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ABSTRACT
Complex media objects are often described by multi-view feature
groups collected from diverse domains or information channels.
Multi-view learning, which attempts to exploit the relationship am-
ong multiple views to improve learning performance, has drawn
extensive attention. It is noteworthy that in some real-world appli-
cations, features of different views may come from different pri-
vate data repositories, and thus, it is desired to exploit view re-
lationship with data privacy preserved simultaneously. Existing
multi-view learning approaches such as subspace methods and pre-
fusion methods are not applicable in this scenario because they
need to access the whole features, whereas late-fusion approaches
could not exploit information from other views to improve the in-
dividual view-specific learners. In this paper, we propose a novel
multi-view learning framework which works in a hybrid fusion
manner. Specifically, we convert predicted values of each view
into an Accumulated Prediction Matrix (APM) with low-rank con-
straint enforced jointly by the multiple views. The joint low-rank
constraint enables the view-specific learner to exploit other views
to help improve the performance, without accessing the features
of other views. Thus, the proposed RANC framework provides
a privacy-preserving way for multi-view learning. Furthermore,
we consider variants of solutions to achieve rank consistency and
present corresponding methods for the optimization. Empirical in-
vestigations on real datasets show that the proposed method achiev-
es state-of-the-art performance on various tasks.

Categories and Subject Descriptors
H.2.8 [Database Management]: [Database Applications – Data
Mining]; I.2.6 [Artificial Intelligence]: [Learning]
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1. INTRODUCTION
With the rapid development of the Internet, a huge number of

rich media objects can be collected from various information chan-
nels, e.g., nowadays a piece of news can be naturally described
using text, audio, video clip and hyperlink[17][35]. In this pa-
per, we focus on problems where data are gathered from multiple
private information channels, i.e., features cannot be shared dur-
ing processing. This problem occurs frequently in many scenar-
ios, e.g., knowledge management/analysis on database with differ-
ent views/tables whose access are prohibited from different users;
multi-view data analysis when cooperation-competition relation-
ship exists among enterprises or researchers. In a more concrete
case of image analysis, researchers can extract their own features
of images as well as get the retrieval results from Google. Never-
theless they cannot obtain the image features used by Google, i.e.,
the features of researchers or Google are information from different
private channels.

In order to analyze complex information from multiple channels,
multi-view learning has attracted extensive attention [21] [24] [34].
Various multi-view learning approaches can be classified into four
groups: multi-view subspace learning algorithms aim at obtaining a
common subspace shared by multiple views and then learn models
in that shared subspace [13] [27]; pre-fusion methods like multiple
kernel learning [11] mainly fuse feature information by weighted
combination of kernels produced separately on each view; late fu-
sion methods combine outputs of the models constructed from dif-
ferent view-specific features but leave the classifiers training phase
unimproved [36]; disagreement-based methods focus on how to use
unlabeled data to enhance the performance of learners via the com-
patibility between two views [5] [31] [39].

The aforementioned methods have achieved great success in var-
ious tasks, except scenarios with cooperation competition where
access to multi-view features is restricted. Subspace style and pre-
fusion approaches have to interact with view features, so they could
not protect the privacy of different information channels. Late fu-
sion methods only build a combined model based on outputs from
each view, and therefore, the information from other information
channels could not help improve learning ability of view-specific
classifiers. Most existing disagreement-based multi-view learning
approaches, such as co-training [5], rely on strong assumptions like
redundant and independent views; though recent theoretical stud-
ies [32] [33] disclosed that weaker assumption is sufficient, new
effective algorithms are still in design.

In this paper, we propose a novel framework working in a hybrid
fusion manner. This framework, RANC (RANk Consistency), can
be easily applied to the cooperation-competition multi-view learn-
ing scenarios, because each view-specific learner is able to exploit
the information from other views to improve the performance with-



out accessing features of these views; in other words, the RANC
framework provides a way to privacy-preserving multi-view learn-
ing. The defined rank consistency is a criterion for seeking consis-
tent predictions on multiple views. We formulate it by introducing
an Accumulated Prediction Matrix (APM) which is stacked by pre-
dicted values/labels of each view. It is notable that in the ideal case,
the predicted results of multi-view models should be consistent on
each view so the rank of APM should be equal to C−1, where C is
the number of classes. However, the rank of APM is usually larger
than C− 1 in practice for the potential inconsistency among multi-
view predictions. Practically, lower rank of APM implies more
view consistency. Fig. 1 is an illustration of APM on a multi-view
dataset Reuters, which gives a spectrum plot on singular values of
APM. The x-axis are singular values sorted in descending order.
The spectrum is long-tail distributed started from the (C − 1)th
singular value, which implies low rank property of APM. There are
two obvious knee points (KP) in Fig. 1. KP1 may be caused by
the ambiguities among C classes in Reuters. Note that KP1 can be
vanished for separable problems. KP2 at C − 1 clearly reveals the
rank consistency property in multi-view problems. Motivated by
this observation from Fig. 1, RANC reduces the long tail compo-
nents of APM to leverage predictions close to the ideal case, and
apparently is naturally designed for applications with two or more
views. Since those properties mentioned above can be estimated on
the outputs from each view instead of directly using their features,
the data privacy can be maintained to a greatest extent.

In our proposed framework, rank consistency criterion can be
transformed into a rank regularizer term. Specifically, we use the
truncated nuclear norm [15] to model it which can be incorporated
with many different losses. Solving this framework leads to en-
hance the classification ability of view-specific predictor. RANC
constructs a hybrid fusion paradigm combining advantages of both
pre-fusion and late-fusion methods. In this paper, we demonstrate
this framework with square loss in detail and the implementation
can be optimized effectively with both Proximal Gradient (PG) and
Alternative Direction Method of Multipliers (ADMM) techniques.
Furthermore, the paper also presents an accelerated version with
rank-one update which can also get satisfying results. We empir-
ically validate the effectiveness of our framework and our model
achieves significantly better performance on various tasks. The
main contributions of this paper can be summarized as follows:

• A novel rank consistency criterion based multi-view learning
framework (RANC), which preserves data privacy of multi-
ple channels, i.e., the learner on each view will access to the
corresponding view features only and its interactions with
other views are limited.

• RANC can naturally handle data with more than two views.
Besides, it can help improve the learning ability of the indi-
vidual predictor during the training phase.

• Our solutions to RANC are rendered effective. Meanwhile,
an accelerated implementation is also presented.

Section 2 gives the related work. The main proposed framework
together with detailed solutions is presented in section 3. In section
4, empirical investigations on real datasets are discussed. Finally,
we conclude in section 5.

2. RELATED WORK
How to exploit relationship among multiple views is fundamen-

tal to multi-view learning approaches. As mentioned above, there
are 4 categories of multi-view learning methods, and their strategies
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Figure 1: A typical singular value spectrum plot of APM on Reuters
(5 views and 6 classes). APM is obtained with linear SVM on each
view separately.

of exploiting view relationship are of diversity to improve perfor-
mance. Subspace approaches seek correlations between views, and
subsequent tasks like classification will be performed in the learned
subspace. E.g., CCA [13] finds a linear projection for each of two
views and generates a shared subspace where the correlation be-
tween two views is maximized. Some others, such as MvDA [18]
and MvLPP [27], are of similar intuitions. Pre-fusion methods con-
sider fusing features or feature derivations (e.g., kernels [11], dis-
tances [37]) before the training phase. It is typical that they rep-
resent the features as multiple kernel matrices and then combine
them in a kernel space. Multiple kernel learning, one of the widely
used pre-fusion methods, learns a linear [9] or nonlinear [10] com-
bination of kernels for classification. These two types of methods,
however, both require access to features of all views.

Late fusion strategies like RLF [36], aim at fusing the predicted
values of each view while leaving multi-view features untouched.
Nevertheless, the fusion process is not involved in classifier training
phase, which makes late fusion not helpful in enhancing learners of
each view. Moreover, it is required to retrain the whole late fusion
model when the predictions on any of the views are changed, and
this makes late fusion methods expensive and lack of flexibility.

Disagreement-based methods, such as Co-Training [5], focus on
exploiting unlabeled data in semi-supervised learning scenarios.
Traditional Co-Training enhances the performance of learners via
the compatibility between views, but can hardly deal with multiple
views [39].

By comprehensively considering the advantages and drawbacks
of existing multi-view learning approaches, the proposed frame-
work RANC defines a new criterion named rank consistency to
characterize the consistency of predictions among multiple views.
Rank consistency is implemented with matrix rank minimization
regularizer. Rank minimization for a matrix is usually used in
multi-class [12] or multi-label [22] problem, where different labels
(output) are related to uniform input space (single input). In multi-
label learning, rank based regularization is often used for reflecting
the correlation between labels. However, in multi-view settings,
classifiers are functional mappings which stretches across different
views (input) and a single output. Consequently, it is required to de-
fine the rank consistency regularizer with a different data structure,
namely, the accumulated prediction matrix (APM). Formulated on
prediction matrix APM, RANC can protect features of individual
view from being accessed by learners built on other views. Besides,
RANC is fully incorporated in training of individual classifier on
each view to refining the classifiers with updated predictions.



3. RANK CONSISTENCY BASED MULTI-
VIEW LEARNING

In multi-view learning, an instance is characterized by multiple
groups of features while they are only with one unified label. With-
out loss of generality, we suppose there are K views and each view
has n instances, where the first l of n instances are labeled, and the
rest n− l are unlabeled. The ith instance xi can be represented as
a collection of view-specific vectors xi,k ∈ Rdk , where dk is the
dimension of the kth view. For labeled examples, instance xi has
label yi ∈ {0, 1} in binary classification problem. In multi-class
cases with C classes, the label yi for instance xi is expanded to a
vector with C elements, where yi,j = 1 indicates the ith instance is
with label j, otherwise, yi,j = 0. The whole data for kth view can
be expressed as Xk = [x⊤

1,k;x
⊤
2,k; · · · ;x⊤

n,k] ∈ Rn×dk , and the
corresponding labels can be expressed as Y ∈ {0, 1}l×C . Clas-
sifier on each view is denoted as fk : xi,k → ŷ, where xi,k ∈
Rdk , ŷ ∈ RC , and loss of instance i on view k is defined as
ℓ(fk(xi,k), yi). Then the prediction of Xk on the kth view is
combined into Fk = [fk(x1,k)

⊤; fk(x2,k)
⊤; · · · ; fk(xn,k)

⊤] ∈
Rn×C , and predictions from all views can be stacked into an Ac-
cumulated Prediction Matrix (APM), which can be defined as F =
[F1, F2, · · · , FK ] ∈ Rn×CK .

Ideal multi-view classifiers fk, k = 1, · · · ,K, give identical
outputs for a binary classification problem and consequently make
the rank of APM F equal to one. Yet in practice, the rank of APM
could not be exactly equal to one. As Fig. 1 shows, in a six-class
problem, the singular values of APM in descending order reveal
an “exponential like” decay with a long tail in the right part of
Fig. 1. In particular, the second knee point appears at the 5th sin-
gular value. This is obviously consistent with our assumption that
in practical cases, the rank of APM should be equal to the free-
dom degree of class number C − 1. This phenomenon implies the
predictions from all views tend to be with low rank when multi-
view classifiers are not exactly identical. To induce consistency
among multiple classifiers in multi-view learning, the rank consis-
tency therefore can be defined as:

Definition 1. Rank consistency for predictions on multiple views
on a certain data collection is an operator RC(·) : Rn×CK → R,
which defined on the APM F , and we define RC(F ) = rank(F ).

We can summarize two fundamental properties of the defined rank
consistency operator as follows:

Property 1. RC(F ) reflects the prediction compatibility among
views. A large value of RC(F ) implies imperfection of prediction
consistency, and a small value indicates predictions from all views
are aligned well. (Qualitative property)

Property 2. The expected rank consistency is C − 1, which is
the freedom degree of label assignments in all views for concerned
dataset. In particular, for a binary problem it is equal to 1. (Quan-
titative property)

Rank consistency can be easily used as a regularizer in a learn-
ing framework, which is helpful to achieve compatible and consis-
tent predictions upon all views and can generate better classifier on
each view. In next subsections, we first propose the whole RANC
framework based on the defined rank consistency. After imple-
menting concrete classifiers for each view, we show the proposed
framework with rank consistency as a regularizer can be effectively
solved with different techniques.

3.1 Rank Consistency Framework
The key to the proposed method is the use of the rank consis-

tency, which boosts performance of view-specific learner by seek-
ing for prediction consistency. Benefitted from the rank consistency
as a regularizer, we can bridge the maximization of label consis-
tency among multiple views and the part of the classification task
together. We define the RANC framework as:

min
F

K∑
k=1

Lk(Fk, Y ) + λRC(F ). (1)

There are K views and F is the APM. The first term Lk depicts the
objective functions according to the property of the kth view. Fur-
thermore, Li and Lj can be different while the predictor on each
view is self-adaptive. The second term, RC(·), is the rank consis-
tency operator on APM, which leverages the prediction consistency
to enhance learner on each view. λ > 0 is a balance parameter
reflects the weights between view-specific objective and rank con-
sistency regularizer.

Specifically, objective function Lk on the kth view in Eq. 1 is
generally with the form of a regularized empirical loss:

min
Fk

Lk(Fk, Y ) = ℓ(Fk, Y ) + γr(Fk),

here r(·) is the regularizer for view-specific classifier. γ > 0 is a
scalar coefficient to balance the weights of the two terms. Here the
loss term ℓ(·) can take several forms, e.g., square loss or hinge loss
for both linear and nonlinear problems. Eq. 1 indicates the classi-
fier in ℓ(·) and the prediction results Fk for instances are connected,
which provides the possibilities of refining predictions with rank
consistency by optimizing them simultaneously. To simplify the
discussion, here we use the regularized square loss as the basic ob-
jective function for each view, with linear classifiers W1, · · · ,WK :

min
Wk,bk,Fk

∥XkWk + 1b⊤k − Fk∥2F + γ∥Wk∥2F (2)

s.t. Fk ∈ D : F 1,··· ,l
k = Y, 0 ≤ Fk ≤ 1.

The feasible domain of Fk is D. Constraint F 1,··· ,l
k = Y restricts

the prediction on labeled data the same as the ground truth to avoid
collapsing of predictions, where F 1,··· ,l

k is the first l rows of the
prediction matrix Fk. In addition, it constrains predicted values
into the same range as true labels by 0 ≤ Fk ≤ 1 to avoid trivial
solutions. In Eq. 2, bk ∈ RC is the bias for current predictor.
By centralizing both instances and predictions, the objective can be
rewritten as follows:

ℓ(Wk, Fk) = ∥HXkWk −HFk∥2F + γ∥Wk∥2F , (3)

H = I− 1
n
11⊤ is the centralization matrix, where I is the identity

matrix and 1 is a vector with all the elements equal to one. Without
loss of generality, we can assume the data matrix X is centralized
so that HXk = Xk. Furthermore, by taking derivative of Eq. 3
w.r.t. Wk and setting it to zero, we have:

Wk = (X⊤
k Xk + γI)−1X⊤

k Fk. (4)

Combining Eq. 3 and Eq. 4, we simplify the rank consistency fram-
ework in Eq. 1 into a form only relying on the predicted values Fk

of each view, i.e., the APM F , as follows:

min
Fk∈D

K∑
k=1

Tr(F⊤
k (H −Xk(X

⊤
k Xk + γI)−1X⊤

k )Fk)+λRC(F ),

(5)
here Tr(·) is the matrix trace operator.



3.2 Directional Rank Consistency Optimiza-
tion with Truncated Nuclear Norm

Rank norm minimization is NP-hard and nuclear norm (or trace
norm) [7] usually acts as a convex surrogate. For a matrix X ∈
Rm×n, we assume its singular values σi, i = 1, · · · ,min(m,n),
are ordered from large to small. The nuclear norm is defined as
∥X∥∗ =

∑min(m,n)
i=1 σi. Nuclear norm has been widely used in

various scenarios where rank norm minimization is required [12].
However, the quantitative property of rank consistency indicates

consistent predictions of learners constructed on each view respec-
tively always have C−1 freedom degree on sufficient large dataset.
Blindly minimizing the rank of APM will break the natural struc-
ture of multi-view predictions and may lead to degeneration of clas-
sification performance. Therefore, a directional optimization ap-
proach, which can conduct the RC(F ) until converging to C − 1
during the minimization procedure, is desired in our task. Inspired
by [15], we use truncated nuclear norm as a surrogate function of
the RC(·) operator:

Definition 2. Given a matrix X ∈ Rm×n, the truncated nuclear
norm ∥X∥r is defined as the sum of min(m,n) − r minimum
singular values, i.e., ∥X∥r =

∑min(m,n)
i=r+1 σi(X).

Different from traditional nuclear norm minimization with all
singular values preserved, truncated nuclear norm minimizes sin-
gular values with first r largest ones unchanged, which is more
close to the true rank definition. If ∥X∥r = 0, there are only r
non-zero singular values for X , and this explicitly indicates rank
of X is less than or equals to r. Practically, in order to impel the
RC(F ) directional to the freedom degree of the APM, it is clear to
set r = C − 1 in multi-view learning scenarios.

The truncated nuclear norm can be formulated as the equivalent
form by the following theorem [15]:

THEOREM 1. Given a matrix X ∈ Rm×n and any non-negative
integer r(r ≤ min(m,n)), for any matrix A ∈ Rr×m and B ∈
Rr×n such that AA⊤ = Ir, BB⊤ = Ir , where Ir ∈ Rr×r is
identity matrix. Truncated nuclear norm can be reformulated as:

∥X∥r = ∥X∥∗ −maxTr(AXB⊤).

If the singular value decomposition of matrix X is X = UΣV ⊤

where Σ is the diagonal matrix of singular values sorted in de-
scending order and U ∈ Rm×n, V ∈ Rn×n. The optimal so-
lution for the trace term in the above equation has a closed form
solution: A = (u1,u2, · · · ,ur)

⊤ and B = (v1,v2, · · · ,vr)
⊤,

corresponds to the first r columns of left and right singular vectors.

With Theorem 1, we can reformulate our objective function as:

F = argmin
Fk∈D

K∑
k=1

Lk(Fk) + ∥F∥r (6)

= argmin
Fk∈D

K∑
k=1

Lk(Fk) + ∥F∥∗ −maxTr(AFB⊤),

s.t. AA⊤ = I, BB⊤ = I.

Because of the non-convexity of truncated nuclear norm, alternative
approaches can be utilized for the optimization. A simple solution
to Eq. 6 is alternating descent method. We can fix F and optimize
A, B via SVD on F first, and then fix A and B to optimize F .
When A and B are fixed, the subproblem is convex. The whole
procedure is summarized in Algorithm 1.

In step 2, A and B can be obtained by SVD on F , which are the
left and right singular vectors corresponding to the maximum C−1

Algorithm 1 The pseudo code of RANC
Require: training instances Xk for each view, parameters λ and

γ, ϵ, initialize F using true label matrix;
1: while True do
2: Use F to solve A and B as Theorem 1;
3: Solve F with fixed A and B, i.e.,

F t+1 = argmin
Fk∈D

K∑
k=1

Lk(Fk) + ∥F∥∗ − Tr(AFB⊤) (7)

4: if ∥F t+1 − F t∥F ≤ ϵ then
5: Break;
6: end if
7: end while
8: Solve Wk from F using Eq. 4.
9: return Wk, classifier for each view.

singular values. As the number of actually required singular vectors
is rather small, partial SVD can be used for more of efficient [3].
The most computational cost step, however, is the subproblem for
solving F in Eq. 7. We will give a detailed investigation on em-
ploying Accelerate Proximal Gradient Descent Method (APG) [2]
and Alternative Direction Method of Multipliers (ADMM) [6] for
solving this subproblem in the following subsections.

It is noteworthy that the whole training procedure enhances the
view-specific classifier only based on alternative updates of the pre-
diction matrix Fk and its singular vectors. After each round of
updating Fk, updated view-specific prediction will be passed back
to corresponding learner of each view for model refinements. So
RANC restricts interactions among multiple views within predic-
tions without the access to original features of other views.

3.3 Solving RANC with APG
Note that when A and B are fixed, the problem is composed of

two convex parts, i.e., a smooth loss term P1(F ) and a non-smooth
trace norm P2(F ):

P1(F ) =

K∑
k=1

Lk(Fk)− Tr(AFB⊤), P2(F ) = ∥F∥∗ (8)

APG is suitable for solving Eq. 8 [16], which optimizes on a lin-
earized approximation version of the original problem. In the tth
iteration, if we denote the current optimization variable as F t, then
we can linearize the smooth part P1(·) at F t as:

Q(F ) =P1(F
t) + Tr(⟨∇P1(F

t), F − F t⟩)

+
L

2
∥F − F t∥2F + P2(F )

=

K∑
k=1

Lk(F
t
k)− Tr(AF tB⊤) + Tr(⟨∇P1(F

t), F − F t⟩)

+
L

2
∥F − F t∥2F + λ∥F∥∗,

where ∇P1(F
t) = 2[E1F

t
1 , E2F

t
2 , · · · , EkF

t
k] − λA⊤B, where

Ek = H − Xk(X
⊤
k Xk + γI)−1X⊤

k , k = 1, · · · ,K. Here L
is the Lipschitz coefficient, which can be estimated by line search
strategy [2]. Minimizing Q(F ) w.r.t. F is equivalent to solving:

F̂ = argmin
F

λ∥F∥∗ +
L

2
∥F − (F t − 1

L
∇P1(F

t))∥2F . (9)



Algorithm 2 The pseudo code for solving Eq. 7 with APG

Require: γ, α1 = 1, initialize Z1 and F 1 using true label matrix;
1: while Stop criterion doesn’t meet do
2: Line search for best step-size L
3: F̂ t+1 = DL(Z

t), F t+1 = ProjD(F̂ t)

4: αt+1 =
1+

√
1+4α2

t

2

5: Zt+1 = F t+1 + (αt−1
αt+1

)(F t+1 − F t)

6: end while
7: return Fk.

APG updates using the optimal solution in Eq. 9 at each iteration.
Given the following theorem [7] about the proximal operator for
nuclear norm:

THEOREM 2. For each τ ≥ 0 and Y ∈ Rm×n, we have

Dτ (Y ) = argmin
X

1

2
∥X − Y ∥2F + τ∥X∥∗

Here, Dτ (Y ) is a matrix shrinkage operator for matrix Y , which
can be calculated by SVD of Y . If SVD of Y is Y = UΣV T , then

Dτ (Y ) = UDτ (Σ)V
T , Dτ (Σ) = diag(max(σi − τ, 0)).

we can solve Eq. 9 in a closed form:

F̂ = DL(F
t)

def
= D λ

L
(F t − 1

L
∇P1(F

t)).

Note that the SVD approach in proximal projection is also time
efficient, since it will only be applied to a thin matrix. The compu-
tation of F acquires the gradient of P1, blocks of which are con-
structed using view feature information. Note that the k blocks are
view-independent, we can distribute updated view-specific predic-
tion in updated Fk back to each view and compute the EkF

t
k within

the corresponding view. Then only K computation results with the
same size of the prediction matrix Fk are returned, through which
feature privacy is maintained. After we get F̂ from Eq. 9, the fea-
sible F can be obtained by projecting F̂ into the D as in [8], which
can be denoted as ProjD(F̂ ). As a consequence, we have the RANC
framework with APG in Algorithm 2.

3.4 Solving RANC with ADMM
Considering the diversity between representation among differ-

ent views, the prediction of classifier on each view may has its own
bias. So it is more reasonable to learn an optimal bias for each view,
combined with which the last prediction matrix among views can
be more comparable. It is notable that the introduced biases here
are different from the classifier bias on each view. Let b ∈ RKC×1

be the biases vector, where each element is the individual bias for
the corresponding view. Together with learned optimal biases, we
therefore can assume low rank property for the biased APM. Then
the subproblem of Eq. 7 can be further formulated with defined Ek:

min
F∈D

K∑
k=1

Tr(F⊤
k EkFk) + λ∥F − 1b⊤∥∗ − λTr(A[F − 1b⊤]B⊤).

(10)
To solve the problem of Eq. 10, an equality constraint U = F −
1b⊤ is further introduced and the problem becomes:

min
F

K∑
k=1

Tr(F⊤
k EkFk) + λ∥U∥∗ − λTr(AUB⊤)

s.t. U = F − 1b⊤,

which can be solved with augmented Lagrange dual form by max-
imizing the dual variable Λ:

Lβ =

K∑
k=1

Tr(F⊤
k EkFk) + λ∥U∥∗ − λTr(AUB⊤) (11)

− ⟨Λ, U − (F − 1b⊤)⟩+ β

2
∥U − (F − 1b⊤)∥2F ,

β > 0 is a scalar for the augmented term. The problem in Eq. 11
is similar to those problems which can be solved with ADMM [6].
However, here we have three blocks of variables in Eq. 11, namely
blocks with U , b and F , which is with very different properties
rather than the ordinary ADMM problems. Using ADMM directly
can hardly get converged [29], consequently we employ a vari-
ant augmented Lagrange dual optimization technique [14] for our
problem, which is a splitting variant of ADMM. After letting Q =
1b⊤, we can solve an optimal candidate of Qt+1 by taking deriva-
tive of Eq. 11 w.r.t. Q and set it to zero, thus we have:

Qt+1 =
1

β
Λt − U t + F t. (12)

Then the dual variable can be updated as:

Λt+ 1
2 = Λt + β(Qt+1 + U t − F t). (13)

With the updated Λ, the remaining variable U can be updated with
an added proximal term:

min
U

λ∥U∥∗ − λTr(AUB⊤)− ⟨Λt+ 1
2 , U⟩+ µβ

2
∥U − U t∥2F .

According to Theorem 2, the optimal value has closed solution:

U t+1 = D λ
µβ

(U t +
1

µβ
Λt+ 1

2 +
λ

µβ
A⊤B). (14)

Similarly, the last block of variable F updates iteratively with:

min
F∈D

K∑
k=1

Tr(F⊤
k EkFk) + ⟨Λt+ 1

2 , F ⟩+ µβ

2
∥F − F t∥2F ,

where the scalar µ > 2 [14] and F̂k has a closed form solution:

F̂ t+1
k = (2Ek + µβI)−1(µβF t − Λt+ 1

2 )k, (15)

the subscript k of (µβF t−Λt+ 1
2 ) means the kth block correspond-

ing to the kth view. Similarly, each prediction F̂ t+1
k can be updated

within its own view, i.e., each view receives the temporary result
(µβF t − Λt+ 1

2 )k and combines its feature transformation Ek to
compute F̂ t+1

k in their own view respectively. The view indepen-
dence of Eq. 15 ensures no interaction among views, which pro-
tects the data privacy. After obtained F̂ t+1

k , we also need to project
it into feasible domain as in last subsection by F t+1 = ProjD(F̂ ).
Update iterations for U and F are separated and consequently can
be implemented in a parallel paradigm. After that a renewal of the
dual variable should be carried out:

Λt+1 = Λt+ 1
2 + β(U t − U t+1)− β(F t − F t+1). (16)

Algorithm 3 gives the sketch of this procedure. Following [14] [29],
the whole procedure can be proved to be converged.

3.5 Rank-One Acceleration
RANC can be solved with APG or ADMM effectively together

with truncated nuclear norm regularizer. In this section, an acceler-
ated variation of RANC denoted as RANC1 is proposed to restrict
the rank of APM with rank-one update. Recall that in the ideal



Algorithm 3 The pseudo code for solving Eq. 7 with ADMM
Require: γ, µ, initialize F using true label matrix;
1: while Stop criterion doesn’t meet do
2: Solve Q as Eq. 12
3: Update Λ as Eq. 13
4: Solve U as Eq. 14
5: Solve F̂ by Eq. 15 and F = ProjD(F̂ )
6: Update Λ as Eq. 16
7: end while
8: return Fk.

case, APM in C-class problem should be with rank C − 1, i.e., for
binary problems, rank of APM should be restrained to one, which
provides facilitation for designing efficient rank-one approximation
approach to RANC.

To simplify the discussion, we demonstrate the implementation
in binary case where each view only gets a vector prediction value
output, i.e., Fk ∈ Rn×1 and the APM F ∈ Rn×K . For multi-
class problem, the classification can be carried out with one-vs-rest
strategies. The rank-one acceleration is brought forward based on
the following property: rank(X) = 1, where X ∈ Rm×n, if and
only if there are two vectors u ∈ Rm×1 and v ∈ Rn×1 that X can
be decomposed into the outer product of u and v, i.e., X = uv⊤.

Consequently, we can reduce the rank consistency of APM to
one for binary case simply by using two vectors to approximate
APM, i.e., we define RC(F ) = ∥F − uv⊤∥2F , where the error
is estimated using Frobenius norm. Note that there are diversities
between different views, we add biases b ∈ RK for view predictors
to further facilitate the rank reduction of APM, i.e., we can redefine
RC(F ) = ∥F − 1b⊤ − uv⊤∥2F . Unique solution of u and v can
be obtained by restricting u and v orthogonal. We therefore can
reformulate the original problem in Eq. 5 as follows:

min
F∈D,u⊤u=1,v⊤v=1

K∑
k=1

Lk(Fk) + λ∥F − 1b⊤ − uv⊤∥2F . (17)

The rank-one approximation formulation in Eq. 17 can be solved
by alternative optimization. We first fix F for solving u, v and b,
i.e., solving the following problem:

min
u⊤u=1,v⊤v=1

∥F − 1b⊤ − uv⊤∥2F .

Bias term b, which aims at finding an optimal mean for individ-
ual prediction, can be solved as [23], i.e., b can be solved by
b = F⊤1/n, and then we can solve u and v with eigenvalue
decomposition:

u = argmax
u⊤u=1

Tr(u⊤HFF⊤Hu), (18)

v = (F⊤ − b1⊤)u.

It is notable that in Eq. 18, only the eigenvector of the largest
eigenvalue is needed, which can alleviate the computation burden
greatly [3]. In the second step, with the fixed approximate rank-
one matrix, we can update F in a closed form. In particular, with
the fixed rank-one approximation, we can update the view-specific
predictors as:

F̂k = λ(Ek + λI)−1(uv⊤ + 1b⊤)k, (19)

where (uv⊤+1b⊤)k gives the kth column of matrix uv⊤+1b⊤.
Each F̂k can be updated on each view separately using a similar
strategy as aforementioned. F = ProjD(F̂ ) is executed to project

Algorithm 4 The pseudo code of RANC1

Require: γ, λ, initialize F using true label matrix;
1: while Stop criterion doesn’t meet do
2: Solve u and v as in Eq. 18 and Eq. 19
3: Update F using Eq. 19 and F = ProjD(F̂ )
4: end while
5: return Fk.

Table 1: Brief dataset description. Datasets with two views and
more than two views are separated with a horizontal line.

Datasets C n K dk (k = 1, · · · ,K)

Course 2 1051 2 66, 5
Citeseer 6 3264 2 3703, 3264

Cora 7 2708 2 1433, 2708
Cornell 5 195 2 1703, 195
Texas 5 185 2 1703, 185

Washington 5 217 2 1703, 217
Wisconsin 5 262 2 1703, 262

Advertise 2 983 5 457, 495, 472, 111, 19
News-M2 2 1200 3 2000, 2000, 2000
News-M5 5 500 3 2000, 2000, 2000
News-M10 10 500 3 2000, 2000, 2000
News-NG1 2 500 3 2000, 2000, 2000
News-NG2 5 400 3 2000, 2000, 2000
News-NG3 8 1000 3 2000, 2000, 2000

Reuters 6 1600 5 2000, 2000, 2000, 2000, 2000

F̂ into the feasible domain. The above procedure should be iterated
until convergence, which can be summarized in Algorithm 4.

4. EXPERIMENT
We conduct extensive experiments on 15 real-world datasets with

multiple views. We first give the general configurations. Then we
comprehensively demonstrate effectiveness of our proposed frame-
work (with three variants of solutions) in comparison with the state-
of-the-art multi-view learning methods.

4.1 General Experiment Settings
Data used in experiments are consisted of two-view and multi-

ple views (more than 2 views) datasets. Description sketches of
datasets are summarized in Table 1. The Course dataset [5] de-
scribes web pages and the goal is to predict whether the given web
page is a course page or not. The Citeseer dataset [26] is origi-
nally made of 4 views, i.e., content, inbound, outbound, cites, on
the same documents. We follow [4] to choose the content and cites
view in our experiment. In the content view, the documents are
characterized by 3703 words. The Cora dataset [26] has the same
structure as Citeseer. Following [4] the content view and the cites
view are used in our experiment as well. The WebKB dataset [26]
contains webpages collected from four universities: Cornell, Texas,
Wisconsin and Washington which have 5 categories, i.e., student,
project, course, stuff and faculty. Data in WebKB are described
with two views: content and citation. We treat WebKB in 4 separate
datasets grouped by universities. The Advertise dataset [20] [40]
has 5 views, i.e., caption and alt features in html description to-
gether with base url, destination url and image url. Each exam-
ple describes an image on the web, and the task of the dataset
is to determine whether a given image may be an advertisement.
The NewsGroup dataset [4] is of 6 groups extracted from the 20-
Newsgroup dataset, i.e., M2, M5, M10, NG1, NG2, NG3. Every
group contains 10 sample sets, and we choose the first set for all 6



Table 2: Classification accuracies (average value ± std.) compared with fusion and baseline methods. RANCPG and RANCADM represent
for the APG or ADMM solutions to RANC. RANC1 denotes for the accelerated RANC version. Last three rows list the win/tie/lose counts
on all datasets with t-test against other methods at significance level 95%. The best performance on each dataset is bolded.

Our Methods Pre-Fusion Methods Late Fusion Baseline

Dataset RANCPG RANCADM RANC1 CABMKL MKL SimpleMKL GLMKL LMKL RLF WNH LS

Course .893±.017 .899±.014 .901±.017 .901±.018 .893±.015 .893±.015 .898±.018 .834±.030 .866±.015 .875±.035 .887±.016
Citeseer .694±.009 .704±.010 .671±.019 .692±.011 .689±.011 .685±.012 .707±.008 .681±.011 .693±.010 .650±.013 .694±.010

Cora .784±.013 .785±.013 .653±.019 .748±.015 .733±.022 .731±.020 .762±.014 .675±.018 .782±.014 .648±.017 .716±.015
Cornell .730±.055 .729±.055 .652±.045 .629±.068 .621±.069 .620±.067 .600±.055 .641±.055 .624±.060 .529±.070 .689±.056
Texas .738±.045 .737±.050 .730±.046 .557±.006 .556±.003 .556±.003 .558±.007 .556±.000 .658±.038 .591±.082 .701±.047

Washington .776±.033 .745±.050 .736±.041 .684±.031 .675±.034 .674±.033 .686±.027 .719±.029 .655±.032 .691±.058 .731±.047
Wisconsin .641±.061 .819±.031 .688±.044 .727±.030 .727±.036 .725±.038 .702±.029 .740±.027 .637±.052 .719±.050 .545±.057
Advertise .898±.020 .887±.024 .880±.096 .861±.003 .860±.000 .860±.000 .862±.004 .860±.000 .805±.028 .918±.028 .786±.080
News-M2 .963±.015 .974±.013 .963±.016 .849±.069 .779±.050 .779±.050 .930±.025 .818±.064 .964±.012 .700±.208 .963±.015
News-M5 .918±.033 .921±.019 .903±.024 .864±.033 .881±.030 .877±.028 .912±.025 .802±.036 .924±.021 .820±.145 .869±.023
News-M10 .788±.023 .787±.023 .791±.026 .656±.051 .667±.034 .657±.033 .756±.026 .555±.030 .741±.026 .700±.072 .735±.026
News-NG1 .936±.031 .936±.032 .906±.033 .904±.041 .865±.090 .865±.090 .901±.042 .879±.046 .928±.025 .894±.112 .885±.026
News-NG2 .928±.012 .928±.012 .922±.015 .896±.027 .908±.019 .907±.021 .928±.015 .862±.013 .922±.014 .461±.178 .875±.016
News-NG3 .923±.012 .923±.012 .928±.010 .910±.017 .887±.018 .887±.020 .926±.013 .852±.016 .911±.010 .385±.046 .884±.012

Reuters .696±.022 .706±.020 .715±.021 .682±.023 .680±.024 .679±.022 .682±.018 .659±.022 .706±.019 .559±.028 .633±.025

W / T / L RANCPG vs. others 13 / 1 / 1 14 / 0 / 1 14 / 0 / 1 10 / 3 / 2 14 / 0 / 1 8 / 6 / 1 13 / 0 / 2 14 / 1 / 0
W / T / L RANCADM vs. others 15 / 0 / 0 15 / 0 / 0 15 / 0 / 0 11 / 3 / 1 15 / 0 / 0 11 / 3 / 1 14 / 0 / 1 14 / 1 / 0
W / T / L RANC1 vs. others 9 / 3 / 3 11 / 1 / 3 11 / 1 / 3 7 / 6 / 2 9 / 3 / 3 9 / 2 / 4 11 / 3 / 1 11 / 1 / 3

groups in our experiment. There are 3 views in this dataset, which
are made by different preprocessing methods for texts, namely us-
ing Partitioning Around Medoids, Supervised Mutual Information
and Unsupervised Mutual Information [4]. In our experiments, we
will denote these types of data as News-M2, News-M5, News-M10,
News-NG1, News-NG2 and News-NG3. The Reuters dataset [4] is
built from the Reuters RCV1/RCV2 Multilingual test collection,
multi-view information is created from different languages, i.e.,
English, French, German, Italian and Spanish [4].

We run each method 30 times for 15 datasets. 70% of the data
are randomly picked up for training and the remaining are for test.
In the training set, we randomly choose 30% as the labeled data,
and the left 70% as unlabeled ones. Parameters are selected by
5CV from {10−5, 10−4, · · · , 105} in the first split and fixed.

Since RANC leverages advantages of above four different types
of multi-view learning paradigms, we should compare it with ap-
proaches from these four approaches.

4.2 Comparing With Fusion Methods
RANC framework is first compared with fusion approaches since

it is a hybrid fusion method with advantages of pre-fusion and
late fusion. In detail, we compare with 5 multiple kernel learning
(MKL) methods in pre-fusion and the state-of-the-art late fusion
method RLF (Robust Late Fusion method) [36]. The MKL meth-
ods are Centered Alignment-Based MKL algorithms [9], original
SOCP formulated MKL algorithm from [1], Simple MKL method
proposed by [25], Group Lasso-based MKL method from [19] and
Localized MKL algorithm [10], which are denoted as CABMKL,
MKL, SimpleMKL, GLMKL, LMKL in the following contexts and
tables respectively. In RLF, we use the best tuned classifier with
least square loss as initialized predictor [36]. Furthermore, the en-
semble of least square classifier (LS) is listed as a baseline. WNH
method [30] which combines all views data together and then uses
l2,1-norm to perform view selection is also listed as a baseline.

It is notable that fusion methods can output only one classifica-
tion result for multi-view data, so we compare the integrated result

(mean accuracy and std.) of RANC with them. Win/tie/lose counts
with t-test at significance level 95% are also recorded in table 2,
where the highest accuracy on each dataset is bolded. Probability
voting is used for RANC to obtain the final fusion results. Three
variants of RANC solutions in subsection 3.3, 3.4 and 3.5 are de-
noted as RANCPG, RANCADM and RANC1 respectively.

In Table 2, it can be clearly found that RANC gets better re-
sults on most datasets. The RANCADM returns more stable re-
sults. RANC1, the accelerated solver, can also outperform all com-
pared methods from the win/tie/lose counts on most datasets. As to
the statistical test results, the RANC framework outperforms fusion
methods in most cases, which validates the superiority of RANC.
In general, RANCPG achieves better results on two-view datasets
while RANCADM performs better on datasets with more than two
views. This may be due to the bias term introduced in RANCADM

works when the number of views is large.
To investigate the efficiency of RANC1, we conduct more exper-

iments on a linux cluster with 2.53GHz 12 cores and 48Gb memory.
The average training time costs (in seconds) of all RANC series
methods, late fusion method RLF and a baseline method WNH are
recorded in Table 3. Six datasets are picked up for this time costs
test. Table 3 evidently verifies the efficiency of RANC1, i.e., 9.85,
65.95, 80.41, 161.52 times faster than RANCPG, RANCADM, RLF
and WNH respectively in average. It is noteworthy that for those
compared methods, training time of base classifiers build on each
view is not included in RLF, and the implementation of WNH is
only with 10 trials. In other words, the superiority of RANC1 on
speed can be further enlarged in a fair play.

4.3 Comparing with Subspace Approaches
Subspace multi-view learning approaches can provide classifica-

tion results on individual view. In this section, we compare RANC
with multi-view learning method in subspace learning paradigms.
WNH [30] is also listed since it can provide predictions on each sin-
gle view. In this part of experiments, multi-view Linear Discrim-
inant Analysis, multi-view Canonical Correlation Analysis, multi-
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Figure 2: Comparisons of classification performance with subspace and WNH methods on all datasets. Each plot shows the cumulative
classification accuracy results of each view on certain datasets and different views are plotted in different shadow styles. RANCPG and
RANCADM represent for solving RANC with PGM or ADMM. RANC1 corresponds to the acceleration method.

Table 3: Average training time on 6 datasets (in seconds). Late fu-
sion and baseline methods are compared. Pre-fusion methods, how-
ever, highly depend on classifiers invoked, so are not compared.

Time RANC1 RANCPG RANCADM RLF WNH

News-M2 1.983 29.913 107.923 146.920 935.517
News-NG3 20.350 259.153 1398.123 1676.290 1372.167

Reuters 17.383 222.730 1206.193 803.263 3724.660
Citeseer 64.870 277.717 4700.440 6494.440 1489.923

Cora 34.590 201.727 3080.983 4817.303 537.353
Wisconsin 0.580 2.677 24.157 23.450 102.797

view Locality Preserving Projections, multi-view Marginal Fisher
Analysis (which are denoted as MV-LDA, MV-CCA, MV-LPP and
MV-MFA) [27] are compared.

The Cumulative Accuracies Plots (CAP) on each view are shown
in Fig. 2 for each compared method. In a CAP, there are K lines.
The bottom line in each CAP gives the average accuracy on the
first view. While the kth line provide the cumulative accuracy
from the first view to the kth view, i.e., the cumulative accura-
cies equal to the summation of accuracies on all previous views.
Therefore, the top line gives the overall accuracies of all views and
the gap (marked with different style of shadows) between any ad-
jacent lines describes the classification accuracy of different views.
From the results in Fig. 2, RANC achieves best performance on
most datasets, and RANCADM appears more stable than RANCPG

and RANC1. Especially on some text datasets such as News-NG2
or Reuters, all of RANC method are significantly better than other
compared methods.

4.4 Disagreement-based Methods Comparison
It is notable that during the training phase, multi-view learning

approaches in fusion style and subspace learning style require to

repeatedly access to the features from all views, thus those ap-
proaches are actually inappropriate for multi-view scenarios with
private information channels. RANC and disagreement-based ap-
proaches, however, have the ability of boosting performance only
with the predictions rather than directly reading the original fea-
tures in other views.

We compare RANC with multi-view disagreement-based meth-
ods. Since most methods of this type are only applicable to two-
view scenario, here comparisons on only two-view data are made in
this section. Disagreement-based approaches can provide results on
each view as well as an ensemble of two view’s results. In this ex-
periment, we conduct comparisons with classical Co-Training [5],
CoTrade (Confident Co-Training with data editing) [38] and Co-
Lap (Co-Regularized Laplacian SVM) [28]. The detailed results of
KCCA (Kernel CCA) [13] are also reported. In KCCA, RBF kernel
is used with default parameters.

The detailed results are listed in Table 4 where the classical Co-
Training is denoted as CoTrain for short. From Table 4, it can be
clearly found that RANC series methods achieve the best perfor-
mance either on view-specific predictions or the final ensemble re-
sults. The t-test is also performed at 95% significance level, which
shows the significant superiorities of RANC framework.

Although both RANC framework and disagreement-based meth-
ods can preserve the privacy of different information channels, the
interactions of predictions are required in the training stage for both
types of methods, which increases the chance of feature exposure
from channels. Therefore this type of interactions should also be
restricted during the training. To investigate the number of inter-
actions during training, we conduct more experiments on the con-
vergence of RANC1 and Co-Training with results shown in Fig. 3.
Due to the page limits, Fig. 3 gives the convergence plot on two
datasets of two-views, i.e., Course and Texas, in one run. From
the Fig. 3, it is notable that RANC1 converges rapidly on these
datasets, i.e., 5 iterations on Course and Texas for the final result.



Table 4: Classification accuracies (average value ± std.) compared with disagreement-based methods and Kernel CCA on two-view datasets.
RANCPG and RANCADM represent for the PGM or ADMM solutions to RANC. RANC1 denotes for the accelerated RANC version.
There are three parts separated with horizontal lines, each of which shows classification results on different views or the final integrated
classification results. The last three rows on each sub-table list the win/tie/lose counts on the compared datasets with t-test against other
methods at significance level 95%. The best performance on each dataset and each view is bolded.

View dataset RANCPG RANCADM RANC1 CoTrain CoTrade CoLap KCCA

View 1

Course .864±.016 .870±.016 .878±.014 .754±.237 .784±.212 .781±.000 .882±.020
Citeseer .687±.009 .695±.010 .663±.020 .208±.000 .208±.000 .210±.001 .236±.006

Cora .702±.013 .703±.013 .609±.018 .302±.000 .302±.000 .302±.001 .312±.004
Cornell .724±.057 .722±.058 .649±.065 .419±.018 .433±.012 .418±.000 .418±.009
Texas .731±.052 .733±.049 .712±.056 .567±.012 .570±.011 .556±.000 .562±.009

Washington .768±.049 .741±.051 .741±.039 .446±.013 .477±.012 .473±.000 .486±.019
Wisonsin .770±.042 .813±.031 .729±.030 .449±.011 .473±.017 .445±.003 .454±.012
W / T / L RANCPG vs. others 7 / 0 / 0 7 / 0 / 0 7 / 0 / 0 6 / 0 / 1
W / T / L RANCADM vs. others 7 / 0 / 0 7 / 0 / 0 7 / 0 / 0 6 / 0 / 1
W / T / L RANC1 vs. others 7 / 0 / 0 7 / 0 / 0 7 / 0 / 0 6 / 1 / 0

View 2

Course .889±.014 .891±.014 .890±.015 .850±.028 .832±.122 .880±.015 .901±.014
Citeseer .497±.016 .494±.015 .447±.038 .209±.000 .209±.000 .314±.022 .222±.026

Cora .698±.021 .683±.021 .645±.018 .301±.001 .300±.001 .326±.005 .322±.034
Cornell .377±.066 .378±.067 .387±.068 .429±.010 .423±.007 .418±.000 .209±.057
Texas .605±.041 .603±.042 .605±.042 .566±.010 .562±.008 .556±.000 .521±.061

Washington .623±.038 .639±.031 .638±.032 .480±.007 .480±.007 .478±.008 .411±.085
Wisonsin .421±.084 .492±.054 .487±.036 .449±.006 .449±.006 .448±.006 .362±.065
W / T / L RANCPG vs. others 5 / 1 / 1 5 / 1 / 1 5 / 1 / 1 6 / 0 / 1
W / T / L RANCADM vs. others 6 / 0 / 1 6 / 0 / 1 6 / 0 / 1 6 / 0 / 1
W / T / L RANC1 vs. others 6 / 0 / 1 6 / 0 / 1 6 / 0 / 1 6 / 0 / 1

Final

Course .893±.017 .899±.014 .901±.017 .824±.116 .813±.192 .787±.008 .901±.015
Citeseer .694±.009 .704±.010 .671±.019 .208±.000 .208±.000 .290±.019 .228±.024

Cora .784±.013 .785±.013 .653±.019 .302±.000 .302±.000 .305±.002 .334±.025
Cornell .730±.055 .729±.055 .652±.045 .418±.000 .418±.000 .418±.000 .243±.059
Texas .738±.045 .737±.050 .730±.046 .588±.014 .567±.010 .556±.000 .539±.069

Washington .776±.033 .745±.050 .736±.041 .473±.000 .473±.000 .473±.000 .507±.068
Wisonsin .641±.061 .819±.031 .688±.044 .444±.000 .446±.006 .444±.000 .435±.039
W / T / L RANCPG vs. others 7 / 0 / 0 7 / 0 / 0 7 / 0 / 0 6 / 0 / 1
W / T / L RANCADM vs. others 7 / 0 / 0 7 / 0 / 0 7 / 0 / 0 6 / 1 / 0
W / T / L RANC1 vs. others 7 / 0 / 0 7 / 0 / 0 7 / 0 / 0 6 / 1 / 0

(a) Course (b) Texas
Figure 3: Classification performance vs. number of interactions.
RANC1 V1 and V2 denotes for the changes of classification perfor-
mance on the first and second view respectively. The same naming
scheme is applied to CoTrain.

As to individual views, RANC1 gets converged after 4 iterations
on Course and 12 iterations on Texas. While for Co-Training, the
results are unstable in iterations. Furthermore, the performance of
RANC1 is superior to Co-Training to a great extent. It is notewor-
thy that in each iteration only predictions rather than raw features
are exchanged, which preserves the data privacy.

5. CONCLUSION
This paper presents a novel multi-view privacy-preserving frame-

work RANC (RANk Consistency multi-view learning) to boost per-

formance of the predictor constructed on each view by exploiting
the relationship among features from multiple private channels. In
this scenario, information of one view cannot be shared with oth-
ers’. We put forward the rank consistency defined on the accumu-
lated prediction matrix (APM) via stacking multi-view predictions,
and integrate the rank consistency in a regularizer for improving
the classification performance. Properties of RANC suggest em-
ploying truncated nuclear norm to control the APM rank into an
appropriate range. In our framework, view-specific learner can be
enhanced without access to features of other views, therefore the
data privacy is well-preserved. Three effective solutions for RANC
are provided together including an accelerated variant. Extensive
experiments in comparison with the state-of-the-art multi-view ap-
proaches are conducted on real datasets, which demonstrates the
superiority of RANC in handling multi-view data. Incorporating
with different loss functions in RANC framework will be further
investigated, and theoretical studies on effects of RANC in multi-
view scenario where feature importance varies will also be carried
out in future.
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