Capturing the Long-Distance Dependency in the Control Flow Graph via Structural-Guided Attention for Bug Localization

Yi-Fan Ma, Yali Du and Ming Li∗
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
{mayf, duyl, lim}@lamda.nju.edu.cn

Abstract
To alleviate the burden of software maintenance, bug localization, which aims to automatically locate the buggy source files based on the bug report, has drawn significant attention in the software mining community. Recent studies indicate that the program structure in source code carries more semantics reflecting the program behavior, which is beneficial for bug localization. Benefiting from the rich structural information in the Control Flow Graph (CFG), CFG-based bug localization methods have achieved the state-of-the-art performance. Existing CFG-based methods extract the semantic feature from the CFG via the graph neural network. However, the step-wise feature propagation in the graph neural network suffers from the problem of information loss when the propagation distance is long, while the long-distance dependency is rather common in the CFG. In this paper, we argue that the long-distance dependency is crucial for feature extraction from the CFG, and propose a novel bug localization model named sgAttention. In sgAttention, a particularly designed structural-guided attention is employed to globally capture the information in the CFG, where features of irrelevant nodes are masked for each node to facilitate better feature extraction from the CFG. Experimental results on four widely-used open-source software projects indicate that sgAttention averages improves the state-of-the-art bug localization methods by 32.9% and 29.2% and the state-of-the-art pre-trained models by 5.8% and 4.9% in terms of MAP and MRR, respectively.

1 Introduction
Once a bug occurs in the software system, a bug report describing the abnormal behavior is issued to the software maintenance team for locating the bug, i.e., determining which source files caused the reported bug. However, it is costly for the maintenance team to manually locate the bug, especially when the software system is large. To alleviate the burden of software maintenance, bug localization, which aims to automatically locate the corresponding buggy source files according to the textual description in the bug report, has drawn significant attention in the software mining community [Lukins et al., 2008; Lam et al., 2015; Huo et al., 2016; Zhang et al., 2020; Ma and Li, 2022].

Traditional methods treat source code as pure text and locate buggy source files by measuring the lexical similarity between the source code and the bug report [Gay et al., 2009; Zhou et al., 2012; Lam et al., 2017]. Recent works indicate that the program structure in source code carries more semantics reflecting the program behavior, which is beneficial for bug localization. For example, NP-CNN [Huo et al., 2016] models the correlations between neighboring statements for improving bug localization. LS-CNN [Huo and Li, 2017] further exploits the inherent sequential nature of source code. KGBugLocator [Zhang et al., 2020] builds a code knowledge graph to model interrelations between classes, parameters, variables, methods, and properties for bug localization. Benefiting from the rich structural information in the Control Flow Graph (CFG), CFG-based bug localization methods have achieved the state-of-the-art performance. CG-CNN [Huo et al., 2020] decomposes the CFG into multiple execution paths according to complex structures like branches and loops for multi-instance learning. To model the correlations between execution paths, cFlow [Ma and Li, 2022] employs the flow-based GRU, a specially designed graph neural network, to extract the semantic feature from the CFG, where statement features are step-wisely propagated from the entry to the exit along all the possible execution paths.

Unfortunately, the step-wise feature propagation in the graph neural network suffers from the problem of information loss when the propagation distance is long. Consequently, when using the graph neural network to extract the feature from the CFG, it is difficult for nodes to capture the key information such as variable types in the distance. However, the long-distance dependency is rather common in the CFG. Figure 1 illustrates an example of the source code and the corresponding CFG, where each statement corresponds to one node in the CFG and edges denote the possible successive execution relationship. It can be observed that the variable declaration information in the red box is crucial for understanding the return value of the function in the green box. However, it takes entire eight steps to propagate the feature of

∗Ming Li is the corresponding author.
the declaration statement to the return statement if the graph neural network is used. Therefore, using the graph neural network to extract the feature from the CFG may lose the key information in the distance.

To alleviate the information loss problem and capture the long-distance dependency in the CFG, a straightforward way is to extract the feature of the CFG via the global attention [Vaswani et al., 2017], which allows each node to directly take features from all other nodes in the form of a weighted sum. While benefiting from the convenience of directly taking features from other nodes, employing the global attention to propagate node features in the CFG may be humbled by the irrelevant information in the global. For example, as shown in Figure 1, the two variable declaration statements in the red and blue boxes are irrelevant in semantics. Therefore, the blue node should avoid bringing in the feature of the red node in feature propagation, and vice versa.

One question arises here: how to take advantage of the global attention to capture the long-distance dependency in the CFG, while avoiding bringing in the features of irrelevant nodes? In fact, if the features of irrelevant nodes can be masked, we can still enjoy the convenience brought by the attention mechanism. To this end, we further exploit the structural information in the CFG to determine which nodes are related to it for each node. There are two kinds of dependencies that could be mined from the CFG. One is the execution dependency, which refers to whether one node will be executed or not is determined by another node, and the other is the computation dependency, which refers to the computation of one node depending on the results of other nodes or the declarations of the variables in it. By taking the features of nodes with dependency and masking the features of other irrelevant nodes, the long-distance dependency in the CFG would be carefully modeled.

In this paper, we propose a novel bug localization model named sgAttention (structural-guided Attention), which aims to capture the long-distance dependency in the CFG. In sgAttention, the structural-guided attention is employed to capture the information globally, where the execution and computation dependencies derived from the CFG are used to guide the masking of irrelevant information to facilitate better feature extraction. Experimental results based on four widely-used open-source software projects show that sgAttention outperforms the state-of-the-art bug localization methods and pre-trained models, indicating that capturing the long-distance dependency in the CFG via structural-guided attention is beneficial for improving bug localization.

The contributions of this work are summarized as follows:

- We argue that the long-distance dependency is crucial for feature extraction from the CFG. However, when capturing the long-distance dependency in the CFG, the features of irrelevant nodes should not be brought in.

- We propose a novel bug localization model named sgAttention, which employs a particularly designed structural-guided attention to capture the long-distance dependency in the CFG. In sgAttention, features of irrelevant nodes are masked for each node to facilitate better feature extraction from the CFG.

- We evaluate the performance of sgAttention on four widely-used open-source software projects. The results indicate that sgAttention averagely improves the state-of-the-art bug localization methods by 32.9% and 29.2% and the state-of-the-art pre-trained models by 5.8% and 4.9% in terms of MAP and MRR, respectively.

The rest of this paper is organized as follows. In Section 2, the proposed sgAttention model is introduced in detail. Experiments are provided in Section 3 and the related work is discussed in Section 4. Finally, this paper is concluded in Section 5 and the future work is discussed.

2 The Proposed Method

The bug localization problem is formulated as determining whether a given bug report and source file pair are correlated. Formally, let \(C = \{c_1, c_2, \ldots, c_{N_c}\} \) denotes the collection of source code files in a software project, \(R = \{r_1, r_2, \ldots, r_{N_r}\} \) denotes the set of bug reports received by the software maintenance team, and \(y_{ij} \in Y = \{0, 1\} \) indicates whether the source file \(c_j \in C \) is correlated to the bug report \(r_i \in R \), where \(N_c, N_r \) denote the number of source files and bug reports, respectively. The learning task of bug localization aims to learn a prediction function \(f: R \times C \rightarrow Y \) by minimizing the following objective function:

\[
\min_f \sum_{i,j} \mathcal{L}(f(r_i, c_j), y_{ij}) + \lambda \Omega(f),
\]

where \(\mathcal{L}(\cdot, \cdot) \) is the empirical loss, \(\Omega(f) \) is the regularization term, and \(\lambda \) is the trade-off hyper-parameter.

2.1 The General Framework

The general framework of sgAttention is shown in Figure 2, which is composed of three encoders and a prediction layer. These three encoders aim to extract the structural feature of code \(z^s \), the lexical feature of code \(z^l \), and the bug report feature \(z^r \), respectively. Then, all the features are concatenated for further fusion and prediction in the prediction layer:

\[
\hat{y}_{ij} = f(r_i, c_j) = f_{fuse}(z^s_j, z^l_j, z^r_i).
\]
The prediction layer is implemented with a three-layer fully connected network, and batch normalization is applied after the first fully-connected layer to prevent overfitting.

In sgAttention, the cross-entropy loss is used as the empirical loss function:

\[
 \text{Loss} = - \sum_{i,j} y_{ij} \log(\hat{y}_{ij}) + (1 - y_{ij}) \log(1 - \hat{y}_{ij}),
\]

and \(L_2\) norm is employed for regularization.

2.2 The CFG Encoder

The CFG encoder aims to extract the structural feature \(z^*_j\) from the source code \(c_j\). Since each node in the CFG corresponds to one statement in the code, we need to extract the semantic features of statements first. Therefore, we additionally insert a statement encoder before the CFG encoder to extract the statement feature \(x_v\) from the corresponding tokens.

In sgAttention, we employ the encoder of the Transformer [Vaswani et al., 2017] as the basic building block, which is composed of \(N\) architecturally identical stacking layers:

\[
 H^n = \text{EncoderLayer}^n(H^{n-1}), \quad n \in [1, N],
\]

where \(H^0\) is the embedding of input tokens. For each encoder layer, it applies a multi-head self-attention (MHA) operation followed by a feed-forward network (FFN) over the input:

\[
 G^n = \text{LN}(\text{MHA}(H^{n-1}) + H^{n-1}),
\]

\[
 H^n = \text{LN}(\text{FFN}(G^n) + G^n),
\]

where FFN is composed of two linear transformations with a ReLU activation in between, and LN represents the layer normalization operation. The MHA is computed via:

\[
 \text{MHA}(H^{n-1}) = [\text{head}_1; \ldots; \text{head}_h]W^O,
\]

\[
 \text{head}_i = \text{Attn}(H^{n-1}W^Q, H^{n-1}W^K, H^{n-1}W_V),
\]

\[
 \text{Attn}(Q, K, V) = \text{Softmax}(\frac{QK^T}{\sqrt{d_k}})V,
\]

where \(W^O \in \mathbb{R}^{d_h \times d_h}, W^Q, W^K, W_V \in \mathbb{R}^{d_h \times d_h}\) are parameters, \(h = d_h/d_k\) is the number of heads, and \(d_h, d_k\) are the dimension of the representation and a head, respectively.

The statement encoder only contains one encoder layer introduced in E.q. 4. We first tokenize each statement and remove unimportant punctuation such as braces, commas, and quotation marks. Then, each token term is embedded with the token embedding in CodeBERT [Feng et al., 2020], which is a Transformer-architecture model pre-trained on pairs of natural language and programming language tokens. The statement encoder encodes each statement individually, respecting the atomicity of the statement explicitly.

\[
 x_v = \text{Max-Pooling}(\text{EncoderLayer}^{n}(\hat{X}^t)),
\]

where \(\hat{X}^t = \{[CLS], X^t, [SEP]\}\) is the input sequence, \(X^t \in \mathbb{R}^{L_t \times d_t}\) is the token vector matrix of one statement, and \(L_t, d_t\) denote the number tokens in the statement and the dimension of the token vector, respectively. The \([CLS]\) is a special symbol added in front of the input sequence, and \([SEP]\) is a special separator token indicating the end of the input sequence. In order to extract the most distinguishing signal, we employ the max-pooling over the output feature sequence to extract the statement feature \(x_v\), which is used for the input node feature in the CFG encoder.

The CFG encoder contains 6 stacking encoder layers introduced in E.q. 4, except that the global attention is replaced by the structural-guided attention. The structural feature \(z^*_j\) is extracted by employing the mean-pooling over the node features outputted by the last encoder layer:

\[
 z^*_j = \text{Mean-Pooling}(\text{CFGEncoder}(X^v_{j})),
\]

where \(X^v_{j} \in \mathbb{R}^{L_v \times d_v}\) is the node feature matrix of the CFG, and \(L_v, d_v\) denote the number nodes in the CFG and the dimension of the node feature, respectively.

Structural-Guided Attention. As aforementioned, nodes in the CFG should only take the features of nodes with dependency. To this end, instead of using the global attention introduced in E.q. 9, we particularly design a structural-guided attention in the CFG encoder. Specifically, we add a masking matrix \(M\) on the attention weight:

\[
 \text{sgAttn}(Q, K, V) = \text{Softmax}(\frac{QK^T}{\sqrt{d_k}} + M)V.
\]

The value of the masking matrix \(M\) relies on the node dependency in the CFG. Formally, \(M_{ij}\) equals 0 if and only if the \(i\)th node is depended on the \(j\)th node, and \(-\infty\) otherwise.

Figure 3 illustrates an example of the structural-guided attention. Each row in the masking matrix denotes the attention masking of other statements to the corresponding statement, where only statements with white boxes placed allow being attended to. There are two kinds of dependencies that could be mined from the CFG. One kind is the execution dependency, which refers to whether one node will be executed or not is determined by another node. Specifically, nodes in the Loop-body are execution-dependent on the Loop-condition, and nodes in the If-body or the Switch-body are execution-dependent on the If-condition or the corresponding Case-statement, respectively. Thus, nodes in the Loop-body should take the feature of the Loop-condition, and so
do nodes in the If-body or the Switch-body. For example, as shown in the bottom left of Figure 3, whether the Append and the Assign statements in the While-statement will be executed or not depends on the While-condition. Thus, the Append and the Assign statements are execution-depended on the While-condition, meaning that they could take the feature of the While-condition in the structural-guided attention. The other kind is the computation dependency, which refers to the computation of one node requiring the results of other nodes or relying on those nodes that declare the variables in it. For example, as shown in the bottom middle of Figure 3, the declaration of the fInStr variable uses the file variable, meaning that the declaration of fInStr is computation-depended on the declaration of file. Thus, the declaration statement of fInStr could take the feature of the declaration statement of file. Similarly, the declaration of inStr could take the feature of the declaration of fInStr in the structural-guided attention.

In addition, both the execution dependency and the computation dependency are transitive and asymmetric. As shown in the bottom right of Figure 3, the declaration of inStr is computation-depended on the declaration of fInStr and the declaration of fInStr is computation-depended on the declaration of file. We believe in that knowing the declaration of file ought to be beneficial for better understanding the fInStr variable, which is used in the declaration of inStr. According to the transitivity, the declaration of inStr is depended on the declaration of file. Thus, the declaration of inStr could also take the feature of the declaration of file. On the other hand, the declaration of file does not use the fInStr variable, which should be regarded as irrelevant information for it. Although the declaration of fInStr is computation-depended on the declaration of file, the asymmetry makes sure that the declaration of fInStr is masked for the declaration of file.

By taking the features of nodes with dependency and masking the features of irrelevant nodes, the long-distance dependency in the CFG could be caught without being humbled by the irrelevant information in the global.

It should be noted that adding the [CLS] and the [SEP] symbols in front of and behind the input is a normal operation in the sequential input and has been proven effective [Devlin et al., 2019; Feng et al., 2020]. However, we did not use such normal operation in the CFG encoder since it can hardly define which statement is relevant to the special symbol, resulting in special symbols would be masked by all the nodes. Although Graphormer [Ying et al., 2021] suggests that adding an additional super-node connected to all the nodes and including the feature of the super-node as the graph feature are beneficial for the performance, we empirically found that including the mean of node features performs better in bug localization. See Section 3.4 for more details.

2.3 The Lexical Encoder

The lexical encoder aims to extract the lexical feature z_j^l from the input source code c_j. Here we use the same token embedding as in the statement encoder, while tokens from different statements are concatenated as a sequence X_j^l. Then, we fine-tune the CodeBERT model as the lexical feature encoder with the input sequence $X_j^l = \{[CLS], X_j^l, [SEP]\}$:

$$z_j^l = \text{CodeBERT}(X_j^l).$$

We follow the suggestion in [Feng et al., 2020] to include the feature of the [CLS] token outputted by the last encoder layer as the lexical feature z_j^l of the input source code.

2.4 The Report Encoder

The report encoder takes the raw data of bug report r_i as input, and aims to extract the semantic feature z_i^r of it.

We use the normal natural language preprocessing method for bug report preprocessing. Specifically, we first tokenize
the bug report and remove the stop words and the punctuation. We employ a Transformer encoder with 6 encoder layers, which is shown in Eq. 4, as the report encoder. The report encoder takes the $\hat{X}_i = \{[CLS], X_i, [SEP]\}$ as the input sequence, where $X_i \in \mathbb{R}^{L_i \times d_r}$ is the token vector matrix of the bug report, and L_i, d_r are the length of the bug report and the dimension of the token vector, respectively.

$$z_i = \text{Transformer}(\hat{X}_i). \quad (14)$$

As suggested in [Devlin et al., 2019], the feature of the $[CLS]$ token outputted by the last encoder layer is included as the report feature z_i, which is used for further prediction.

3 Experiment

In this section, we evaluate sgAttention against a number of baseline methods based on four widely used datasets. We first introduce the datasets and the baselines in Section 3.1 and 3.2, respectively. Then, experimental results are reported in Section 3.3, followed by the ablation study in Section 3.4.

3.1 Datasets

The four datasets used are extracted from real-world open-source software projects. As suggested in [Fischer et al., 2003], the ground truth correlations between bug reports and source files are extracted from the bug tracking system (i.e., Bugzilla) and the version control system (i.e., GitHub). The statistics of the four datasets are shown in Table 1.

Eclipse Platform defines a set of frameworks and common services that makes up Eclipse infrastructures. The first dataset Platform is extracted from the “UI” component of it. Plug-in Development Environment is a tool for creating and deploying Eclipse plug-ins. The second dataset PDE is extracted from the “UI” component of it. Java Development Tools is an Eclipse project that provides the tool plug-ins supporting the development of any Java application. The third dataset JDT is extracted from the “UI” component of it. The AspectJ project is an aspect-oriented extension to the Java programming language, which is the last dataset and denoted as AspectJ. All these datasets have been extensively used in previous bug localization studies [Ye et al., 2014; Huo et al., 2021; Ma and Li, 2022].

As suggested in [Kochhar et al., 2014], we have filtered those fully localized bug reports from the dataset, that is, the names of all corresponding buggy source files have been included in the bug report. For such bug reports, they no longer need a machine learning model to automatically locate the buggy source files. It should be noted that this approach makes the performance seem to be worse, but more in line with the real world situation.

3.2 Baseline Methods

In order to show the effectiveness of sgAttention, we compare it with the following state-of-the-art bug localization methods and pre-trained models:

- CG-CNN [Huo et al., 2020]: A CFG-based bug localization method, which decomposes the CFG into multiple execution paths for multi-instance learning.
- KGBugLocator [Zhang et al., 2020]: A knowledge-graph-based bug localization method, which extracts the code feature based on the code knowledge graph embedding and keywords supervised bi-directional attention.
- CodeBERT [Feng et al., 2020]: A Transformer-architecture model that pre-trained on natural language and programming language pairs using both masked language modeling and replaced token detection tasks.
- GraphCodeBERT [Guo et al., 2021]: A Transformer-architecture model that enhances the code representation with the data flow, pre-trained on masked language modeling, edge prediction, and node alignment tasks.
- cFlow [Ma and Li, 2022]: A CFG-based bug localization method, which employs a particularly designed flow-based GRU to step-wisely propagate node features from the entry to the exit along all the execution paths.
- FLIM [Liang et al., 2022]: An information-retrieval-based bug localization method, which locates buggy files based on the cosine similarity between the report feature and the code feature extracted by CodeBERT.

To compare with these baselines, we follow the same experiment settings suggested in their studies. For hyper-parameters in sgAttention, each encoder layer contains 12 attention heads, and the dimensions of all the features are set as 768. AdamW [Loshchilov and Hutter, 2019] with a learning rate of 1e-5 and linear schedule with a warm-up ratio 0.1 are employed for optimization in sgAttention. We train our model on NVIDIA Tesla A100 with 128GB RAM, and the source code is publicly available.

3.3 Experimental Results

We use three metrics for evaluation: Mean Average Precision (MAP), Mean Reciprocal Rank (MRR), and Top-10 Rank, all of which have been widely used in previous bug localization studies [Lam et al., 2017; Zhang et al., 2020; Ma and Li, 2022]. For each dataset, we randomly split the dataset into the training, validation, and test sets in a ratio of 8:1:1. We first determine the batch size, the number of training epochs, and the trade-off hyper-parameter λ based on the performance on

<table>
<thead>
<tr>
<th>Project</th>
<th># source files</th>
<th># bug reports</th>
<th># matches</th>
<th>Avg. buggy files per report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>6,125</td>
<td>5,016</td>
<td>18,055</td>
<td>3.60</td>
</tr>
<tr>
<td>PDE</td>
<td>5,330</td>
<td>2,612</td>
<td>10,721</td>
<td>4.10</td>
</tr>
<tr>
<td>JDT</td>
<td>10,845</td>
<td>5,080</td>
<td>14,408</td>
<td>2.85</td>
</tr>
<tr>
<td>AspectJ</td>
<td>6,908</td>
<td>368</td>
<td>1,522</td>
<td>4.14</td>
</tr>
</tbody>
</table>

Table 1: The statistic information of the four datasets.
the validation set. Then, the training and validation sets are mixed up to train the model. This process is repeated for 3 times and the average performance on the test set is reported.

The evaluation results in terms of MAP are listed in Table 2. The best performance on each dataset is boldfaced. It can be observed that sgAttention outperforms all the baselines on all the datasets in terms of MAP. It should be noticed that sgAttention achieves the best average MAP performance (0.568), which improves KGBugLocator (0.473) by 40.6%, CG-CNN (0.486) by 36.9%, CodeBERT (0.619) by 7.4%, GraphCodeBERT (0.629) by 5.8%, cFlow (0.501) by 32.9%, and FLIM (0.436) by 52.7%.

The evaluation results in terms of MRR are listed in Table 3, with the best performance on each dataset shown in bold. Similar to the performance in terms of MAP, sgAttention achieves the best MRR performance on all the datasets. In addition, sgAttention achieves the best average MRR performance (0.778), which improves KGBugLocator (0.572) by 35.9%, CG-CNN (0.585) by 32.9%, CodeBERT (0.737) by 5.5%, GraphCodeBERT (0.742) by 4.9%, cFlow (0.602) by 29.2%, and FLIM (0.531) by 46.5%.

Across all the four datasets, sgAttention improves GraphCodeBERT, the second best method, by 5.6% to 6.0% in terms of MAP and by 4.4% to 5.3% in terms of MRR. Besides, sgAttention improves the state-of-the-art bug localization methods by at least 24.0% in terms of MAP and by at least 26.1% in terms of MRR, which should be considered a huge improvement over the state-of-the-art.

The evaluation results in terms of Top-10 Rank are shown in Figure 4. Not surprisingly, sgAttention once again outperforms all the baselines on all the datasets. Higher Top-10 Rank values indicate that more buggy source files could be correlated by sgAttention when the same number of potential files are examined. Considering that only a limited number of potential files provided by the bug localization model will be checked, sgAttention would be more useful in practice.

In summary, experimental results on four widely-used open-source software projects indicate that sgAttention outperforms the state-of-the-art bug localization methods and pre-trained models in terms of all the three commonly used metrics, demonstrating that capturing the long-distance dependency in the CFG via the structural-guided attention is beneficial for improving bug localization.

3.4 The Ablation Study

To evaluate the effectiveness of the sgAttention design, we conduct ablation studies on the CFG encoder, the lexical encoder, the attention masking mechanism, and the aggregation method imposed on the CFG encoder, which are denoted as w/o CFG, w/o token, w/o mask, and w/o mean, respectively. The evaluation results in terms of MAP and MRR are shown in Table 4 and Table 5, respectively.

Specifically, sgAttention w/o CFG denotes a model that only uses the lexical encoder and the report encoder, which exactly is the CodeBERT model. Compared with sgAttention, the MAP drops by 6.2% to 8.5% and the MRR drops by 4.6% to 6.4%, indicating that the CFG plays an important role in bug localization. By adding a CFG encoder without the attention masking mechanism, the sgAttention w/o mask model performs better on all the datasets, and even better than GraphCodeBERT, which means that CFG carries more crucial information than the data flow graph for bug localization. However, compared with sgAttention, it still decreases by 3.1% to 5.3% in terms of MAP and by 2.3% to 4.2% in terms of MRR, indicating that only focusing on relevant nodes in the CFG improves the performance of bug localization.

In addition, sgAttention w/o lexical denotes a model that only uses the CFG encoder and the report encoder. It can be observed that compared with sgAttention, the MAP decreases by over 10.4% and the MRR decreases by over 9.3%, indicating that the lexical information is crucial for bug localization.
At last, sgAttention w/o mean denotes a variant of sgAttention that follows the suggestion in Graphormer [Ying et al., 2021] to aggregate node features. Specifically, it adds an additional super-node connected to all nodes in the CFG, and includes the feature of it as the CFG feature. We empirically found that such operations do not perform better than simply including the mean of node features as the CFG feature.

4 Related Work

In this section, we introduce a number of works related to bug localization and some transformer-based models designed for software mining tasks.

Bug localization aims to automatically locate buggy source files based on the textual description in the bug report. A large class is the information-retrieval-based bug localization methods, which locate buggy files based on the lexical similarity between the bug report and the source code [Poshyvanyk et al., 2007; Lukins et al., 2008; Saha et al., 2013; Wang et al., 2018]. For example, BugLocator [Zhou et al., 2012] employs the revised Vector Space Model (rVSM) to measure the lexical similarity between the report and the code. DNNLOC [Lam et al., 2017] further combines the rVSM with the auto-encoder to alleviate the lexical mismatch problem in information retrieval. BLIZZARD [Rahman and Roy, 2018] and FineLocator [Zhang et al., 2019] improve the information retrieval quality with the query reformulation. Fejzer et al. [2022] adaptively reweight 19 similarity scores in [Ye et al., 2016] to improve the retrieval quality, which is further incorporated by FLIM [Liang et al., 2022]. However, many recent studies indicate that mining the program structure from the source code is beneficial for improving bug localization [Huo et al., 2016; Youm et al., 2017; Huo and Li, 2017]. CG-CNN [Huo et al., 2020] decomposes the CFG of source code into multiple execution paths for multi-instance learning. KGBugLocator [Zhang et al., 2020] builds a code knowledge graph to model interrelations between classes, parameters, variables, methods, and properties for bug localization. MRAM [Yang et al., 2021] builds the code revision graph from past code commits and reports for method-level bug localization. cFlow [Ma and Li, 2022] designs a flow-based GRU to extract the feature of the CFG by step-wise feature propagation.

In addition, many methods deal with the bug localization problem from other perspectives. Locus [Wen et al., 2016] and FBL-BERT [Ciborowska and Damevski, 2022] retrieve buggy source files from the code change logs. BRTracer [Wong et al., 2014] improves bug localization with segmentation and stack-trace analysis. Pathidea [Chen et al., 2022] improves bug localization by reconstructing the execution path from the bug report. TRANP-CNN [Huo et al., 2019] and COOBA [Zhu et al., 2020] are designed for the cross-project bug localization with the problem of insufficient history data. The usages of bug localization models in the education [Gupta et al., 2019] and the industrial setting [Jarman et al., 2022] are also explored.

Nowadays, with the success of the Transformer on the natural language processing area, a number of Transformer based models have been proposed for software mining tasks. For example, GREAT [Hellendoorn et al., 2020] stacks the Transformer encoder layers and the graph neural network to extract the feature of the abstract syntax tree for the variable misuse task. TPTrans [Peng et al., 2021] integrates the encoding of the absolute and the relative path in the abstract syntax tree into the Transformer for the code summarization task. MuST [Zhu et al., 2022] is a Transformer-architecture program translation model that leverages multilingual code snippets for training. CodeBERT [Feng et al., 2020] is a pre-trained model that pre-trained on natural language and programming language pairs using both masked language modeling and replaced token detection tasks, and GraphCodeBERT [Guo et al., 2021] further enhances the code representation with the data flow.

5 Conclusion

In this paper, we propose a novel bug localization model named sgAttention, which employs a particularly designed structural-guided attention to capture the long-distance dependency in the CFG. In sgAttention, each node only takes the features of the execution-depended and the computation-depended nodes, and masks the features of irrelevant nodes to facilitate better feature extraction of the CFG. Experimental results based on four widely-used open-source software projects show that sgAttention averagely improves the state-of-the-art bug localization methods by 32.9% and 29.2% and the state-of-the-art pre-trained models by 5.8% and 4.9% in terms of MAP and MRR, respectively. The empirical evaluation indicates that capturing the long-distance dependency in the CFG via the structural-guided attention is beneficial for improving bug localization.

For future work, it is interesting to extract the features of other code graph representations like the abstract syntax tree or the call graph with the structural-guided attention.
Acknowledgments
This research was supported by NSFC (62076121, 61921006).

References

