaches.

2 PROBLEM FORMULATION
In this section, we formalize the dueling bandits problems, includ-
ing the learning procedure, the assumptions we made, the perfor-
mance measures for learning objectives, and finally the quantities
that reflect learning difficulties.

Consider a scenario with a confidence threshold of 1 − 𝛿 and
a finite set of arms X = [𝑁 ] := {1, 2, . . . , 𝑁 }. In each interaction
round, the learner must choose two arms fromX, according to the
selection the human feedback is returned to the learner, indicating
a possible preference for one arm over the other. The final target
is to identify the best arm, also known as the Condorcet winner1,
with a confidence of at least 1 − 𝛿 . Before entering the specific
learning procedure, we first introduce the following assumption
and define the Condorcet winner,

Assumption 1 (Total oRdeR assumption). There exists a ground
truth order over X, and thus there exists a unique best arm.

Definition 2.1 (The Condorcet winner). Given a set of arms X :=
[𝑁 ], the Condorcet winner, denoted by 𝑎∗, is the arm that has the
highest minimum winning probability against the most challeng-
ing opponent in the set, formally defined as:

𝑎∗ ≜ argmax
𝑎∈X

(
min

𝑗∈X, 𝑗≠𝑎
𝑝𝑎,𝑗

)
,

where 𝑝𝑎,𝑗 represents the probability of arm 𝑎winning against arm
𝑗 . According to Assumption 1, we have 𝑝𝑎∗, 𝑗 ≥ 1

2 for the Condorcet
winner 𝑎∗ against any other arm 𝑗 in X.

1We use the term Condorcet winner as the best arm in dueling bandits from now on.
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The learning procedure. Next, we introduce the learning pro-
cedure is details. Suppose a total of 𝑇 rounds of interactions in a
dueling bandit problem over a set of arms X := [𝑁 ]. At each time
step 𝑡 = 1, . . . ,𝑇 , the process is as follows:

(1) The learner selects a pair of arms indexed by (𝑖𝑡 , 𝑗𝑡 ) from X.
Upon this selection, the learner incurs a regret 𝑟 (𝑖𝑡 , 𝑗𝑡 , 𝑎∗)
unknown to the learner.The regret quantifies the loss of not
choosing the Condorcet winner 𝑎∗.

(2) The learner receives feedback 𝑦𝑡 ∼ Bernoulli(𝑝𝑖𝑡 , 𝑗𝑡 ), where
𝑝𝑖𝑡 , 𝑗𝑡 ∈ [0, 1] represents the ground truth probability of arm
𝑖𝑡 winning against arm 𝑗𝑡 . This probability is determined by
latent factors unknown to the learner.

We now transite to the objectives in dueling bandits.

Objective 1: Regret Minimization (RM). The cumulative re-
gret, denoted by 𝑅𝑇 , is the summation of regret incurred over 𝑇
time periods, formally defined as 𝑅𝑇 :=

∑𝑇
𝑡=1 𝑟 (𝑖𝑡 , 𝑗𝑡 , 𝑎∗). The ob-

jective of RM is to minimize 𝑅𝑇 through strategic selection of the
pair (𝑖𝑡 , 𝑗𝑡 ) at each time 𝑡 . There are primarily two types of re-
gret commonly studied: strong and weak regret. Specifically, the
strong regret at time 𝑡 is defined as 𝑟𝑠 (𝑖𝑡 , 𝑗𝑡 , 𝑎∗) ≜ 1{𝑖𝑡=𝑎∗∧𝑗𝑡=𝑎∗ } is
the selected arm pair and 𝑎∗ is the Condorcet winner. This metric
assesses the average quality of both selected arms. To minimize
strong regret, the Condorcet winner must be chosen twice and
compared with itself, a requirement often too stringent. In con-
strast,weak regret, despite its name, offers amore pragmatic metric.
The weak regret at time 𝑡 is defined as

𝑟𝑤 (𝑖𝑡 , 𝑗𝑡 , 𝑎∗) ≜ 1{𝑖𝑡=𝑎∗∨𝑗𝑡=𝑎∗ } . (1)

Unlike strong regret, minimizing weak regret only requires one of
the chosen arms to be the Condorcet winner, avoiding selecting the
same arm twice. Due to the more practical definition suitable for
real-world scenarios, we focus on minimizing weak regret when
refer to the objective of RM in this paper.

Objective 2: Best Arm Identification (BAI). The objective of
BAI in this paper refers to identifying the Condorcet winner within
a fixed confidence level, also known as the 𝛿-PAC BAI. Specifically,
the learner is required to identify the Condorcet winner from the
arm set with probability at least 1 − 𝛿 , with the fewest possible
interactions. Therefore, the critical metric for BAI is the sample
complexity required to meet these criteria.

Finally, we list some critical metrics that quantify the hardness
of learning preferences in a dueling bandits problem.
• Probability Gap: The probability gap for arms 𝑖 and 𝑗 is

defined as Δ𝑖, 𝑗 = |𝑝𝑖, 𝑗 − 0.5|. This metric indicates the chal-
lenge in distinguishing the superior arm in the pair (𝑖, 𝑗).
The closer 𝑝𝑖, 𝑗 is to 0.5, or equivalently, the closer Δ𝑖, 𝑗 is to
0, the more challenging it becomes to differentiate between
the two arms through comparisons.
• Condorcet Minimum Gap: Similarly, the Condorcet min-

imum gap, denoted by Δ∗, is then the probability gap be-
tween the Condorcetwinner𝑎∗ and the strongest sub-optimal
arm, formally defined as Δ∗ := min𝑖≠𝑎∗ Δ𝑎∗,𝑖 .The Condorcet
minimum gap represents how hard it is to distinguish the
Condorcet winner from other arms.

• GlobalMinimumGap:We define the global minimum gap
as Δ = min𝑖≠𝑗 Δ𝑖, 𝑗 , which represents the smallest probabil-
ity gap between any two distinct arms within the set. Sim-
ilar to other gaps, this metric serves as a quantifier for the
overall difficulty of the problem instance. By definition, the
global minimum gap is strictly less or equal to the Con-
dorcet minimum gap, i.e., Δ ≤ Δ∗.

3 PROPOSED APPROACH
In this section, we first reduce BAI in dueling bandits as a noisy
identification process, according to which we explain why BAI and
RM in dueling bandits is almost consistent. Upon this finding, we
further propose a black-box reduction mechanism that transforms
any RM algorithm to a BAI algorithm under the fixed confidence
setting, that provably achieves dual optimalities in RM and BAI.

3.1 BAI in dueling bandits: a noisy
identification approach

We start by focusing sorely on one of the objectives: Best Arm
Identification (BAI) within the context of dueling bandits. Recall
that, in each round, after the learners’ choice of two arms, feed-
back 𝑦𝑡 ∼ Bernoulli(𝑝𝑖𝑡 , 𝑗𝑡 ) is returned. Given that 𝑦𝑡 is a stochas-
tic outcome subject to randomness, a single comparison between
arms fails to accurately show their underlying relationship. Hence,
multiple rounds of feedback are needed to better understand the
true relationship between the arms due to the random nature of
each duel’s outcome.

To address this challenge, we have developed a two-phase noisy
identification procedure. The first phase, denoising, aims to estab-
lish reliable pairwise relationships between the chosen arms through
repeated comparisons. The second phase, identification, utilizes
these established relationships to accurately identify the Condorcet
winner, implemented by sequentially eliminating the arms that are
weaker in the pair. This process is detailed in Algorithm 1. Specifi-
cally, the learner initially selects two arms at random and compares
them multiple times. After several comparisons, the average win-
ning rate concentrates to 𝑝𝑖𝑡 , 𝑗𝑡 . We then construct the confidence
region 𝐶𝑖𝑡 , 𝑗𝑡 as follows:

𝐶𝑖𝑡 , 𝑗𝑡 := [𝜇𝑖𝑡 , 𝑗𝑡 − 𝑐𝛿 (𝑖𝑡 , 𝑗𝑡 ), 𝜇𝑖𝑡 , 𝑗𝑡 + 𝑐𝛿 (𝑖𝑡 , 𝑗𝑡 )], (2)

where 𝜇𝑖𝑡 , 𝑗𝑡 represents the empirical mean, and 𝑐𝛿 (𝑖𝑡 , 𝑗𝑡 ) is the con-
fidence radius, formally defined as:

𝜇𝑖𝑡 , 𝑗𝑡 =
W𝑖𝑡 , 𝑗𝑡

𝑛𝑖𝑡 , 𝑗𝑡
, 𝑐𝛿 (𝑖𝑡 , 𝑗𝑡 ) =

√√√
log

(
8𝑁
𝛿 · 𝑛

2
𝑖𝑡 , 𝑗𝑡

)
2𝑛𝑖𝑡 , 𝑗𝑡

,

where W𝑖𝑡 , 𝑗𝑡 maintains the historical winning counts of arm 𝑖𝑡
winning arm 𝑗𝑡 , and 𝑛 is the total historical number of compari-
son between arm 𝑖𝑡 and arm 𝑗𝑡 , and thus 𝑛𝑖𝑡 , 𝑗𝑡 := W𝑖𝑡 , 𝑗𝑡 +W𝑗𝑡 ,𝑖𝑡 .
If 1/2 does not locate in this confidence region, it represents the
learner can correctly identify the better arm in (𝑖𝑡 , 𝑗𝑡 ) with high
probability, and the denoise phase achieves its goal by now. The
following lemma states the sample complexity needed in the de-
noising phase:
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Algorithm 1 Simple Pairwise Elimination
Require: Set of arms X, confidence level 1 − 𝛿 .
1: Randomly select a pair of arms (𝑖1, 𝑗1) from X.
2: for 𝑡 = 1 to 𝑇 do
3: Denoising Phase:
4: Compare arms (𝑖𝑡 , 𝑗𝑡 ) and observe 𝑦𝑡 ∼ Bernoulli(𝑝𝑖𝑡 , 𝑗𝑡 ).
5: Update the confidence region according to Equation (2),

until 1/2 is excluded from the region.
6: Identification Phase:
7: Eliminate the weaker arm 𝑏 from X, i.e., X ← X \ {𝑏}.
8: if |X| = 1 then
9: Break

10: end if
11: end for
12: return The remaining arm in X as the Condorcet winner.

Lemma 3.1. The number of comparisons between pair (𝑖, 𝑗) is at

most O
(

1
Δ2
𝑖,𝑗

log
(

𝑁
Δ𝑖,𝑗𝛿

))
with probability at least 1− 𝛿

2𝑁 , where Δ𝑖, 𝑗

is the probability gap between pair (𝑖, 𝑗).

After a limited number of comparisons that denoise the rela-
tive preferences between a selected pair, the algorithm progresses
to the identification phase. Recall that the objective in BAI is to
identify the Condorcet winner rather than obtaining the ranking
over all arms, this can be efficiently achieved through simple lin-
ear search through the arm set, requiring at most 𝑁 − 1 denoising
phases.

During the identification phase, the algorithm systematically
eliminates the weaker arm 𝑏, defined by the condition:

𝜇𝑎,𝑏 − 𝑐𝛿 (𝑎,𝑏) ≥
1
2
, for 𝑎, 𝑏 ∈ X, 𝑎 ≠ 𝑏, (3)

where 𝜇𝑎,𝑏 and 𝑐𝛿 (𝑎,𝑏) again are the empirical mean and confi-
dence radius. The algorithm proceeds by sequentially eliminating
the weaker arm 𝑏 from the set of arms, retaining the stronger arm
𝑎 for the next round of comparisons. In each round, one arm is
chosen based on the previous round’s winner, while the other is
selected randomly. This process continues until only one arm re-
mains, which is then declared the Condorcet winner. Despite the
apparent simplicity of this approach, the following theorem estab-
lishes that Algorithm 1 can identify the Condorcet winner with
high probability and optimal sample complexity.

TheoRem 3.2. Algorithm 1 correctly identifies the Condorcet win-

ner with a sample complexity of at most O
(
𝑁
Δ2 log

(
𝑁
Δ𝛿

))
, with a

probability of at least 1 − 𝛿
2 , where Δ is the global minimum gap.

RemaRK 1. This result not only establishes a high probability of
success but also provides an upper bound on the sample complexity
required. It is noteworthy that the theoretical lower bound for the
sample complexity of any dueling bandits algorithm to identify the

Condorcet winner is Ω
(
𝑁
Δ2 log

(
1
𝛿

))
[10, 14]. Therefore, Algorithm 1

achieves optimality up to logarithmic factors.

Algorithm 2 Pairwise Elimination (PE)

Require: Set of arms X, confidence level 1 − 𝛿 , weak regret mini-
mization algorithm A.

1: for 𝑡 = 1, . . . ,𝑇 do
2: Run A to select a pair of arms (𝑖𝑡 , 𝑗𝑡 ) from X.
3: Denoising Phase:
4: Compare arms (𝑖𝑡 , 𝑗𝑡 ) and observe 𝑦𝑡 ∼ Bernoulli(𝑝𝑖𝑡 , 𝑗𝑡 ).
5: Update the confidence region according to Equation (2),

until 1/2 is excluded from the region.
6: Identification Phase:
7: Eliminate the weaker arm 𝑏 from X, i.e., X ← X \ {𝑏}.
8: if |X| = 1 then
9: Break

10: end if
11: end for
12: return The remaining arm in X as the Condorcet winner.

Though Algorithm 1 gives a promising results in BAI, it is not
the case when it comes to Regret Minimization (RM). In the fol-
lowing part, our focus turns to RM and analyze the consistency
between BAI and RM in dueling bandits.

3.2 RM is nearly-consistent with BAI in
dueling bandits

Our discussion now turns to the objective of Regret Minimization
(RM). We recall that the definition of regret for a chosen pair of
arms (𝑖𝑡 , 𝑗𝑡 ) is 1{𝑖𝑡=𝑎∗∧𝑗𝑡=𝑎∗ } for strong regret, and 1{𝑖𝑡=𝑎∗∨𝑗𝑡=𝑎∗ }
for weak regret. It is emphasized that strong regret is always in-
curred whenever two distinct arms are selected, and thus we focus
on the more relaxed setting of weak regret in this paper. Notably,
the cumulative regret depends on the specific sequence of arm se-
lection, which is not addressed by Algorithm 1 that selects (𝑖𝑡 , 𝑗𝑡 )
randomly. In this scenario, the cumulative regret is contingent on
the timing of the selection of the Condorcet winner 𝑎∗. In the opti-
mal case, selecting 𝑎∗ as either 𝑖1 or 𝑗1 ensures its consistent pref-
erence, thereby minimizing the cumulative regret. Conversely, if
𝑎∗ is chosen as the final arm in the sequence X, regret is incurred
in almost every preceding round, leading to a substantial increase
in cumulative regret. Consequently, to minimize cumulative regret,
the selection sequence should prioritize the early identification and
selection of the Condorcet winner.

Additionally, the sample complexity can be further reduced by
leveraging problem-specific characteristics. In the denoising phase,
repeated comparisons are conducted between pairs of selected arms.
According to Lemma 3.1, the sample complexity required during
this phase is inversely related to the probability gap Δ𝑖, 𝑗 between
the selected pair (𝑖, 𝑗). Randomly selecting pairs with small Δ𝑖, 𝑗
values can result in higher sample complexity due to the increased
difficulty in distinguishing between the arms. Therefore, prioritiz-
ing the selection of pairs with larger probability gaps is advanta-
geous. In particular, the Condorcet winner, which by definition has
the largest probability gap with all other arms, plays a crucial role
in optimizing the sample complexity. By strategically focusing on
pairs involving the Condorcet winner, the algorithm can achieve
more efficient learning and faster convergence.
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Table 1: An exemplary instance
𝑝 (𝑖, 𝑗) 𝑗 = 1 𝑗 = 2 𝑗 = 3
𝑖 = 1 \ 0.8 0.9
𝑖 = 2 0.2 \ 0.6
𝑖 = 3 0.1 0.4 \

To better illustrate this, consider the example in Table 1, which
presents three arms with respective winning probabilities 𝑝𝑖, 𝑗 . Ac-
cording to the definition, arm 1 is identified as the Condorcet win-
ner. To accurately identify the Condorcet winner from the other
arms, two pairs need to be selected for the denoising phase out of
the three possible combinations: (1, 2), (1, 3), and (2, 3).

Suppose the first selected pair is either (1, 2) or (1, 3). In this
case, the large probability gaps between the arms lead to fewer
comparisons required for the denoising process. Consequently, arm
2 or arm 3 is quickly eliminated by arm 1, thereby incurring low
regret. Conversely, if the first pair chosen for comparison is (2, 3),
the smaller probability gap necessitates more samples for denois-
ing, resulting in higher regret throughout the denoising phase.

To formalize the above findings, we introduce Algorithm 2. Sim-
ilar to Algorithm 1, the algorithm differs in that the arm-selection
sequence is determined by another weak regret minimization al-
gorithm, denoted as A. Hence, Algorithm 2 functions as a reduc-
tion framework, that takes an RM algorithmA as input, and oper-
ates as a BAI algorithm. The following theorem states the nearly-
consistency of RM and BAI of Algorithm 2, that the sample com-
plexity upper bound can be determined by the cumulative regret,

TheoRem 3.3. Under the reduction framework of Algorithm 2, for
any arm-selection sequence determined by the subroutineA, the fol-
lowing properties are guaranteed simultaneously:

• With probability at least 1 − 𝛿
2 , the Algorithm identifies the

correct Condorcet winner.
• With a probability of at least 1 − 𝛿

2 , the required sample com-

plexity is upper bounded by
(
𝑅𝑤 + O

(
𝑁
Δ∗2

log
(

𝑁
Δ∗𝛿

)))
, where

𝑅𝑤 represents the cumulative weak regret over the entire time
horizon, and Δ∗ denotes the minimum gap between the Con-
dorcet winner and any other arm.

RemaRK 2. The first statement ensures a high probability of accu-
rately identifying the Condorcet winner.The second statement demon-
strates, independently of the strategy used, that the sample complex-
ity for Best Arm Identification (BAI) is intrinsically linked to the cu-
mulative weak regret. This indicates that effectively optimizing the
Regret Minimization (RM) objective can also provide a bound on the
sample complexity, ensuring the compatibility of these objectives.

RemaRK 3. Although the sample complexity result includes the
additional regret term 𝑅𝑤 , which may seem less favorable compared
to Theorem 3.2, it is essential to consider the dependency shift from
the global minimum gap Δ to the Condorcet minimum gap Δ∗. By
definition, it holds that Δ ≤ Δ∗ for all instances. Consequently, select-
ing an appropriate RM algorithm not only ensures low regret but also
achieves a potentially lower problem-dependent sample complexity.
This shift underscores the importance of the choice of RM algorithm
in minimizing both regret and sample complexity.

In the next part, we take one of the state-of-the-art RM algo-
rithm as an example and fit it into our framework to show how

the proposed reduction framework works to achieve dual optimal-
ities in RM and BAI simultaneously.

3.3 An implementation achieving dual
optimalities

In this section, we take one of the state-of-the-art RM algorithm as
the base algorithm in our reduction framework and illustrate that
our proposed framwork achieves nearly-optimal regret and sample
complexity simultaneously.

Base RM Algorithm. WS-W, as introduced by Chen and Fra-
zier [5], is one of the state-of-the-art algorithm for minimizing
weak regret. The core mechanism of WS-W includes assigning an
initial score of zero to each arm. Scores are adjusted based on out-
comes: a win increases the score by one, while a loss decreases it by
one. The algorithm begins with two randomly selected arms and
progresses through a series of epochs, each containing multiple it-
erations. In each iteration, the winner from the previous iteration
(denoted as arm 𝑖) competes against a randomly selected arm that
has not yet dueled in the current epoch. Each arm, except for the
previous winner, duels once per epoch. An iteration within epoch
ℓ continues until an arm’s score reaches −ℓ . Once all arms, except
for the previous winner, have dueled, the epoch concludes, and the
algorithm transitions to the next epoch. The following statement
ensures the cumulative weak regret bound for WS-W:

PRoposition 3.4 (TheoRem 1 of Chen and FRazieR [5]). Under
the total order assumption, WS-W’s expected cumulative weak regret

is upper bounded by O
(
𝑁
Δ6 log(𝑁 )

)
, where 𝑁 is the number of arms

and Δ represents the minimum gap.

Fitting the Reduction. We incorporate WS-W as the RM sub-
routine A within our reduction framework, resulting in the BAI
algorithm outlined in Algorithm 3. Unlike the original WS-W, this
variant maintains a set of qualified arms Q, restricting arm selec-
tion to this set. At each iteration 𝑟 , two arms (𝑖𝑟 , 𝑗𝑟 ) are selected
from Q according to the WS-W procedure. These arms engage in
repeated duels until either one arm’s score reaches 𝑆𝑎 = −ℓ or the
confidence interval for the arm pair excludes 1/2. The loser of the
iteration, 𝑙𝑟 , is identified as the arm reaching score −ℓ or the arm
eliminated based on confidence; the other arm is declared the win-
ner, 𝑤𝑟 . After each iteration, the losing arm is disqualified. If all
remaining arms except the winner are disqualified but not perma-
nently eliminated, they are requalified for competition in the sub-
sequent epoch. Each disqualified arm competes once per epoch, en-
suring chances of recovery. This iterative process of comparisons,
disqualifications, requalifications, and eliminations continues until
a single arm remains, designated as the Condorcet winner.

The following Theorem 3.5 ensures that the proposed reduction
fromWS-W toWSW-PE preserves the regret guarantees of Propo-
sition 3.4 while achieving near-optimal sample complexity, mak-
ing WSW-PE both regret-optimal and sample-efficient.

TheoRem 3.5. Let 𝑁 denote the number of arms, 𝛿 ∈ (0, 1) the
confidence level, and 𝑅𝑤 the cumulative weak regret over the total
time horizon. Algorithm 3, as derived from our reduction, satisfies
the following guarantees:
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Algorithm 3 WSW-PE

1: Input: Set of optional arms X, confidence level 1 − 𝛿
2: Initialize: Epoch index ℓ ← 1, iteration index 𝑟 ← 1, qualified

arms Q ← X, pairwise winning counts W ← 0𝑁×𝑁 , scores
𝑆 ← 0𝑁

3: while |X| > 1 do
4: if 𝑟 > 1 then
5: 𝑖𝑟 ← 𝑤𝑟−1 ⊲ Winner of previous iteration
6: else
7: Randomly initialize 𝑖1
8: end if
9: Randomly select 𝑗𝑟 from Q \ {𝑖𝑟 }

10: In iteration 𝑟 : Repeatedly compare (𝑖𝑟 , 𝑗𝑟 ), updateW𝑎,𝑏 ←
W𝑎,𝑏 + 1, 𝑆𝑎 ← 𝑆𝑎 + 1, 𝑆𝑏 ← 𝑆𝑏 − 1 if arm 𝑎 ∈ {𝑖𝑟 , 𝑗𝑟 } wins,
until one of the following conditions is met:
• Arm 𝑎 has score 𝑆𝑎 = −ℓ
• 1/2 does not lie within the current confidence region as de-

termined by Equation (2)
11: Denote 𝑤𝑟 and 𝑙𝑟 as the winner and loser of the compari-

son, respectively.
12: Q ← Q \ {𝑙𝑟 }, 𝑟 ← 𝑟 + 1 ⊲ Move to next iteration
13: X ← X \ {𝑙𝑟 } if 1/2 does not lie within the current confi-

dence region ⊲ Elimination step
14: if |Q| ≤ 1 then
15: Q ← X, ℓ ← ℓ + 1 ⊲ Start a new epoch
16: end if
17: end while
18: Output: X

• Sample Efficiency (High-Probability Guarantee): With
probability at least 1 − 𝛿 , the algorithm terminates and cor-
rectly identifies the Condorcet winner with a sample complex-
ity bounded by

O
(
𝑅𝑤 +

𝑁

Δ∗2
log

(
𝑁

Δ∗𝛿

))
.

• Regret Optimality (ExpectedGuarantee):The expected cu-
mulative weak regret incurred by Algorithm 3 is bounded by

E[𝑅𝑤] = O
(
𝑁

Δ6 log(𝑁 )
)
.

RemaRK 4 (Dual optimality). For some mild instances where
the minimum gap Δ is not extremely small, the expected cumulative
weak regret is bounded by O(𝑁 log(𝑁 )), matching the best-known
weak regret results [5, 24], andmeanwhile indicating anO(𝑁 log(𝑁 ))
sample complexity result that is optimal up to logarithmic factors.

For worst cases when the minimum gap Δ is small, it may seem
the sample complexity result could be dominated by cumulative
regret since the Δ−6 dependency, we emphasize that these two re-
sults are not comparable, as the sample complexity upper bound
holds with high probability, while the regret result is given in ex-
pectation, the difference hides in the important variance of the cu-
mulative regret. Interestingly, the specific proof indicates that the
the weak regret guarantee is independent of the selection rule of

Table 2: Statistics of synthetic and real-world data. Smaller
Δ and larger 𝑁 imply harder instances.

Synthetic Benchmark Real-World Applications

# of arms Δ Name # of arms Δ

5 0.20 arXiv ranking 6 0.040
10 0.10 car preference 10 0.009
20 0.08 sushiA 10 0.205
50 0.05 sushiB50 50 0.027
100 0.03 sushiB 100 0.014
200 0.02 - - -

the opponent arm 𝑗𝑟 , giving us the chance to apply arbitrary heuris-
tic methods to control variances and meanwhile shares the same
weak regret guarantee. We take the following case as an example,

Example 3.6. For arbitrary arm 𝑎 ∈ {Q \ 𝑖𝑟 }, an empirically effi-
cient strategy is to select 𝑗𝑟 ← 𝑎with probability exp(−𝜂ℓ𝑎 )∑

𝑏∈{Q\𝑖𝑟 } exp(−𝜂ℓ𝑏 )
,

where ℓ𝑎 := ∥W:,𝑎 ∥1 − ∥W𝑎,:∥1 is the negative winning difference
of arm 𝑎 against all opponents and 𝜂 is the step size as an input.

Replacing the selection rule of 𝑗𝑟 in Algorithm 3 by the example
above, we obtain the WSW-PE-EXP algorithm. Due to technical
difficulties, the variance guarantee for the proposedWSW-PE-EXP
algorithm remains unknown. Instead, in the next section, we show
the efficacy of the proposed approaches by empirical evidences.

4 EXPERIMENTS
In this section, we conduct empirical evaluations to evaluate how
the proposed reduction performs in regret and sample complexity.

Global settings. We conduct experiments on both synthetic
and real-world applications of the online recommendation tasks.
Algorithms generated by our reduction are compared with other
state-of-the-art algorithms, whose objectives are either weak re-
gret minimization or BAI.We take the cumulative weak regret over
the total time horizon and the total number of comparisons needed
to identify the Condorcet winner with given fixed confidence, as
the measure for RM or BAI, respectively. All results are averaged
on 100 independent trials.

Our Approach. Recall that our proposed reduction framework
utilizes weak regret minimization algorithms as sub-routines to de-
rive BAI algorithms. In this part, we employWS-W [5] and BTW[24]
as the foundational sub-routines. The resulting algorithms from
our reduction process are designated as WSW-PE and BTW-PE, re-
spectively. We also extend our evaluation on the modified WSW-
PE-EXP algorithm, as described in Example 3.6.

Contenders. We compare WSW-PE and BTW-PE with some
state-of-the-art (𝜖, 𝛿)-PAC dueling bandits algorithms by setting
𝜖 = Δ∗, as the (𝜖, 𝛿)-PAC algorithms become 𝛿-PAC algorithms
when 𝜖 ≤ Δ∗. The state-of-the art (𝜖, 𝛿)-PAC algorithms include
Knockout [10] and SeqElim [9], both of which are theoretically op-
timal;MallowsMPI [4] that is almost-optimal under theMallows as-
sumption [4]. Notice that the above algorithms are not designed for
regret minimization, for fair comparisons in turns of regret, we fit
them into the famous explore-then-commit (ETC) framework [13],
that first run BAI to identify the Condorcet winner, and then re-
peatedly pull the found arm in the objective of RM. We denote by
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(a) 𝑁 = 5 (b) 𝑁 = 10 (c) 𝑁 = 20

(d) 𝑁 = 50 (e) 𝑁 = 100 (f) 𝑁 = 200

Figure 2: Cumulative weak regret results averaged on 100 in-
dependent trials on synthetic benchmarks.The lower the re-
gret, the better. We conclude that our reductions incur rela-
tively smaller regret than the ETC-type of algorithms.

Table 3: Computational efficiency comparisons, the results
are the mean computation time in milliseconds (ms) with

standard deviation, averaged over 100 trials.
Algorithm 𝑁 = 10 𝑁 = 20 𝑁 = 50 𝑁 = 100 𝑁 = 200

PE (Ours) Avg. Time (ms) 20.46 ± 7.53 50.76 ± 24.51 185.26 ± 67.62 1247.43 ± 241.08 4445.83 ± 522.96
ETC Avg. Time (ms) 18.68 ± 22.04 92.62 ± 71.82 377.56 ± 164.72 2124.50 ± 1528.47 9446.51 ± 7103.22

“algorithm-ETC” as the corresponding fits, for example, Knockout-
ETC stands for fitting Knockout into the ETC framwork. We also
compare with SeqElim-ETC and MallowsMPI-ETC.

4.1 Synthetic Benchmark
We generate the winning probability by randomly sampled from
a uniform distribution for a different number of arms. Specifically,
we set the number of arms as 𝑁 = 5, 10, 20, 50, 100, 200. We then
construct dueling bandits problems by generating thewinning prob-
ability 𝑝𝑖, 𝑗 for 𝑖, 𝑗 ∈ X according to the pre-specified minimum gap
Δ. Table 2 lists some statistics of the experimental instances. Re-
sults were averaged over 100 independent trials using a 12th Gen
Intel(R) Core(TM) i5-12600KF 3.70 GHz CPU.

Regret results. In Figure 2 we present the cumulative weak
regret result averaged over 100 independent trials. The lower the
regret, the better. Notice that the regret result only depends on
specific sub-routine A, we combine the cumulative regret results
of WS-W and BTW with WSW-PE and BTW-PE, respectively. The
PE-type of algorithms outperforms the ETC-type of algorithms em-
pirically in most cases.

Sample complexity results. In Figure 3, we present the sam-
ple complexity needed to identify the Condorcet winner with prob-
ability at least 1 − 𝛿 . As we can see, the PE-type of algorithms ob-
tain comparable or even better performances to the state-of-the-art
contenders in most cases.

Computational complexity results.In Table3, we present the
averaged computational efficiency of the PE-type of algorithms
and ETC-type of algorithms, the computation time results are dis-
played inmilliseconds (ms)with associated standard deviation.These
findings highlight the scalability of the PE algorithm, which con-
sistently outperforms ETC in terms of computational efficiency as
the number of arms increases.

Figure 3: The sample complexity results averaged on 100 tri-
als on synthetic benchmarks.The lower the sample complex-
ity, the better. We can conclude that algorithms generated
by our reduction use relatively fewer samples to identify
the Condorcet winner with the same fixed confidence, espe-
cially when the number of optional arms are large.

4.2 Online Recommendation
The online recommendation task aims sequentially selecting items
to present to users, obtaining corresponding preference feedback
and learning user preferences to refine future recommendations [31,
32]. This task can be effectively modeled as a dueling bandits prob-
lem, where the system presents pairs of items to users, according to
which the users return an implicit feedback indicating which item
is preferred. RM focuses on consistently recommending items that
align with user preferences throughout the learning process, and
BAI aims to efficiently identify the user’s most preferred item with
minimal feedback. Both objectives are important in this scenario.

In this part, we conduct real-world online recommendation tasks
on the following three datasets:
• arXiv ranking [25]: This dataset consists of six ranking

functions for the arXiv.org e-print archive, using implicit re-
trieval information from user clicks. The goal is to identify
the best ranking function based on user interactions. Regret
measures the loss in clicks compared to the optimal ranking
function, and sample complexity reflects the efficiency of
learning the best function. Number of arms: 𝑁 = 6, global
minimum gap: Δ = 0.040.
• Car preference [8]: This dataset captures user preferences

across 10 car types, aiming to identify themost preferred car
type based on feedback. Regret quantifies the potential loss
in car sales, and sample complexity indicates how quickly
sellers can determine the preferred type. Number of arms:
𝑁 = 10, global minimum gap: Δ = 0.009.
• Sushi [16]: This dataset provides detailed user preferences

for various sushi types, divided into two subsets:
– sushiA: Includes subjective rankings for 10 traditional

Japanese sushi types, offering a controlled environment
for evaluating regretminimization (RM) and best arm iden-
tification (BAI). Number of arms: 𝑁 = 10, global mini-
mum gap: Δ = 0.205.

– sushiB: Represents a more complex scenario with 100
sushi types, analyzed in two configurations:
∗ sushiB50: A random subset of 50 sushi types, provid-

ing moderate complexity. Number of arms: 𝑁 = 50,
global minimum gap: Δ = 0.027.
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Table 4: Multi-objective scores on real-world applications. The results are presented in mean ± std (rank) format, the smaller
the better. The average performance rank over all objectives and all experiments is presented at the last row of the table.

Datasets Objective Our Reduction ETC-Type of Algorithms

WSW-PE-EXP WSW-PE BTW-PE SeqElim-ETC MallowsMPI-ETC Knockout-ETC

arXiv ranking

𝛼 = 0 (BAI) 0.412 ± 0.074 (2) 0.483 ± 0.090 (4) 0.461 ± 0.080 (3) 0.292 ± 0.105 (1) 1.000 ± 1.424 (6) 0.720 ± 0.370 (5)
𝛼 = 1 (RM) 0.007 ± 0.010 (1) 0.113 ± 0.038 (3) 0.071 ± 0.032 (2) 0.145 ± 0.171 (4) 0.879 ± 1.845 (5) 1.000 ± 0.885 (6)
𝛼 = 0.1 0.410 ± 0.074 (2) 0.482 ± 0.090 (4) 0.460 ± 0.080 (3) 0.292 ± 0.105 (1) 1.000 ± 1.426 (6) 0.722 ± 0.371 (5)
𝛼 = 0.3 0.407 ± 0.073 (2) 0.479 ± 0.089 (4) 0.456 ± 0.079 (3) 0.291 ± 0.106 (1) 1.000 ± 1.431 (6) 0.725 ± 0.374 (5)
𝛼 = 0.5 0.401 ± 0.072 (2) 0.474 ± 0.088 (4) 0.451 ± 0.079 (3) 0.289 ± 0.107 (1) 1.000 ± 1.439 (6) 0.731 ± 0.380 (5)
𝛼 = 0.7 0.388 ± 0.070 (2) 0.463 ± 0.086 (4) 0.439 ± 0.077 (3) 0.285 ± 0.109 (1) 1.000 ± 1.459 (6) 0.744 ± 0.394 (5)
𝛼 = 0.9 0.335 ± 0.060 (2) 0.416 ± 0.079 (4) 0.388 ± 0.069 (3) 0.268 ± 0.120 (1) 1.000 ± 1.541 (6) 0.800 ± 0.462 (5)

Car preference

𝛼 = 0 (BAI) 0.494 ± 0.139 (3) 0.479 ± 0.092 (1) 0.484 ± 0.106 (2) 0.593 ± 0.265 (4) 1.000 ± 0.161 (6) 0.693 ± 0.294 (5)
𝛼 = 1 (RM) 0.005 ± 0.004 (1) 0.101 ± 0.023 (4) 0.091 ± 0.022 (3) 0.312 ± 1.836 (5) 1.000 ± 2.982 (6) 0.063 ± 0.061 (2)
𝛼 = 0.1 0.494 ± 0.139 (3) 0.479 ± 0.092 (1) 0.484 ± 0.106 (2) 0.593 ± 0.265 (4) 1.000 ± 0.161 (6) 0.693 ± 0.294 (5)
𝛼 = 0.3 0.494 ± 0.140 (3) 0.479 ± 0.092 (1) 0.484 ± 0.106 (2) 0.596 ± 0.266 (4) 1.000 ± 0.161 (6) 0.693 ± 0.294 (5)
𝛼 = 0.5 0.495 ± 0.142 (3) 0.479 ± 0.092 (1) 0.484 ± 0.106 (2) 0.599 ± 0.268 (4) 1.000 ± 0.161 (6) 0.693 ± 0.294 (5)
𝛼 = 0.7 0.498 ± 0.147 (3) 0.480 ± 0.092 (1) 0.485 ± 0.106 (2) 0.606 ± 0.274 (4) 1.000 ± 0.161 (6) 0.694 ± 0.294 (5)
𝛼 = 0.9 0.509 ± 0.187 (3) 0.484 ± 0.093 (1) 0.488 ± 0.106 (2) 0.643 ± 0.326 (4) 1.000 ± 0.161 (6) 0.696 ± 0.293 (5)

sushiA

𝛼 = 0 (BAI) 0.015 ± 0.002 (1) 0.015 ± 0.003 (3) 0.015 ± 0.002 (4) 0.015 ± 0.006 (2) 1.000 ± 1.540 (6) 0.073 ± 0.025 (5)
𝛼 = 1 (RM) 0.001 ± 0.001 (1) 0.001 ± 0.002 (3) 0.001 ± 0.001 (2) 0.011 ± 0.010 (4) 1.000 ± 1.825 (6) 0.069 ± 0.034 (5)
𝛼 = 0.1 0.015 ± 0.002 (1) 0.015 ± 0.003 (3) 0.015 ± 0.002 (1) 0.015 ± 0.006 (4) 1.000 ± 1.545 (6) 0.073 ± 0.026 (5)
𝛼 = 0.3 0.015 ± 0.002 (1) 0.015 ± 0.003 (3) 0.015 ± 0.002 (1) 0.015 ± 0.006 (4) 1.000 ± 1.557 (6) 0.073 ± 0.026 (5)
𝛼 = 0.5 0.013 ± 0.002 (1) 0.014 ± 0.003 (3) 0.014 ± 0.002 (2) 0.014 ± 0.006 (4) 1.000 ± 1.577 (6) 0.073 ± 0.027 (5)
𝛼 = 0.7 0.011 ± 0.002 (1) 0.012 ± 0.002 (2) 0.012 ± 0.002 (2) 0.013 ± 0.007 (4) 1.000 ± 1.613 (6) 0.072 ± 0.028 (5)
𝛼 = 0.9 0.007 ± 0.002 (1) 0.007 ± 0.002 (1) 0.007 ± 0.002 (1) 0.012 ± 0.008 (4) 1.000 ± 1.703 (6) 0.071 ± 0.030 (5)

sushiB50

𝛼 = 0 (BAI) 0.137 ± 0.051 (2) 0.134 ± 0.045 (1) 0.149 ± 0.024 (3) 0.167 ± 0.070 (4) 1.000 ± 1.350 (6) 0.975 ± 0.465 (5)
𝛼 = 1 (RM) 0.002 ± 0.007 (1) 0.002 ± 0.010 (2) 0.007 ± 0.003 (3) 0.078 ± 0.090 (4) 0.500 ± 1.241 (5) 1.000 ± 0.584 (6)
𝛼 = 0.1 0.136 ± 0.051 (2) 0.133 ± 0.044 (1) 0.148 ± 0.024 (3) 0.167 ± 0.070 (4) 1.000 ± 1.358 (6) 0.983 ± 0.470 (5)
𝛼 = 0.3 0.133 ± 0.050 (2) 0.130 ± 0.043 (1) 0.145 ± 0.023 (3) 0.166 ± 0.072 (4) 0.997 ± 1.376 (5) 1.000 ± 0.483 (6)
𝛼 = 0.5 0.124 ± 0.047 (2) 0.121 ± 0.041 (1) 0.135 ± 0.022 (3) 0.161 ± 0.074 (4) 0.964 ± 1.367 (5) 1.000 ± 0.489 (6)
𝛼 = 0.7 0.108 ± 0.041 (2) 0.105 ± 0.036 (1) 0.118 ± 0.019 (3) 0.149 ± 0.076 (4) 0.901 ± 1.350 (5) 1.000 ± 0.502 (6)
𝛼 = 0.9 0.064 ± 0.019 (1) 0.064 ± 0.023 (2) 0.073 ± 0.013 (3) 0.120 ± 0.081 (4) 0.740 ± 1.306 (5) 1.000 ± 0.535 (6)

sushiB

𝛼 = 0 (BAI) 0.178 ± 0.025 (1) 0.180 ± 0.024 (2) 0.195 ± 0.028 (3) 0.247 ± 0.074 (4) 0.814 ± 0.784 (5) 1.000 ± 0.433 (6)
𝛼 = 1 (RM) 0.001 ± 0.002 (1) 0.001 ± 0.002 (1) 0.009 ± 0.001 (3) 0.041 ± 0.057 (4) 0.426 ± 1.650 (5) 1.000 ± 0.640 (6)
𝛼 = 0.1 0.175 ± 0.025 (1) 0.178 ± 0.023 (2) 0.193 ± 0.027 (3) 0.244 ± 0.074 (4) 0.809 ± 0.795 (5) 1.000 ± 0.436 (6)
𝛼 = 0.3 0.169 ± 0.024 (1) 0.172 ± 0.023 (2) 0.187 ± 0.026 (3) 0.235 ± 0.073 (4) 0.796 ± 0.826 (5) 1.000 ± 0.443 (6)
𝛼 = 0.5 0.159 ± 0.023 (1) 0.161 ± 0.021 (2) 0.178 ± 0.025 (3) 0.222 ± 0.072 (4) 0.773 ± 0.876 (5) 1.000 ± 0.455 (6)
𝛼 = 0.7 0.139 ± 0.020 (1) 0.141 ± 0.019 (2) 0.161 ± 0.022 (3) 0.195 ± 0.070 (4) 0.730 ± 0.972 (5) 1.000 ± 0.478 (6)
𝛼 = 0.9 0.087 ± 0.013 (1) 0.088 ± 0.012 (2) 0.115 ± 0.014 (3) 0.124 ± 0.065 (4) 0.614 ± 1.231 (5) 1.000 ± 0.539 (6)

Avg. Rank 1.65 2.20 2.57 3.46 5.63 5.29

∗ Full sushiB:The complete set of 100 sushi types, repre-
senting themost challenging scenario. Number of arms:
𝑁 = 100, global minimum gap: Δ = 0.014.

Table 2 summarizes the statistics of these instances.
PerformanceMetrics. Previous works have primarily focused

on either RM or BAI, where the respective performancemetrics are
cumulative weak regret and sample complexity. In real-world ap-
plications, however, it is often desirable to optimize both objectives
simultaneously. Therefore, we adopt a multi-objective perspective
to evaluate overall performance in this section. Specifically, we in-
troduce the following multi-objective score, S(𝛼), which balances
RM and BAI performance:

S(𝛼) ≜ 𝛼R + (1 − 𝛼)C.

In this context, 𝛼 serves as a weight parameter that governs the
relative importance of the two objectives, while R and C denote
the normalized cumulative weak regret and sample complexity,

respectively. The normalization process is conducted by dividing
each result by the worst observed value, ensuring that all normal-
ized scores fall within the interval [0, 1], thereby facilitating their
interpretation. To account for a diverse range of practical scenar-
ios, we evaluate the performance for values of 𝛼 spanning from
0 to 1 in steps of 0.1. Specifically, when 𝛼 = 0, the learning ob-
jective is focused on regret minimization (RM), and when 𝛼 = 1,
the focus shifts to best arm identification (BAI). A consistently
low multi-objective score, independent of 𝛼 , signifies strong per-
formance across both RM and BAI objectives.

ExperimentalResults.Themulti-objective performance results
are summarized in Table 4, presented as mean ± standard devi-
ation (rank). A lower score indicates superior performance, with
the best result for each objective within each dataset highlighted
in bold. Our reduction-based algorithms outperform existingmeth-
ods across most datasets and objectives. The average performance
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rank across all objectives and experiments is displayed at the bot-
tom of the table.The average rank of our reduction-generated algo-
rithms is lower than that of the state-of-the-art methods, demon-
strating the effectiveness of our approach for both objectives. Fur-
thermore, the proposedWSW-PE-EXP algorithm (as detailed in Ex-
ample 3.6) achieves the best overall performance, highlighting the
importance of variance control.

5 RELATEDWORK
In this section, we introduce some advances in dueling bandit. As
most current works focus on either RM or BAI, we introduce the
works separately.

Dueling bandits in the objective of RM. Mainly two kinds
of regrets are widely studied in dueling bandits, i.e., strong regret
and weak regret. Most works assume specific structural properties
and focus on minimizing strong regret. Yue et al. [35] presents an
Ω(𝑁 log𝑇 ) lower bound of worst-case expected strong regret un-
der the assumption that the Condorcet Winner exists, where 𝑁 is
the number of arms and 𝑇 is the time horizon. Later, various al-
gorithms are proposed with an O(𝑁 log𝑇 ) expected strong regret
under different additional assumptions [19, 34, 35, 38, 39]. Relative
Minimum Empirical Divergence (RMED) proposed by Komiyama
et al. [17] is the first algorithm that is optimal without additional as-
sumption. Other exciting works reduce dueling bandits problems
to online convex optimization problems [1, 18, 30, 33]. As for weak
regret minimization, there is not much attention as any strong re-
gret minimization algorithm can be used for weak regret by defi-
nition. It is until recently, when Chen and Frazier [5] states that
the O(𝑁 log𝑇 ) strong regret bound is too loose for weak regret,
that weak regret minimization draws attentions. Chen and Fra-
zier [5] proposes WinnerStays-Weak (WS-W) algorithm that en-
joys an O(𝑁 2) expected weak regret under the assumption that
the Condorcet Winner exists, and the bound can be further im-
proved to O(𝑁 log𝑁 ) when the arms follow a total order. Subse-
quently, Peköz et al. [24] proposes Beat TheWinner (BTW), which
attains the same O(𝑁 2) expected weak regret result with much
simpler analysis. Recently, the elegant work of Saad et al. [29] pro-
vides a Ω(𝑁 /Δ∗) lower bound for weak regret minimization in du-
eling bandits and proposes theWR-TINF algorithm that is provably
optimal when the optimality gap is sufficiently large.

Dueling bandits in the objective of BAI. Most BAI dueling
bandits algorithms aim to identify the best arm within minimum
sample complexity with fixed confidence. (𝜖, 𝛿)-PAC is the most
general BAI setting that search for an approximately correct arm
in a finite number of comparisonswith probability at least 1−𝛿 . Yue
and Joachims [34] propose BTM-PACwith anO((𝑁 /𝜖2) log(𝑁 /𝜖𝛿))
sample complexity bound when the number of arms 𝑁 is large.
Falahatgar et al. [10] improve the bound to O((𝑁 /𝜖2) log(1/𝛿))
that matches the lower bound without requirement on 𝑁 , and the
same bound is achieved with a similar goal [9, 11]. Moreover, some
works aim to identify exactly the best arm rather than an approx-
imate one, namely, 𝜖 ≤ Δ∗ for (𝜖, 𝛿)-PAC algorithms, where Δ∗

is the Condorcet minimum gap and will be defined later in the
problem statement. Feige et al. [12] first show the sample com-
plexity lower bound of any 𝛿-correct algorithm to identify the ex-
act Condorcet winner is Ω((𝑁 /Δ2) log(1/𝛿)) when the minimum

gap Δ is given in advance. Falahatgar et al. [9] further prove the
same lower bound with an unknown Δ. Busa-Fekete et al. [4] pro-
pose the MallowsMPI algorithm for the exact BAI problem with an
O

(
𝑁 /Δ2 log(𝑁 /𝛿Δ)

)
sample complexity, under the assumption of

Mallows model [20]. Mohajer et al. [21] improve the bound by get-
ting rid of the additional O(log(1/Δ)) term without assuming Mal-
lows model. Similar results are achieved recently [27, 28].

Simultaneous objective of RM and BAI. Though most exist-
ing works of bandit learning focus solely on the objective of ei-
ther RM or BAI. The simultaneous objective of RM and BAI in ban-
dit learning has drawn increasing attention recently. Garivier et al.
[13] considers the varying objective fromBAI to RMby the explore-
then-commit (ETC) strategy. It reduces the RM problem to the BAI
problem by first running a BAI algorithm to identify the best arm
with probability at least 1−𝛿 , and then repeatedly pulling the found
best arm to achieve low regret.The expected regret incurred by this
strategy is bounded by 𝑆A + 𝛿𝑇 , where 𝑆A is the sample complex-
ity needed for the BAI algorithm A, while extra 𝛿𝑇 term is the
regret incurred if the BAI algorithm finds a sub-optimal arm with
probability at most 𝛿 . To ensure sub-linear regret, it is necessary to
constrain 𝛿 ≤ 1/𝑇 . In this case, according to the sample complexity
lower bound mentioned in Remark 1, 𝑆A ≥ 𝑁 log𝑇 for any BAI
algorithm A. implying a sub-optimal regret bound of O(𝑁 log𝑇 )
by ETC with dependency on the total time horizon 𝑇 . In contrast,
our result of O(𝑁 log𝑁 ) is constant-in-horizon𝑇 and therefore of-
fers a better performance guarantee. Degenne et al. [7] proposed
a mixed objective approach that interpolates between Regret Min-
imization (RM) and Best Arm Identification (BAI). Both this and
other similar works focus on optimizing a single mixed objective,
formulated by combining RM and BAI through weighted parame-
ters. However, this approach inherently involves trade-offs, as the
weights dictate the balance between the two objectives, potentially
leading to compromises in either RM or BAI performance. In con-
trast, our research seeks to explore the potential for optimizing
both RM and BAI simultaneously without such compromises.

6 CONCLUSION
In this paper, we investigates the dueling bandits problem, with a
particular focus on the compatibility of two key objectives: regret
minimization (RM) and best arm identification (BAI). These objec-
tives are generally regarded as conflicting in most bandit scenar-
ios. We demonstrate that RM and BAI can be nearly compatible in
dueling bandits by reducing the BAI task to a noisy identification
process. Building on this insight, we propose a reduction frame-
work that transforms any RM algorithm into a BAI algorithm. Us-
ing this framework, we develop an algorithm that achieves dual
optimality in RM and BAI: it identifies the Condorcet winner with
near-optimal sample complexity and ensures regret optimality by
maintaining a cumulative weak regret that is provably constant
with respect to the time horizon, matching the best-known results.
Finally, we validate the efficacy of our approach through synthetic
benchmarks and real-world applications in online recommenda-
tion systems, demonstrating its practical relevance. We hope this
work will inspire further research on addressing evolving and com-
plex objectives in open and dynamic environments, particularly in
domains where balancing competing goals, such as exploration-
exploitation trade-offs and adaptive decision-making, is crucial.
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Supplementary Materials
In the appendix, we provide theoretical analysis in Appendix A.

A ANALYZE
In this section, we provide detailed proofs of the theoretical results. Specifically, we first give the proof of Lemma 3.1 and Theorem 3.2,
clearing the problem setups. Then we give the core proof of Theorem 3.3, that strategy-independently states the possibility of optimizing
the simultaneous objective of RM and BAI in dueling bandits and provide its corresponding sample complexity result that is related to the
regret; We finally prove Theorem 3.5 that provide the guarantees of the exemplary case.

A.1 Proof of Lemma 3.1 andTheorem 3.2
PRoof. Recall the elimination criterion that any arm 𝑖 is eliminated by arm 𝑗 if 𝜇𝑖, 𝑗 + 𝑐𝛿 (𝑛𝑖, 𝑗 ) ≤ 1

2 , where 𝜇𝑖, 𝑗 is the empirical winning
rate of arm 𝑖 against arm 𝑗 and 𝑐𝛿 (𝑛𝑖, 𝑗 ) is the confidence radius defined in (2) after comparing (𝑖, 𝑗) for 𝑛𝑖, 𝑗 times. We bound the probability
of the event that the denoise criteria is not met after comparing 𝑛𝛿 times as follows,

P

[
𝑛𝑖, 𝑗 ≥ 𝑛𝛿 ,

����12 − 𝜇𝑖, 𝑗 ���� ≤ 𝑐𝛿 (𝑛𝑖, 𝑗 )
]
≤ P

[
𝑛𝑖, 𝑗 ≥ 𝑛𝛿 , 𝜇𝑖, 𝑗 − 𝑐𝛿 (𝑛𝑖, 𝑗 ) ≤

1
2

]
≤ P

[
𝜇𝑖, 𝑗 (𝑛𝛿 ) − 𝑐𝛿 (𝑛𝛿 ) ≤

1
2

]
= P

[(
1
2
+ Δ𝑖, 𝑗

)
− 𝜇𝑖, 𝑗 (𝑛𝛿 ) ≥ Δ𝑖, 𝑗 − 𝑐𝛿 (𝑛𝛿 )

]
≤ P

[��𝜇𝑖, 𝑗 (𝑛𝛿 ) − E[𝜇𝑖, 𝑗 (𝑛𝛿 )]�� ≥ Δ𝑖, 𝑗 − 𝑐𝛿 (𝑛𝛿 )
]
≤ 2 exp

(
−2𝑛𝛿 (Δ𝑖, 𝑗 − 𝑐𝛿 (𝑛𝛿 ))2

)
,

where 𝜇𝑖, 𝑗 (𝑛𝛿 ) is the empirical average winning rate after exact 𝑛𝛿 comparisons, and the third inequality holds by the difinition of the

probability gap, that Δ𝑖, 𝑗 :=
�� 1
2 − E[𝜇𝑖, 𝑗 ]

��, and the last inequality is by Hoeffding’s inequality. When taking 𝑛𝛿 =

⌈
2

Δ𝑖,𝑗
2 log

(
8𝑁𝑛2

𝛿
𝛿

)⌉
such

that 𝑐𝛿 (𝑛𝛿 ) ≤ Δ𝑖, 𝑗/2, we can bound the result above by

P

[
𝑛𝑖, 𝑗 ≥ 𝑛𝛿 ,

����12 − 𝜇𝑖, 𝑗 ���� ≤ 𝑐𝛿 (𝑛𝑖, 𝑗 )
]
≤ 2 exp

(
−2𝑛𝛿 (Δ𝑖, 𝑗 − 𝑐𝛿 (𝑛𝛿 ))2

)
≤ 2 exp

(
−2𝑛𝛿𝑐2𝛿 (𝑛𝛿 )

)
≤ 𝛿

4𝑁𝑛2
𝛿

≤ 𝛿

4𝑁
≤ 𝛿

2𝑁
.

This implies that whenever 𝑛𝑖, 𝑗 ≥ 𝑛𝛿 for some 𝑛𝛿 = Θ
(

1
Δ𝑖,𝑗

2 log
(

𝑁
Δ𝑖,𝑗𝛿

))
, it is rare for the event that the denoising phase does not finish as

neither of the arm in (𝑖, 𝑗) is not eliminated after comparing 𝑛𝑖, 𝑗 times, with probability at most 𝛿/(2𝑁 ). This completes the denoising part.
Accordingly, by union bound, we add up this procedure over all other arms

P

[
∃ 𝑗 ∈ {X \ {𝑖}}, 𝑛𝑖, 𝑗 ≥ 𝑛𝛿 ,

����12 − 𝜇𝑖, 𝑗 ���� ≤ 𝑐𝛿 (𝑛𝑖, 𝑗 )
]
≤ (𝑁 − 1) · 𝛿

2𝑁
≤ 𝛿

2
.

Hence, the total number of comparisons is a linear denoising ergodic over all arms, bounded by∑
𝑗∈{X\{𝑖 }}

𝑛𝛿 = O
(
𝑁

Δ2 log

(
𝑁

Δ𝛿

))
,

where Δ is the global minimum gap. □

A.2 Proof of Theorem 3.3
We first focus on the error rate of the algorithm.

Lemma A.1. Under the elimination criterion given by Algorithm 2, the Condorcet winner is eliminated, and thus the wrong arm is returned
with probability at most 𝛿/2.

PRoof. Similarly, denote by 𝑛𝑎∗,𝑎 the number of comparisons between the Condorcet winner 𝑎∗ and arbitrary other arm 𝑎. The algorithm
outputs a wrong arm that is not the Condorcet winner only when the Condorcet winner is eliminated by any other arms. We first bound
the probability of 𝑎∗ being eliminated by 𝑎 as follows,

P

[
∃ 𝑛𝑎∗,𝑎, 𝜇𝑎∗,𝑎 + 𝑐𝛿 (𝑛𝑎∗,𝑎) ≤

1
2

]
≤

∞∑
𝑛𝑎∗,𝑎=1

P

[
𝜇𝑎∗,𝑎 −

1
2
− Δ∗ ≤ −𝑐𝛿 (𝑛𝑎∗,𝑎) − Δ∗

]
≤

∞∑
𝑛𝑎∗,𝑎=1

P
[
E[𝜇𝑎∗,𝑎] − 𝜇𝑎∗,𝑎 ≥ 𝑐𝛿 (𝑛𝑎∗,𝑎) + Δ∗

]
≤

∞∑
𝑛𝑎∗,𝑎=1

P
[
|𝜇𝑎∗,𝑎 − E[𝜇𝑎∗,𝑎] | ≥ 𝑐𝛿 (𝑛𝑎∗,𝑎)

]
≤

∞∑
𝑛𝑎∗,𝑎=1

2 exp
(
−2𝑛𝑎∗,𝑎𝑐2𝛿 (𝑛𝑎∗,𝑎)

)
=

∞∑
𝑛𝑎∗,𝑎=1

𝛿

4𝑁𝑛2𝑎∗,𝑎
≤ 𝜋2

6
· 𝛿

4𝑁
≤ 𝛿

2𝑁
,

where the second inequality is due to the fact that E[𝜇𝑎∗,𝑎] = 𝑝𝑎∗,𝑎 ≥ 1
2 + Δ∗ for all 𝑎 ∈ X by the definition of Δ∗, and the third inequality

omits Δ∗ since Δ∗ > 0.
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Hence, with probability at most 𝛿/(2𝑁 ), there exists an arm 𝑎 ≠ 𝑎∗ that eliminates the Condorcet winner. Applying union bound over
all 𝑎 ∈ {X \ {𝑎∗}} yields

P

[
∃ 𝑎 ∈ {X \ {𝑎∗}}, ∃ 𝑛𝑎∗,𝑎, 𝜇𝑎∗,𝑎 + 𝑐𝛿 (𝑛𝑎∗,𝑎) ≤

1
2

]
≤ (𝑁 − 1) · 𝛿

2𝑁
≤ 𝛿

2
.

□

Next, we focus on the second statement related to sample complexity. We divide total comparisons into comparisons that the Condorcet
winner duels and the comparisons that the Condorcet winner does not duel. The following lemma bounds the comparisons that the
Condorcet winner does not duel,

Lemma A.2. Denote by 𝑅𝑤 the cumulative weak regret incurred by our algorithm, the number of comparisons where the Condorcet winner
does not duel is at most 𝑅𝑤 .

The following lemma bounds the number of comparisons the Condorcet winner duels,

Lemma A.3. The number of comparisons where the Condorcet winner duels is at most O
(
𝑁
Δ∗2

log
(

𝑁
Δ∗𝛿

))
with probability at least 1 − 𝛿/2.

Combining the above lemmas completes the proof.

A.3 Proof of Theorem 3.5
As most parts of Theorem 3.5 are straightforward corollaries of Theorem 3.3. The central proof focuses on the regret part, that we can treat
the PE reduction as a sequence of sub-problems, induced from the original dueling bandits problem where none of the arms are eliminated,
and thus preserves the regret results in Proposition 3.4. Specifically, as the only difference between the selection sequence of WS-W and
WSW-PE comes from the possibly reduced arm set of WSW-PE. We first propose the following two facts: the minimum gap of reduced
sub-problem, denoted by Δ𝑠 , is never smaller than that of the original problem; the number of arms of the sub-problem, denoted by 𝑁𝑠 , is
never larger than that of the original problem. That is, Δ𝑠 ≥ Δ, 𝑁𝑠 ≤ 𝑁 . We define some indicator functions as
• Denote by 𝐷 (ℓ) as the indicator of the event that the Condorcet winner is chosen as the main arm 𝑖 at the first iteration of epoch ℓ .
• Denote by 𝑉 (ℓ, 𝑘) as the indicator of the event that 𝐷 (ℓ) = 1 and the Condorcet winner is not selected as the main arm 𝑖 in the the
𝑘-th iteration of epoch ℓ , which means the Condorcet winner must be disqualified by other arms during the first iteration to the
𝑘 − 1-th iteration of epoch ℓ .
• Denote by 𝐵(ℓ, 𝑘) as the indicator of the event that the main arm 𝑖 is better than the other arm 𝑗 in the 𝑘-th iteration of epoch ℓ .

Let ·̄ = 1 − · be the inverse indicator of ·. With these indicator functions.

PRoof. (Theorem 3.5).
Notice that weak regret is incurred during the 𝑘-th iteration of epoch ℓ only when 𝐷 (ℓ) = 0 or 𝑉 (ℓ, 𝑘′) = 1 for some 𝑘′ ≤ 𝑘 , and each

duel incurs at most 1 weak regret by definition. Thus we have

E[𝑅𝑤] ≤
∞∑
ℓ=1

𝑁𝑠−1∑
𝑘=1

E
[
(�̄� (ℓ) +𝑉 (ℓ, 𝑘))

𝜏ℓ,𝑘
2

]
≤ Term A + Term B + Term C + Term D,

where according to [Lemma 1,2,3 of Chen and Frazier [5]], we have

Term A = E

[ ∞∑
ℓ=1

𝑁−1∑
𝑘=1

𝐵(ℓ, 𝑘)�̄� (ℓ)𝜏ℓ,𝑘

]
≤ E

[ ∞∑
ℓ=1

𝑁−1∑
𝑘=1

1
2Δ
·
(
1 − 2Δ
1 + 2Δ

)ℓ−1]
≤ O

(
𝑁

Δ2

)
.

Term B = E

[ ∞∑
ℓ=1

𝑁−1∑
𝑘=1

𝐵(ℓ, 𝑘)𝑉 (ℓ, 𝑘)𝜏ℓ,𝑘

]
≤ E

[ ∞∑
ℓ=1

𝑁−1∑
𝑘=1

1
2Δ
·
(
1 − 2Δ
1 + 2Δ

)ℓ ]
≤ O

(
𝑁

Δ2

)
.

Term C = E

[ ∞∑
ℓ=1

𝑁−1∑
𝑘=1

𝐵(ℓ, 𝑘)�̄� (ℓ)𝜏ℓ,𝑘

]
≤ E

[ ∞∑
ℓ=1

𝑁−1∑
𝑘=1

𝑁ℓ
(
1 + 2Δ2)
32Δ4 · (log𝑁 + 1) ·

(
1 − 2Δ
1 + 2Δ

)ℓ−1]
≤ O

(
𝑁 log𝑁

Δ6

)
.

Term D = E

[ ∞∑
ℓ=1

𝑁−1∑
𝑘=1

𝐵(ℓ, 𝑘)𝑉 (ℓ, 𝑘)𝜏ℓ,𝑘

]
≤ E

[ ∞∑
ℓ=1

𝑁−1∑
𝑘=1

𝑁ℓ
(
1 + 2Δ2)
32Δ4 · (log𝑁 + 1) ·

(
1 − 2Δ
1 + 2Δ

)ℓ ]
≤ O

(
𝑁 log𝑁

Δ6

)
.

Combining the above results and the statement follows.
□
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