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Abstract— Domestic service robots are becoming increasingly
popular due to their ability to help people with household tasks.
These robots often encounter the challenge of manipulating
objects in cluttered environments (MoC), which is difficult due
to the complexity of effective planning and control. Previous
solutions involved designing specific action primitives and
planning paradigms. However, the pre-coded action primitives
can limit the agility and task-solving scope of robots. In
this paper, we propose a general approach for MoC called
the Object-Oriented Option Framework (O3F), which uses
the option framework (OF) to learn planning and control.
The standard OF discovers options from scratch based on
reinforcement learning, which can lead to collapsed options
and hurt learning. To address this limitation, O3F introduces
the concept of an object-oriented option space for OF, which
focuses specifically on object movement and overcomes the
challenges associated with collapsed options. Based on this, we
train an object-oriented option planner to determine the option
to execute and a universal object-oriented option executor to
complete the option. Simulation experiments on the Ginger XR1
robot and robot arm show that O3F is generally applicable to
various types of robot and manipulation tasks. Furthermore,
O3F achieves success rates of 72.4% and 90% in grasping and
object collecting tasks, respectively, significantly outperforming
baseline methods.

I. INTRODUCTION

Domestic service robots have drawn attention for their
ability to assist people with reducing household chores
such as cleaning [1], cooking [2], and organizing [3]. In
household scenarios, these robots often encounter complex
scenes where they must manipulate objects in cluttered
environments (MoC). In these environments, objects are
randomly placed and may have different orientations and
configurations, as shown in Figure 1. To accomplish MoC
tasks, the robot must identify objects, plan the sequence
of manipulations, and execute the task without causing
collisions or damage to the objects [4]. Although advances
in computer vision have effectively addressed object identi-
fication [5, 6, 7], planning and control in MoC tasks remain
a challenge.

Previous methods for manipulating objects typically in-
volve designing action primitives and planning paradigms
for specific MoC tasks. For instance, VMRD [8] was ex-
plicitly developed for grasping stacked objects, utilizing a
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Fig. 1: Examples of Ginger XR1 robot [9] performing tasks in
a domestic service scenario. On the left, it is shown grasping a
blocked object. On the right, it is shown cleaning up the desktop.

tree structure to indicate the stacked objects and grasping
them in order according to the tree. [4] proposes a collision-
checking module to guide object planning and employs
action primitives to move blocked objects. However, these
specific-designed action primitives and planning paradigms
can limit the agility of robotics, the scope of task-solving,
and the generalization capabilities of these methods in dif-
ferent situations, despite their impressive performance in
manipulation tasks.

On the other hand, learning-based techniques such as
reinforcement learning (RL) have demonstrated generaliza-
tion ability across many different domains [10]. However,
standard RL can be inefficient when finding capable policies
for tasks requiring long-horizon planning and sophisticated
control [11], which is also the case for MoC. In this paper, we
consider a scenario where the objects are randomly placed
on the desk and the target object could be blocked, which
is a common scenario in domestic service. We propose
a solution to MoC based on the option framework (OF),
which enhances RL through temporal abstraction actions
called options [12, 13]. The standard OF discovers options
from scratch based on RL, leading to collapsed options and
hindering learning [14]. Our method, called Object-Oriented
Option Framework (O3F), develops a specific option space
for various object movements that are generalizable for
MoC. Based on this, O3F solves MoC through two key
components: (1) an option planner that generates an option
from the option space, indicating the object movement, and
(2) a universal option executor that controls the robot to
complete the option. Unlike the standard OF that learns
independent policies for each option and expects them to
master valuable skills, O3F trains a universal option executor
with a specific reward function to ensure that the executor
can learn the skills useful for MoC.



We conduct simulation experiments using two types of
robots: the Ginger XR1 (shown in Figure 1) and a robot arm
from Gym environment [15]. In the experiments with the
Ginger XR1, O3F achieves a 91.3% success rate for grasping
blocked objects, while the RL baseline struggled to learn
a grasping policy. In the experiments with the robot arm,
O3F achieves a 72.4% and 90% success rate on the grasping
and collecting tasks, respectively, outperforming baseline
learning-based approaches by 28.7%, which demonstrates the
wide applicability of O3F. This research primarily focuses on
developing a learning framework for solving MoC. O3F can
be tested on a physical robot using existing sim-to-real
techniques [16, 17]. We leave real robot adaptation of our
method as part of future work.

The rest of this paper is organized as follows: Related
works are discussed in Section II; Section IV presents
the O3F method; Implementation details are elaborated in
Section V; Experiment results showing the performance of
our method are presented in Section VI; and finally, some
conclusions and discussions are provided in Section VII.

II. RELATED WORKS

A. Robotics Manipulation in Clutter

Previous research has shown significant interest in robotics
manipulation in clutter [18, 19]. Notably, robotics grasping
[20, 21] has emerged as a critical area of research, with
methods such as [8, 4, 22] focusing on planning the ma-
nipulation order of objects. For example, [4] proposes a
collision-checking module for selecting graspable objects,
while [8] uses a tree structure to determine which object to
grasp. Though these methods show promising performance,
they suffer from poor generalization since they are task-
specific. This limitation is relieved with the development of
learning-based methods in recent years, which have demon-
strated some extent of generalization ability. RL methods
have exhibited their potential in addressing complex robotics
manipulation problems, particularly in planning the grasping
order. For instance, VPG [22] models the planning problem
in dense clutter as an RL task and demonstrates that a policy
can rapidly learn robotics grasping from scratch in dense
clutter through a simple RL algorithm, such as DQN [23],
by alternately executing action primitives. Additionally, [24]
extends the set of action primitives in [22] and learns a gen-
erator and an evaluator to select over action primitives. There
are also some graph-based RL algorithms that teach a robot
to grasp [25, 26], which primarily focus on the area of visual
perception. Besides, previous works also explore other scenes
of manipulation in clutter, such as obstacle rearrangement
[27, 28], object matching [29], and object stacking [30, 31].
However, their reliance on action primitives limits the robot’s
flexibility and hinders their applicability to new scenarios.

B. Option Framework for Reinforcement Learning

The Option Framework (OF) [12] offers a promising
architecture for solving long-term, complex decision-making
problems. OF learns both the option selection policy and
multiple option policies simultaneously. An option can be a

pre-coded behavior skill or a policy learned from scratch.
Research in this area can be divided into option discovery
and option learning. Option discovery focuses on identifying
useful sub-goals or options within an environment, while
option learning focuses on learning the policies associated
with these options to effectively achieve the identified sub-
goals. For option discovery, the option-critic architecture [13]
shows that OF can train capable policies without the need
to design the option. For option learning, previous works
define a set of options representing various skills. With such
a set, an inter-option policy can be trained for skill compo-
sition [32]. In this paper, our focus is on option learning.
OF has demonstrated its effectiveness in solving robotics
manipulation problems [31]. However, our work introduces
the concept of object-oriented options that specifically focus
on object movement.

III. PRELIMINARY

A. Reinforcement Learning

An RL task can be formulated as a Markov decision
process (MDP) [33, 34], which is described as a tuple M =
(S,A, P, r, γ). Here, S is the state space, A is the action
space, P denotes the transition probability, and r denotes
the reward function that reflects the quality of the agent’s
behavior. γ is the discount factor determining future rewards’
weight. P is the transition function of the environment. A
policy π : S → ∆(A) is a mapping function from the state
space to the probability space over the action space. The RL
agent interacts with the environment as follows: at timestep
t, the agent observes a state st from the environment and
executes an action at ∼ π(·|st). Then, the agent receives
a reward r(st, at) and transitions to the next state st+1 ∼
P (·|st, at). RL aims to find a policy that maximizes the
expected cumulative rewards.

B. Option Framework

An option [12] corresponds a triplet o{Io, πo, βo(s)}.
Here, Io ⊆ S denotes the set of initialization states, πo refers
to the intra-policy of this option, which can be pre-trained
with standard RL using a reward function specific to the
subtask, and βo(s) ∈{0,1} is the termination function that
indicates whether an option is terminated at a given state.
The Option Framework (OF) trains an inter-option policy
Ω(o|s) : S → O that selects execution options to maximize
an expected discounted return. Here, O denotes the option
space, typically a real number space. The inter-option policy
plans over options to complete a task. In the rest of the paper,
we refer to the intra- and inter-option policies as option
executor and option planner, respectively.

IV. METHOD

This section introduces the definition of an object-oriented
option, which is the foundation of O3F, followed by intro-
ducing four types of the processed state. We then present
the MDP formulation of the option planner (OP) and the
universal object-oriented option executor (OE). Finally, we
describe the joint training procedure of OP and OE.



A. Object-Oriented Option Framework

The standard Option Framework (OF) discovers options
from scratch based on RL, which can result in collapsed
options and hinder learning [14]. This issue can be addressed
if there is a predetermined option space where the objective
of each option is clearly defined in advance. The effective
MoC process can be decomposed into repeated executions
of moving designated objects to a target location. Based on
this idea, we developed the Object-Oriented Option Space
for MoC, a multi-dimensional continuous space where each
option depicts one object’s movement, including the current
location and target location of a specific object. We require
that the intra-policy of each option completes the task of
moving the designated object to the target location. This way,
the MoC task can be completed by building an extra option
planner to select appropriate options repeatedly.

Formally, each option o corresponds to a triplet
o{Io, πoe(·|s, o), β(s, o)}:

• Io is the initiation set. We assume that ∀s ∈ S,∀o ∈
O : s ∈ Io (i.e., all options are available everywhere),
an assumption made in the majority of option-based
algorithms [13]. Thus, the initiation set for any option
is the state space: Io = S.

• πoe(·|s, o) makes decisions conditioned on state s and
option o. Unlike traditional OF, which trains indepen-
dent policies for each option, our method trains a univer-
sal intro-policy for all options, i.e., πoe(·|s, o), which we
call the universal object-oriented option executor (OE).

• β(s, o) is the terminal function, which indicates whether
option o terminates at state s. In our work, we assume it
to be a known function that can be obtained by examin-
ing whether the object movement has been completed.

Then, we can formulate an Option Planner (OP) as a policy
that makes decisions in the option space: πop(·|s) : S → O.
OP is important for OF in solving complex problems, as
it can generate temporally-extended plans for making long-
term decisions. Our method connects OP and OE through
joint training and execution procedures, as shown in the
overall structure of our method presented in Figure 2.

B. Types of the Processed States

This subsection introduces four types of the processed
states serving as the input of OP and OE:

Object encoding tensor: To handle uncertain numbers
and shapes of objects, we discretize the workbench and
represent it as a 3D object encoding tensor (OET). Each
element in the tensor represents an item occupying the
corresponding position. Possible item types include objects,
air, and robotics joints. We will discuss the implementation
of the encoding tensor later in Section V.

Task information: This contains information needed to
complete the original manipulation task. For example, task
information in an object stacking task includes stack number,
the maximum height of all objects, etc.

Joint state: This includes joint angles and positions of the
controllable joints, which are normalized to [−1, 1] using

min-max normalization. Higher-order information on joint
movements, such as angular speed and acceleration, can also
be involved.

Option information: This represents other information for
completing the option, including the coordinate of the object
center, the coordinate of the destination object location, and
the distance between the gripper and the target object center.
In a simulation environment, obtaining the coordinates di-
rectly is feasible. In real-world applications, the coordinates
can potentially be obtained through the calculation of depth
camera data.

C. The Option Planner Formulation

The OP πop makes the decision at the option level for
completing the MoC task. This subsection will describe the
designs of the MDP for OP optimization.

Action space and decision-making. The OP outputs an
option ot ∈ R6, representing two coordinates in the working
space denoted by (xobj, yobj, zobj) and (xpos, ypos, zpos).
The first coordinate is used to select one object, and the
second coordinate represents the target position of the se-
lected object to move. After sampling ot from πop, the option
information is constructed through a mapping function map.
This function maps the two coordinates to the corresponding
objects whose geometric center is closest to the generated
coordinates. Such mapping from the coordinate to the object
ensures that the OP can robustly select objects. The option
information is then transmitted to the OE. In the next
timestep, if the option is not terminated (i.e., not completing
the object movement), the ot sampling process is skipped,
and the option information keeps to the OE. We wait for the
OE to complete the option for Tmax timesteps and overwrite
the option by re-sampling ot.

State space. The state of the OP sopt contains three parts:
OET, joint states, and task information. Task information
provides the OP with global and complete knowledge for
accomplishing the task. The OET gives the global status of
the workbench for the policy to make correct decisions. Joint
states are helpful in some corner cases where the robot’s
movement is restricted.

Rewards. The reward function for training OP is defined
as:

rop = ropsuccess + 0.1× roptime + 0.1× roptask.

The term ropsuccess indicates whether the overall MoC task
has been successfully completed. At the terminal step, the
agent receives a ropsuccess of +1 if it accomplishes the task
and a ropsuccess of −1 if it fails. ropsuccess is set to be −1 if
the agent does not complete the task after the maximized
timestep T op

max. roptime is a time penalty term, which is −1 at
each step. It encourages the agent to complete the task using
as few motions as possible. roptask is a task-related reward,
indicating whether the task assigned by option planner has
been completed. This reward can be easily designed to adapt
to diverse tasks: in the object collecting task, roptask is an
indicator of whether objects stay in the valid area, and in
the blocked object grasping task, roptask is an indicator of
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Fig. 2: Illustration of the structure and the deployment workflow of O3F. The framework comprises two modules: the option planner πop

that determines the option for object movement, and the option executor πoe manipulates the objects to accomplish the option task.

whether the target object is grasped. There have been various
practical techniques for determining the coefficients of each
reward term [35]. In general, the weight of ropsuccess should
be significantly higher than that of other terms, as it directly
impacts the overall task success.

D. The Option Executor Formulation

The OE performs motion control to complete the option
generated by the OP. We create an MDP to train the OE as
the following:

Action space. The OE’s action is the target torque of all
controllable joints. In our experiments, we use the joint angle
of all controllable joints due to the limitation of the selected
simulation. As O3F optimizes OE with RL, it can be applied
to other robot control modes.

State space. The OE’s observation consists of the OET,
joint state, and option information. The state space shares
the same design as the OP, but the OET is extra marked
with the target object to be moved.

Rewards. At each timestep, the reward for training πoe is
formulated as follows:

roet = roesuccess+0.001×roetime+0.1×roehandnear+0.1×roeobjnear.

roesuccess is the reward for option accomplishment. It equals
+1 when the target object is successfully manipulated to the
target location and −1 if it fails. roetime is similar to the OP,
encouraging quick task completion. roehandnear is a reward
to guide the gripper to get close to the target object. It is
formulated as roehandnear = dt−1 − dt, where dt denotes the
distance between the gripper and the target object at timestep
t. Like roehandnear, r

oe
objnear = dot−1 − dot aims at guiding the

target object is getting close to the target location, where dot
denotes the distance between the object’s location and the
target location.

E. Training Procedure

In the previous section, we introduced how to create MDPs
to formulate OP and OE. This section presents the joint

training procedure that connects OP and OE. Our method
trains OE and OP simultaneously using the proximal policy
optimization (PPO) [36] algorithm.

During sampling in the environments, the OP selects an
option based on the OP state. Then, OE selects an action
to control the robot and completes the option task until the
option is completed or the maximum steps are reached. The
samples are collected and stored in the buffer each time
πop and πoe execute. Finally, OP and OE are optimized
with the collected samples. In practical implementation, the
O3F allows for the separate training of the OP and the OE.
This means that the OE can be trained initially to handle
object movement, and subsequently, the OP can be trained
to plan and make decisions based on the learned OE. This
sequential training approach enables the system to effectively
learn and utilize the object-oriented options for planning and
control.

V. IMPLEMENTATION DETAILS

We use the proximal policy optimization RL algorithm
(PPO) [36] to train the policy networks (πop and πoe). Figure
3 shows the network architecture used in our experiments.
The policy networks are trained with a learning rate of
3 × 10−4 using the Adam optimizer [37]. All other hyper-
parameters are the same as in the standard PPO implemen-
tation [38]. Our hardware configuration includes NVIDIA
GeForce 2080ti GPUs and Intel(R) Xeon(R) Silver 4110
CPUs.

To construct the object encoding tensor (OET), we dis-
cretize the space above the workbench into 1 cm intervals
and initialize a 3-D tensor with all zero values. The elements
in the tensor are assigned different values to indicate which
object is at the corresponding position. Through this process,
the OET can represent various object layouts using tensors of
the same size. In our implementation, we are accessible to the
bounding box to the objects and use them to construct OET.
In practice, OET can be obtained by visual processing. Previ-



ous works have studied object recognition [39], estimation of
object position [40, 41], pose [42, 43], and shape [44, 45] in
robotics. Through these well-verified techniques, the OET
can be reconstructed. However, in this work, we neglect
the visual processing module, as we are more interested in
designing a general algorithm for MoC.
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Fig. 3: Policy/value neural networks are constructed using convo-
lutional layers followed by fully-connected layers to process object
states, while fully-connected layers directly process joint states and
task information.

VI. EXPERIMENTS

This section will verify the effectiveness of O3F by
conducting simulation experiments. Specifically, we aim to
answer the following questions: (1) Can O3F generalize
to different robots and manipulation tasks? (2) How does
O3F compare to learning-based baseline methods? (3) How
does the learned policy behave?

A. Descriptions About Robots and Manipulation Tasks

We first introduce two robots (Ginger XR1 and robot arm)
and manipulation tasks (grasping and collecting) used in our
experiments.

Ginger XR1 robot (Figure 4(a)) is a humanoid robot that
is based on UE4 [46]. In our experiments, the agent controls
the 7-DoF right arm, the chassis, and the open/close function
of the right hand. The evaluation task is to grasp a container
of orange juice that is blocked by several objects. The robot
moves the obstacle to a basket to make room for grasping the
target. The task fails if (1) a collision occurs (e.g., collisions
between a joint and the desk), (2) the object falls, or (3) the
maximum decision steps are reached (8 for the option planner
and 150 for the option executor). During the training phase,
the number and position of objects are randomly sampled.
The test cases are shown in Figure 5 (row 1). We design these
specific test cases to ensure that the target object is blocked.
It is important to note that in practice, the object positions
are randomly sampled across the workbench, and each object
position may have an offset, ensuring the diversity of test
cases.

Robot arm is from the MuJoCo platform [47]. The
workspace is a 50 cm × 70 cm area. The task fails when (1)
any object drops off the desk, (2) a collision occurs, or (3)
reaches maximum decision steps (16 for the option planner
and 100 for the option executor). The details are as follows:

• Blocked object grasping (Figure 4(b)): Objects are ran-
domly placed on a table where obstacles can block the
target object (cyan). The number of objects is uncertain.
The agent must grasp the target object without colliding

(a) Grasp (Ginger XR1) (b) Grasp (c) Collect

Fig. 4: An visualization of tasks in our experiments. (a): Grasp
the blocked orange juice with Ginger XR1. (b): Grasp the blocked
object (cyan block) with robot arm. (c): Collect all objects together.
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Medium 2Easy 2

Easy 1 Hard 1

Hard 2

Scene 1 Scene 2 Scene 3

Fig. 5: Various test cases of the robotics grasping task. The target
object is marked by red circle or cyan block in this figure.

with or damaging other objects. Test cases are shown
in Figure 5 (rows 2-3).

• Object collecting (Figure 4(c)): The agent collects all
objects scattered over the desk and brings them to a
specified area (yellow area in the figure). The number of
objects ranges from 1 to 6. In our experiments, we reuse
and fix the parameters of the option executor trained in
the grasping task and only train the option planner.

All reported results are averaged over five random runs,
each interacting with the environment for 30 million envi-
ronment timesteps.

B. Results on Ginger XR1

Table I presents the grasping success rate of O3F on the
Ginger robot. The results show that O3F successfully learns
a policy that grasps blocked objects in cluttered scenes,
achieving an average success rate of 91.3%. For comparison,
we train a PPO policy to directly control the robot for 30M
steps with a reward function equivalent to that used for
training the option planner in O3F. As a result, PPO fails
to learn a capable policy for grasping blocked objects; the
success rate is lower than 5% for all scenes. This result
can be attributed to the difficulty of exploring successful
examples in such a long-term and complex task. Figure 6
shows the execution process of O3F policy, which clears
obstacles one by one and finally grasps the target.
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Fig. 6: Deployment examples of the policy learned by O3F on various MoC tasks. Row 1: On a Ginger XR1 robot, O3F learns to grasp
the blocked orange juice. Row 2: In a grasping task on a robot arm, the cyan block is the target. O3F learns to move obstacles to the
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TABLE I: Success rate (%) of grasping task on the Ginger XR1
Robot.

Method Scene 1 Scene 2 Scene 3 Average
O3F (Ours) 88.0 95.0 91.0 91.3
PPO [36] 2.0 4.0 3.0 3.0

C. Results on Robot Arm

Comparison with baselines on grasping tasks. In this
section, we conduct experiments on a robot arm and compare
our method with two learning-based baseline methods: VPG
and PPO. Specifically, we test the performance of these
algorithms on a blocked object-grasping task. VPG uses
DQN to train a selector that chooses between two action
primitives (pushing and grasping) and is effective in grasping
blocked objects. PPO is a reinforcement learning algorithm
that trains a policy to control the robot’s joints. We present
the comparison results in Table II. O3F outperforms VPG on
all three levels of tasks. This can be attributed that VPG solve
the problem via planning based on the fixed action primitives,
which are limited in its action flexibility. On the other hand,
the vanilla learning-based algorithm, PPO, fails to learn
capable policy, indicating that the difficulty of the long-term
planning and control tasks. In contrast, O3F significantly
outperforms the baselines in the more challenging tasks, e.g.,
O3F achieves a success rate of 60.6% on the Hard level,

while PPO only has 8.33%. This result demonstrates O3F’s
capacity to solve these complex tasks.

TABLE II: Success rate (%) of blocked object grasping in varying
scenes of tasks. The number following ± represents the standard
deviation over five random runs.

Method Easy Medium Hard Average
O3F (Ours) 87.8± 1.57 68.9± 12.2 60.6± 4.78 72.4
VPG [24] 45.0± 5.93 45.6± 2.08 40.6± 11.9 43.7
PPO [36] 42.8± 3.93 10.6± 3.42 8.33± 7.58 20.6

Applicability to different manipulation tasks. In ad-
dition to the grasping task, we conduct experiments on
the object-collecting task. We summarize the success rates
of the optimized policies for various tasks in Table III.
Our method achieves success rates of 72.4% and 90.0% in
the two tasks, respectively. These results demonstrate that
O3F generally learns to solve various manipulation tasks
in clutter. Furthermore, our method learns the policy more
efficiently than the baseline RL method, PPO. We also
observe that the option executor is reusable across different
tasks, indicating its potential as an effective sub-policy for
complex problem-solving.

Execution examples of O3F policy. We demonstrate the
performance of policies learned by O3F by visualizing their
behaviors on different tasks. Figure 6 illustrates the planning
workflows. For instance, in the blocked object grasping task,



TABLE III: Success rate (%) of O3F and PPO in grasping and
collecting tasks with the robot arm.

Method grasping collecting
O3F (Ours) 72.4 90.0
PPO [24] 20.6 3.33

the agent selects obstacles that directly block the target object
and relocates them to a designated space (marked by the star
symbol in the figure). Additionally, it effectively completes
the object-collecting task by correctly selecting the blocks
and the target locations.

VII. CONCLUSION AND FUTURE WORK

We propose an option-based framework, called O3F, that
includes an option planner that determines how an object
moves and a universal option executor that completes the ob-
ject movement. Empirical results demonstrate that O3F can
generally learn capable policies in various manipulation
tasks in cluttered environments. Our results suggest that
O3F has the potential to master various real-world robot
manipulations in clutter. However, there are still limitations
and future works to be discussed.

State representation. In the raw state processor, we
neglect the visual processing module and assume that the
object encoding tensor can be obtained through third-party
components since this paper focuses on designing an ef-
ficient method for MoC. Fortunately, related works have
shown powerful abilities in object recognition [48, 49],
pose estimation [43, 42], occluded object recovery [50], and
shape approximation [44, 45]. As mentioned in section V,
it is possible to reconstruct an object encoding tensor or
equivalent representation by combining these techniques.
Even if reconstruction errors exist, promising techniques in
Sim2Real [51, 52, 53] can alleviate such errors.

Real world deployment. Our experiments were conducted
in a simulation environment, but they can be supplemented
with real-world experiments to validate the effectiveness of
our approach in practical scenarios. Furthermore, it would
be interesting to consider more cluttered environments, such
as a storage basket, for real-world deployment. This would
provide a more challenging and realistic scenario for the
robots to operate in, and it would be valuable to evalu-
ate the performance of our method in such environments.
Additionally, in this study, the robots only consider the
position of objects. However, it is important to acknowledge
that real-world manipulation tasks often involve additional
complex factors, such as slipperiness, grasping orientation,
and specific points of grasping. To further enhance our
approach, it would be valuable to explore and incorporate
these factors into our methodology. This would provide a
more comprehensive and realistic evaluation of the proposed
method, and it would better align with the complexities of
real-world manipulation tasks.
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