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Abstract

Multi-label learning has attracted much attention during the past few years.
Many multi-label approaches have been developed, mostly working with sur-
rogate loss functions because multi-label loss functions are usually difficult
to optimize directly owing to their non-convexity and discontinuity. These
approaches are effective empirically, however, little effort has been devoted
to the understanding of their consistency, i.e., the convergence of the risk of
learned functions to the Bayes risk. In this paper, we present a theoretical
analysis on this important issue. We first prove a necessary and sufficient
condition for the consistency of multi-label learning based on surrogate loss
functions. Then, we study the consistency of two well-known multi-label loss
functions, i.e., ranking loss and hamming loss. For ranking loss, our results
disclose that, surprisingly, none of convex surrogate loss is consistent; we
present the partial ranking loss, with which some surrogate losses are proven
to be consistent. We also discuss on the consistency of univariate surrogate
losses. For hamming loss, we show that two multi-label learning methods,
i.e., one-vs-all and pairwise comparison, which can be regarded as direct ex-
tensions from multi-class learning, are inconsistent in general cases yet con-
sistent under the dominating setting, and similar results also hold for some
recent multi-label approaches that are variations of one-vs-all. In addition,
we discuss on the consistency of learning approaches that address multi-label
learning by decomposing into a set of binary classification problems.
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1. Introduction

In traditional classification tasks, each instance is associated with a single
label in a number of candidate labels, e.g., binary classification and multi-
class learning. In real tasks, however, one object is usually relevant to a
set of labels simultaneously. For example, in text categorization, a document
about national education service may cover several predefined topics, such as
government and education, indicating the content in the document (Schapire
and Singer, 2000); in bioinformatics, a gene sequence may be relevant to
multiple functions, such as metabolism, transcription and protein synthesis,
showing the functions of the gene within a cell’s life circle (Elisseeff and
Weston, 2002); in image annotation, an image may be annotated with a set
of words, such as trees and mountains (Carneiro et al., 2007; Qi et al., 2007).
To tackle such problems, multi-label learning has been explored, and it has
attracted much attention during the past decade (Schapire and Singer, 2000;
Elisseeff and Weston, 2002; Zhou and Zhang, 2007; Zhang and Zhou, 2007;
Hüllermeier et al., 2008; Hsu et al., 2009; Dembczyński et al., 2010, 2012b;
Petterson and Caetano, 2010; Zhou et al., 2012).

In multi-label learning, many loss functions (also called evaluation crite-
ria) have been utilized to measure the performance of learning algorithms,
e.g., ranking loss, hamming loss, one-error, coverage and average precision
(Schapire and Singer, 2000; Zhang and Zhou, 2006); accuracy, precision, re-
call and 𝐹1 (Godbole and Sarawagi, 2004; Qi et al., 2007); subset accuracy
(Ghamrawi and McCallum, 2005); etc. It is noteworthy that all of them
are non-convex and discontinuous, and directly optimizing such losses often
leads to NP-hard problems. To make a compromise for avoiding compu-
tational difficulties, surrogate losses that can be optimized more efficiently
are usually adopted in practical algorithms, e.g., boosting algorithm Ad-
aBoost.MH (Schapire and Singer, 2000), neural network algorithm BP-MLL
(Zhang and Zhou, 2006), SVM-style algorithms (Elisseeff and Weston, 2002;
Taskar et al., 2004; Hariharan et al., 2010), etc. Essentially, all these algo-
rithms try to optimize some convex surrogate losses such as the exponential
loss and hinge loss. Despite of their efficient computation, there remains an
important theoretical problem: Whether the expected risks of the learned
functions converge to the Bayes risk? Or in other words, how about their
consistency (also called Bayes consistency)? This paper presents a theoreti-
cal study on this important issue.
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1.1. Our Contributions

We first prove a necessary and sufficient condition for the consistency of
multi-label learning based on surrogate loss functions. Based on this result,
we examine the consistency of two well-known multi-label loss functions:
ranking loss and hamming loss.

For ranking loss, our results disclose that none of convex surrogate loss is
consistent. So, we present the partial ranking loss, with which some surrogate
functions, e.g., regularized linear loss and sigmoid-type losses used for neural
network, are consistent. We also study the consistency of univariate surrogate
loss, and identify a class of consistent univariate losses for partial ranking loss,
generalizing the recent results of Dembczyński et al. (2012a).

For hamming loss, we show that two multi-label learning methods, i.e.,
one-vs-all and pairwise comparison that can be regarded as direct extensions
from multi-class learning, are inconsistent in general cases yet consistent
under the dominating setting, and similar results also hold for some recent
multi-label approaches that are variations of one-vs-all. We also discuss on
the consistency of learning approaches that address multi-label learning by
decomposing into a set of binary classification problems.

1.2. Related Work

Consistency guarantees that optimizing a surrogate loss function will yield
ultimately an optimal function with Bayes risk for the true loss function, and
thus proceed in the scope of computationally efficient algorithms. Nowadays,
it is well-accepted that a good learner should at least be consistent with large
samples. Bühlmann and Yu (2003) discussed on the consistency of boosting
algorithms with respect to least square loss, and Breiman (2004) studied the
convergence of arcing-style greedy boosting algorithms to the Bayes classifier.
The consistency theory on support vector machines was developed in (Lin,
2002; Steinwart, 2005). The most influential and fundamental work (Zhang,
2004b; Bartlett et al., 2006) investigated the consistency for binary classifi-
cation, in which many popular algorithms (e.g., boosting, logistic regression
and SVMs) are proven to be consistent. In addition, McAllester and Keshet
(2011) studied the consistency for latent structural probit and ramp loss.

For multi-class learning, the consistent theory has been well-studied in
(Zhang, 2004a; Tewari and Bartlett, 2007) and many SVM-type algorithms
are proven to be inconsistent. Note that multi-class learning is very differ-
ent from multi-label learning. Given a set of candidate labels, multi-class
learning assumes that there is only one label which is correct for an instance,
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whereas multi-label learning accepts the fact that more labels can be correct
and is more challenging. For multi-class learning, the 0/1 loss (i.e., accuracy)
is naturally the fundamental criterion, whereas for multi-label learning there
are many criteria, among which hamming loss is mostly related with accu-
racy. As will be shown in Section 5.1, decomposing multi-label learning into
a series of multi-class learning problems to solve, either by one-vs-all or pair-
wise comparison, is inconsistent. It is also possible to decompose multi-label
learning into a series of independent binary classification problems to solve,
as studied in Section 5.3; such approach completely neglects the interaction
between labels (also called label correlations) and could not work well with
a large number of labels and/or some labels lacking sufficient training data,
and thus rarely adopted in practice.

Much work has been devoted to the analysis of consistency for ranking
problems under different learning settings, e.g., subset ranking (Cossock and
Zhang, 2008), listwise ranking (Xia et al., 2008), top-𝑘 ranking (Xia et al.,
2009), etc. Duchi et al. (2010) studied the consistency of general ranking set-
ting where each “instance” consists of a query, a set of inputs and a weighted
graph, and the goal is to order the inputs according to the weighted graph.
From some sense, multi-label learning contains some behaviors of ranking:
It tends to rank relevant labels higher than irrelevant ones. However, multi-
label learning requires to estimate the number of relevant labels and is more
challenging than a pure ranking. Thus, some results in Section 4.1 may seem
similar to those obtained by Duchi et al. (2010) but most are very different.

1.3. Organization

The rest of this paper is organized as follows. Section 2 introduces some
preliminaries. Section 3 presents a necessary and sufficient condition for the
consistency of multi-label approaches. Sections 4 and 5 study the consistency
of ranking loss and hamming loss, respectively. Section 6 presents the detailed
proofs of lemmas. Section 7 concludes with future work.

2. Preliminaries

Let 𝒳 be an instance space and ℒ = {𝜆1, 𝜆2, . . . , 𝜆𝑞} denotes a finite set
of candidate labels. An instance 𝒙 ∈ 𝒳 is associated with a subset of labels
𝒚 ⊆ ℒ which are called relevant labels, whereas the complement ℒ ∖ 𝒚 are
called irrelevant labels. For convenience, we represent the labels as a binary
vector 𝒚 = (𝑦1, 𝑦2, . . . , 𝑦𝑞) where 𝑦𝑖 = +1 if the label 𝜆𝑖 is relevant to 𝒙 and
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−1 otherwise, and we further denote by 𝒴 = {+1,−1}𝑞 the set of all possible
labels. For a real number 𝑟, ⌊𝑟⌋ denotes the largest integer which is no more
than 𝑟.

Let 𝒟 denote an (unknown) underlying distribution over 𝒳 × 𝒴 . For an
instance 𝒙 ∈ 𝒳 , we denote by 𝒑(𝒙) a vector of conditional probability over
𝒚 ∈ 𝒴 , i.e.,

𝒑(𝒙) = (𝑝𝒚 (𝒙))𝒚∈𝒴 = (Pr (𝒚∣𝒙))𝒚∈𝒴 ,

for some 𝒑(𝒙) ∈ Λ, where Λ denotes the flat simplex of ℝ∣𝒴∣, that is,

Λ =
{
𝒑 ∈ ℝ∣𝒴∣ :

∑
𝒚∈𝒴

𝑝𝒚 = 1 and 𝑝𝒚 ≥ 0
}
.

The formal description of multi-label learning in the probabilistic setting
is given as follows. We are given a training sample

𝑆 = {(𝒙1,𝒚1), (𝒙2,𝒚2), . . . , (𝒙𝑚,𝒚𝑚)}

drawn independently and identically (i.i.d) according to distribution 𝒟, and
the objective is to learn a function ℎ : 𝒳 → 𝒴 , which is able to assign a set
of labels to unseen instances. In general, it is not easy to learn ℎ directly,
and one instead learns a real-valued vector function

𝒇 = (𝑓1, 𝑓2, . . . , 𝑓𝐾) : 𝒳 → ℝ𝐾 for some integer 𝐾 > 0,

where 𝐾 = 𝑞 or 𝐾 = 2𝑞 are common choices for the design of practical
algorithms. Based on this vector function 𝒇 , a prediction function 𝐹 : ℝ𝐾 →
𝒴 can be attained for assigning the set of relevant labels to an instance.
Another popular approach for multi-label learning is to learn a real-valued
vector function

𝒇 = (𝑓1, 𝑓2, . . . , 𝑓𝑞) s.t. 𝑓𝑖(𝒙) > 𝑓𝑗(𝒙) if 𝑦𝑖 = +1, 𝑦𝑗 = −1,

i.e., rank relevant labels higher than irrelevant ones for example (𝒙,𝒚), and
then, a function should be learned to determine the number of relevant labels.

Essentially, multi-label approaches try to minimize the expected risk of
𝒇 with respect to some loss 𝐿, i.e.,

𝑅 (𝒇) = 𝔼(𝒙,𝒚)∼𝒟[𝐿(𝒇(𝒙),𝒚)], (1)
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where 𝒇 may be a prediction function or a vector of real-valued functions
according to different losses. We further denote the minimal risk (also called
the Bayes risk) by

𝑅∗ = inf𝒇 𝑅(𝒇),

where the infimum takes over all measurable functions. Throughout this
paper, we mainly focus on below-bounded and distinguishable loss functions
defined as follows:

Definition 1. A loss function 𝐿 is said to be below-bounded if 𝐿(⋅, ⋅) ≥ 𝐵
for some constant 𝐵.

Definition 2. A loss function 𝐿 is said to be distinguishable if for some
𝛾 > 0, for every 𝒙,𝒙′ ∈ 𝒳 and 𝒚,𝒚′ ∈ 𝒴, it holds that

𝐿(𝒇(𝒙),𝒚) = 𝐿(𝒇(𝒙′),𝒚′) or ∣𝐿(𝒇(𝒙),𝒚)− 𝐿(𝒇(𝒙′),𝒚′)∣ ≥ 𝛾.

Many loss functions are below-bounded and distinguishable, e.g., ranking
loss, hamming loss, one-error, average precision, etc., and we will study rank-
ing loss and hamming loss in Sections 4 and 5, respectively.

For notational simplicity, we will suppress dependence of 𝒑(𝒙) and 𝒇(𝒙)
on the instance 𝒙 as 𝒑 and 𝒇 , respectively, when it is clear from the context.
For an instance 𝒙 ∈ 𝒳 , we define the conditional risk of 𝒇 as

𝑙(𝒑,𝒇) =
∑

𝒚∈𝒴
𝑝𝒚𝐿(𝒇 ,𝒚) =

∑
𝒚∈𝒴

Pr(𝒚∣𝒙)𝐿(𝒇(𝒙),𝒚). (2)

It is easy to get the expected risk and the Bayes risk, respectively, as

𝑅(𝒇) = 𝔼𝒙[𝑙(𝒑,𝒇)] and 𝑅∗ = 𝔼𝒙

[
inf𝒇 [𝑙(𝒑,𝒇)]

]
.

We further define the set of Bayes predictions as

𝒜(𝒑) =
{
𝒇 : 𝑙(𝒑,𝒇) = inf𝒇 ′ 𝑙(𝒑,𝒇 ′)

}
,

and it is clear 𝒜(𝒑) ∕= ∅ as 𝐿 is distinguishable and below-bounded.
Many multi-label loss functions 𝐿, as mentioned in Section 1, have been

explored to measure the performance of multi-label learning algorithms,
whereas it is noteworthy that all of them are non-convex and discontinuous,
and directly optimizing such loss functions often yields NP-hard problems.
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Therefore, a feasible solution in practice is to consider a convex surrogate loss
Ψ in place of 𝐿. We define the Ψ-risk and Bayes Ψ-risk of 𝒇 , respectively, as

𝑅Ψ(𝒇) = 𝔼(𝒙,𝒚)∼𝒟[Ψ(𝒇(𝒙),𝒚)] and 𝑅∗
Ψ = inf𝒇 𝑅Ψ(𝒇).

Similarly, we define the conditional surrogate risk of 𝒇 and the conditional
Bayes surrogate risk, respectively, as

𝑊 (𝒑,𝒇) =
∑

𝒚∈𝒴
𝑝𝒚Ψ(𝒇 ,𝒚) and 𝑊 ∗(𝒑) = inf𝒇 𝑊 (𝒑,𝒇).

It is obvious that

𝑅Ψ(𝒇) = 𝐸𝒙[𝑊 (𝒑,𝒇)] and 𝑅∗
Ψ = 𝐸𝒙[𝑊

∗(𝒑)].

3. Multi-Label Consistency

Many notions of consistency have been introduced in the literature, e.g.,
the Fisher consistency (Lin, 2002), infinite-sample consistency (Zhang, 2004a),
classification calibration (Bartlett et al., 2006; Tewari and Bartlett, 2007),
edge-consistency (Duchi et al., 2010), etc. In this paper, we introduce the
multi-label consistency as follows:

Definition 3. Given a below-bounded surrogate loss Ψ where Ψ(⋅,𝒚) is con-
tinuous for every 𝒚 ∈ 𝒴, Ψ is said to be multi-label consistent w.r.t. the loss
𝐿 if it holds, for every 𝒑 ∈ Λ, that

𝑊 ∗(𝒑) < inf𝒇{𝑊 (𝒑,𝒇) : 𝒇 /∈ 𝒜(𝒑)}.

The following theorem states that the multi-label consistency is a nec-
essary and sufficient condition for the convergence of Ψ-risk to the Bayes
Ψ-risk, implying 𝑅(𝒇) → 𝑅∗.

Theorem 4. The surrogate loss Ψ is multi-label consistent w.r.t. the loss 𝐿
if and only if it holds for any sequence {𝒇𝑛}𝑛≥1 that

if 𝑅Ψ(𝒇𝑛)→𝑅∗
Ψ then 𝑅(𝒇𝑛) → 𝑅∗.

The proof is inspired by the techniques of (Zhang, 2004a; Tewari and
Bartlett, 2007). We begin with two useful lemmas, whose proofs are deferred
to Sections 6.1 and 6.2, respectively.
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Lemma 5. 𝑊 ∗(𝒑) is continuous on Λ.

Lemma 6. If the surrogate loss function Ψ is multi-label consistent w.r.t.
loss function 𝐿, then for any 𝜖 > 0, there exists 𝛿 > 0 such that, for every
𝒑 ∈ Λ,

if 𝑙(𝒑,𝒇)− inf𝒇 ′ 𝑙(𝒑,𝒇 ′) ≥ 𝜖 then 𝑊 (𝒑,𝒇)−𝑊 ∗(𝒑) ≥ 𝛿.

Proof of Theorem 4: (“⇒”) We first introduce a new notation

𝐻(𝜖) = inf𝒑∈Λ,𝒇{𝑊 (𝒑,𝒇)− inf𝒇 ′ 𝑊 (𝒑,𝒇 ′) : 𝑙(𝒑,𝒇)− inf𝒇 ′ 𝑙(𝒑,𝒇 ′) ≥ 𝜖}.
It is obvious that 𝐻(0) = 0 and 𝐻(𝜖) > 0 for 𝜖 > 0 from Lemma 6. Corollary
26 of (Zhang, 2004a) guarantees the existence of a concave function 𝜂 on
[0,∞] such that 𝜂(0) = 0 and 𝜂(𝜖) → 0 as 𝜖 → 0 and

𝑅(𝑓)−𝑅∗ ≤ 𝜂(𝑅Ψ(𝑓)−𝑅∗
Ψ).

Thus, if 𝑅Ψ(𝑓) → 𝑅∗
Ψ then 𝑅(𝑓) → 𝑅∗.

(“⇐”) We proceed by contradiction. Suppose Ψ is not multi-label consis-
tent, and thus there exists some 𝒑 s.t. 𝑊 ∗(𝒑) = inf𝒇{𝑊 (𝒑,𝒇) : 𝒇 /∈ 𝒜(𝒑)}.
Let 𝒇 (𝑛) /∈ 𝒜(𝒑) be a sequence s.t. 𝑊 (𝒑,𝒇 (𝑛)) → 𝑊 ∗(𝒑). For simplicity, we
consider 𝒳 = {𝒙}, i.e., only one instance, and set 𝒇𝑛(𝒙) = 𝒇 (𝑛). Then,

𝑅Ψ(𝒇𝑛) = 𝑊 (𝒑,𝒇 (𝑛)) → 𝑊 ∗(𝒑) = 𝑅∗
Ψ,

yielding 𝑙(𝒑,𝒇 (𝑛)) → inf𝒇 𝑙(𝒑,𝒇), whereas it is contrary to

𝑙(𝒑,𝒇 (𝑛)) ≥ inf𝒇 𝑙(𝒑,𝒇) + 𝛾(𝒑),

where 𝛾(𝒑) = inf𝒇 /∈𝒜(𝒑) 𝑙(𝒑,𝒇)− inf𝒇 𝑙(𝒑,𝒇) > 0, because 𝒇 (𝑛) /∈ 𝒜(𝒑) and 𝐿
is distinguishable. Thus, this theorem follows as desired. □

Owing to the non-convexity and discontinuity of multi-label loss 𝐿, there
may exist many solutions minimizing the risk 𝑅(ℎ), and the set of Bayes
predictions 𝒜(𝒑) contains all global optimal solutions. For the surrogate loss
Ψ, we denote by

𝒮(𝒑) = {𝒇 : 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑)}
the set of all functions which minimize the surrogate loss Ψ. An intuitive
explanation to Theorem 4 is that the surrogate loss Ψ is multi-label consistent
w.r.t. the loss 𝐿 if and only if 𝒮(𝒑) ⊆ 𝒜(𝒑).
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4. Consistency w.r.t. Ranking Loss

The ranking loss concerns about label pairs that are ordered reversely
for an instance. For a real-valued ranking function 𝒇 = (𝑓1, 𝑓2, . . . , 𝑓𝑞), the
ranking loss is given by

𝐿rankloss(𝒇 , (𝒙,𝒚)) = 𝑎𝒚
∑

𝑦𝑖=−1
𝑦𝑗=+1

𝐼[𝑓𝑖(𝒙) ≥ 𝑓𝑗(𝒙)]

= 𝑎𝒚
∑

𝑦𝑖<𝑦𝑗
𝐼[𝑓𝑖(𝒙) ≥ 𝑓𝑗(𝒙)], (3)

where 𝑎𝒚 is a non-negative penalty, and 𝐼[⋅] is the indicator function which
returns 1 if the argument is true and 0 otherwise. The most commonly used
penalty in multi-label learning is

𝑎𝒚 = ∣{𝑖 ∈ [𝑞] : 𝑦𝑖 = −1}∣−1 × ∣{𝑗 ∈ [𝑞] : 𝑦𝑗 = +1}∣−1.

In this paper we consider the more general penalty, i.e., non-negative penalty.
It is clear that the ranking loss is below-bounded from 𝐿rankloss(𝒇 , (𝒙,𝒚)) ≥ 0,
and it is distinguishable because for each 𝒙,𝒙′ ∈ 𝒳 and 𝒚,𝒚′ ∈ 𝒴 , we have

𝐿rankloss(𝒇 , (𝒙,𝒚)) = 𝐿rankloss(𝒇 , (𝒙
′,𝒚′)) or

∣𝐿rankloss(𝒇 , (𝒙,𝒚))− 𝐿rankloss(𝒇 , (𝒙
′,𝒚′))∣ ≥ 𝛾.

Here 𝛾 = min𝒚,𝒚′∈𝒴,0≤𝑖,𝑗≤𝑞2/4

{∣𝑖𝑎𝒚 − 𝑗𝑎𝒚′ ∣ > 0
}
, because Eqn. (3) yields

𝐿rankloss(𝒇 , (𝒙,𝒚)) ∈ {𝑖𝑎𝒚, 0 ≤ 𝑖 ≤ 𝑞2/4} and

𝐿rankloss(𝒇 , (𝒙,𝒚
′)) ∈ {𝑗𝑎𝒚′ , 0 ≤ 𝑗 ≤ 𝑞2/4}.

After obtaining ranking function 𝒇 , there are at least two ways to exploit
the ranking result to get the actual number of labels. The first way (Elisseeff
and Weston, 2002) is to learn another function which is able to predict the
number of labels. Another way (Fürnkranz et al., 2008) is to insert a “cal-
ibration” label between relevant and irrelevant labels for training examples,
and then, after prediction, labels ranked higher than the calibration label
will be regarded as relevant ones. More details can be found in (Elisseeff and
Weston, 2002; Fürnkranz et al., 2008).

Before further discussion, we introduce the following notations:

Δ =
∑

𝒚∈𝒴
𝑎𝒚𝑝𝒚, Δ−

𝑖 =
∑

𝒚 : 𝑦𝑖=−1
𝑎𝒚𝑝𝒚 and Δ𝑖,𝑗 =

∑
𝒚 : 𝑦𝑖<𝑦𝑗

𝑝𝒚𝑎𝒚,

for a given vector 𝒑 ∈ Λ and non-negative vector (𝑎𝒚)𝒚∈𝒴 . It is easy to get:
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Lemma 7. For a vector 𝒑 ∈ Λ and non-negative vector (𝑎𝒚)𝒚∈𝒴 , the follow-
ing properties hold:

1. Δ𝑖,𝑖 = 0;

2. Δ−
𝑖 −Δ−

𝑗 = Δ𝑖,𝑗 −Δ𝑗,𝑖;

3. Δ𝑖,𝑘 +Δ𝑘,𝑗 +Δ𝑗,𝑖 = Δ𝑘,𝑖 +Δ𝑖,𝑗 +Δ𝑗,𝑘;

4. Δ𝑖,𝑘 ≤ Δ𝑘,𝑖 if Δ𝑖,𝑗 ≤ Δ𝑗,𝑖 and Δ𝑗,𝑘 ≤ Δ𝑘,𝑗.

Proof: Property 1 is immediate from definition, and Property 2 holds from

Δ−
𝑖 −Δ−

𝑗 =
∑

𝒚 : 𝑦𝑖=𝑦𝑗=−1

𝑎𝒚𝑝𝒚 +
∑

𝒚 : 𝑦𝑖<𝑦𝑗

𝑎𝒚𝑝𝒚 −
∑

𝒚 : 𝑦𝑖=𝑦𝑗=−1

𝑎𝒚𝑝𝒚 −
∑

𝒚 : 𝑦𝑗<𝑦𝑖

𝑎𝒚𝑝𝒚.

From Property 2, we have

Δ−
𝑖 −Δ−

𝑗 = Δ𝑖,𝑗 −Δ𝑗,𝑖, Δ−
𝑗 −Δ−

𝑘 = Δ𝑗,𝑘 −Δ𝑘,𝑗, Δ−
𝑘 −Δ−

𝑖 = Δ𝑘,𝑖 −Δ𝑖,𝑘;

therefore, Property 3 follows. Property 4 holds from Property 3 directly. □

Based on this lemma, we get the set of Bayes predictions for ranking loss
as follows:

Lemma 8. For every 𝒑 ∈ Λ and non-negative vector (𝑎𝒚)𝒚∈𝒴 , the set of
Bayes predictions for ranking loss is given by

𝒜(𝒑) = {𝒇 : for all 𝑖 < 𝑗, 𝑓𝑖 > 𝑓𝑗 if Δ𝑖,𝑗 < Δ𝑗,𝑖;

𝑓𝑖 ∕= 𝑓𝑗 if Δ𝑖,𝑗 = Δ𝑗,𝑖; and 𝑓𝑖 < 𝑓𝑗 otherwise}.
Proof: From the definition of the conditional risk given by Eqn. (2), we have

𝑙(𝒑,𝒇) =
∑

𝒚∈𝒴
𝑝𝒚𝐿rankloss(𝒇 , (𝒙,𝒚))

=
∑

𝒚∈𝒴
𝑝𝒚𝑎𝒚

∑
𝑦𝑖<𝑦𝑗

𝐼[𝑓𝑖 ≥ 𝑓𝑗]

=
∑

𝒚∈𝒴
𝑝𝒚𝑎𝒚

∑
1≤𝑖,𝑗≤𝑞

𝐼[𝑓𝑖 ≥ 𝑓𝑗] ⋅ 𝐼[𝑦𝑖 < 𝑦𝑗].

By swapping the two sums, we get

𝑙(𝒑,𝒇) =
∑

1≤𝑖,𝑗≤𝑞
𝐼[𝑓𝑖 ≥ 𝑓𝑗]

∑
𝒚 : 𝑦𝑖<𝑦𝑗

𝑝𝒚𝑎𝒚

=
∑

1≤𝑖,𝑗≤𝑞
𝐼[𝑓𝑖 ≥ 𝑓𝑗]Δ𝑖,𝑗

=
∑

1≤𝑖<𝑗≤𝑞
𝐼[𝑓𝑖 ≥ 𝑓𝑗]Δ𝑖,𝑗 + 𝐼[𝑓𝑖 ≤ 𝑓𝑗]Δ𝑗,𝑖.
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Hence we complete the proof by combining with Property 4 in Lemma 7. □
For ranking loss, it is natural to consider the following surrogate loss:

Ψ(𝒇(𝒙),𝒚) = 𝑎𝒚
∑

𝑦𝑖<𝑦𝑗
𝜙(𝑓𝑗(𝒙)− 𝑓𝑖(𝒙)), (4)

where 𝜙 is convex and non-increasing such as the hinge loss 𝜙(𝑥) = (1−𝑥)+ in
(Elisseeff and Weston, 2002), exponential loss 𝜙(𝑥) = exp(−𝑥) in (Schapire
and Singer, 2000; Dekel et al., 2004; Zhang and Zhou, 2006), etc. The follow-
ing theorem discloses that none of convex surrogate loss is consistent with
ranking loss.

Theorem 9. For any convex function 𝜙, the surrogate loss

Ψ(𝒇(𝒙),𝒚) =
∑

𝑦𝑖<𝑦𝑗
𝑎𝒚𝜙(𝑓𝑗(𝒙)− 𝑓𝑖(𝒙))

is inconsistent w.r.t. ranking loss.

Proof: For surrogate loss Ψ, we have

𝑊 (𝒑,𝒇) =
∑

𝒚∈𝒴
𝑝𝒚Ψ(𝒇 ,𝒚) =

∑
𝒚∈𝒴

𝑝𝒚𝑎𝒚
∑

𝑦𝑖<𝑦𝑗
𝜙(𝑓𝑗 − 𝑓𝑖)

=
∑

1≤𝑖<𝑗≤𝑞
𝜙(𝑓𝑗 − 𝑓𝑖)Δ𝑖,𝑗 + 𝜙(𝑓𝑖 − 𝑓𝑗)Δ𝑗,𝑖.

Consider the probability vector 𝒑 = (𝑝𝒚)𝒚∈𝒴 and penalty vector (𝑎𝒚)𝒚∈𝒴 s.t.
𝑝𝒚1 = 𝑝𝒚2 and 𝑎𝒚1 = 𝑎𝒚2 for every 𝒚1 ∕= 𝒚2, 𝒚1,𝒚2 ∈ 𝒴 . This yields that
Δ𝑖,𝑗 = Δ𝑚,𝑛 for every 1 ≤ 𝑖 ∕= 𝑗,𝑚 ∕= 𝑛 ≤ 𝑞, and thus we get

𝑊 (𝒑,𝒇) = Δ1,2

∑
1≤𝑖<𝑗≤𝑞

𝜙(𝑓𝑗 − 𝑓𝑖) + 𝜙(𝑓𝑖 − 𝑓𝑗).

From the convexity of 𝜙, minimizing 𝑊 (𝒑,𝒇) gives

𝑊 ∗(𝒑) = 𝑊 (𝒑,𝒇) = 𝑞(𝑞 − 1)𝜙(0)Δ1,2,

where 𝒇 = {𝒇 : 𝑓1 = 𝑓2 = ⋅ ⋅ ⋅ = 𝑓𝑞}. From Lemma 8, we have 𝒇 /∈ 𝒜(𝒑), and

𝑊 ∗(𝒑) = inf𝒇{𝑊 (𝒑,𝒇) : 𝒇 /∈ 𝒜(𝒑)}
which show the inconsistency. This theorem follows as desired. □
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Intuitively, Property 4 of Lemma 7 implies that {Δ𝑖,𝑗} defines an order
for the label set ℒ = {1, 2, . . . , 𝑞} by 𝑖 ર 𝑗 if Δ𝑖,𝑗 ≤ Δ𝑗,𝑖. Notice that, for
𝑖 ર 𝑗, Δ𝑖,𝑗 = Δ𝑗,𝑖 is possible. The set of Bayes predictions of a reasonable
loss function should include all functions that are compatible with this order,
i.e., 𝒇 ’s that enable 𝑓𝑖 ≥ 𝑓𝑗 if 𝑖 ર 𝑗. In the definition of ranking loss given
by Eqn. (3), the same penalty term is applied to 𝑓𝑖 < 𝑓𝑗 and 𝑓𝑖 = 𝑓𝑗; thus,
the set of Bayes predictions with respect to ranking loss does not include
some functions that are compatible with the above order as what enforces
by ranking loss is 𝑖 ≻ 𝑗 or 𝑗 ≻ 𝑖 if Δ𝑖,𝑗 = Δ𝑗,𝑖 for the label set ℒ. For an
extreme example, i.e., when all Δ𝑖,𝑗’s are equal for all 𝑖 ∕= 𝑗, minimizing the
convex surrogate loss function Ψ leads to the optimal solution

𝒇 ∗ ∈ {𝒇 : 𝑓1 = 𝑓2 = ⋅ ⋅ ⋅ = 𝑓𝑞},

but 𝒇 ∗ /∈ 𝒜(𝒑) (from Lemma 8). So, the same penalty on 𝑓𝑖 < 𝑓𝑗 and 𝑓𝑖 = 𝑓𝑗
encumbers the multi-label consistency.

To overcome the deficiency of ranking loss, we present the partial ranking
loss

𝐿p-rankloss(𝒇 , (𝒙,𝒚)) = 𝑎𝒚
∑

𝑦𝑖<𝑦𝑗
𝐼[𝑓𝑖(𝒙) > 𝑓𝑗(𝒙)] +

1

2
𝐼[𝑓𝑖(𝒙) = 𝑓𝑗(𝒙)], (5)

which has been used for ranking problems. The only difference from ranking
loss lies in the use of different penalties for

∑
𝑦𝑖<𝑦𝑗

𝐼[𝑓𝑖 = 𝑓𝑗], where the

ranking loss uses 𝑎𝒚 whereas the partial ranking loss uses 𝑎𝒚/2. With a proof
similar to that of Lemma 8, we can get the set of Bayes predictions with
respect to the partial ranking loss:

𝒜(𝒑) = {𝒇 : for all 𝑖 < 𝑗, 𝑓𝑖 > 𝑓𝑗 if Δ𝑖,𝑗 < Δ𝑗,𝑖; 𝑓𝑖 < 𝑓𝑗 if Δ𝑖,𝑗 > Δ𝑗,𝑖}. (6)

Now, consider the previous extreme example in Theorem 9, i.e., Δ𝑖,𝑗’s are
equal for all 𝑖 ∕= 𝑗, again. It is easy to see that by minimizing the surrogate
loss function Ψ, the optimal solution

𝒇 ∗ ∈ {𝒇 : 𝑓1 = 𝑓2 = ⋅ ⋅ ⋅ = 𝑓𝑞} ⊆ 𝒜(𝒑)

exhibits consistency.
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4.1. Consistency of Surrogate Loss of Eqn. (4)

In this section, we consider the surrogate loss of Eqn. (4), i.e.,

Ψ(𝒇(𝒙),𝒚) = 𝑎𝒚
∑

𝑦𝑖<𝑦𝑗
𝜙(𝑓𝑗(𝒙)− 𝑓𝑖(𝒙)),

and examine its consistency w.r.t. partial ranking loss. We begin with a
sufficient condition for consistency as follows:

Theorem 10. If 𝜙 : ℝ → ℝ is a differentiable and non-increasing function
such that

𝜙′(0) < 0 and 𝜙(𝑡) + 𝜙(−𝑡) ≡ 2𝜙(0), (7)

i.e., 𝜙(𝑡) + 𝜙(−𝑡) = 2𝜙(0) for every 𝑡 ∈ ℝ, then the surrogate loss Ψ of
Eqn. (4) is consistent w.r.t. partial ranking loss.

Proof: For every probability simplex 𝒑 ∈ Λ and non-negative vector (𝑎𝒚)𝒚∈𝒴 ,
it suffices to prove that 𝑓𝑖 > 𝑓𝑗 if Δ𝑖,𝑗 < Δ𝑗,𝑖 for every 𝒇 such that 𝑊 ∗(𝒑) =
𝑊 (𝒑,𝒇). Without loss of generality, we will prove that 𝑓1 > 𝑓2 if Δ1,2 < Δ2,1

by contradiction, i.e., assuming 𝑓1 ≤ 𝑓2 for some vector 𝒇 which satisfies
𝑊 ∗(𝒑) = 𝑊 (𝒑,𝒇).

For the case 𝑓1 < 𝑓2, we construct another 𝒇 ′ by

𝑓 ′
1 = 𝑓2, 𝑓

′
2 = 𝑓1 and 𝑓 ′

𝑘 = 𝑓𝑘 for 𝑘 ∕= 1, 2.

From the definition of conditional surrogate risk, we have

𝑊 (𝒑,𝒇) =
∑

1≤𝑖<𝑗≤𝑞
𝜙(𝑓𝑗 − 𝑓𝑖)Δ𝑖,𝑗 + 𝜙(𝑓𝑖 − 𝑓𝑗)Δ𝑗,𝑖,

which yields that

𝑊 (𝒑,𝒇)−𝑊 (𝒑,𝒇 ′) = (Δ1,2 −Δ2,1)(𝜙(𝑓2 − 𝑓1)− 𝜙(𝑓1 − 𝑓2))

+
∑𝑞

𝑖=3
(Δ1,𝑖 −Δ2,𝑖)(𝜙(𝑓𝑖 − 𝑓1)− 𝜙(𝑓𝑖 − 𝑓2))

+
∑𝑞

𝑖=3
(Δ𝑖,1 −Δ𝑖,2)(𝜙(𝑓1 − 𝑓𝑖)− 𝜙(𝑓2 − 𝑓𝑖)).

From Property 4 of Lemma 7, we have

Δ1,𝑖 −Δ2,𝑖 −Δ𝑖,1 +Δ𝑖,2 = Δ1,2 −Δ2,1. (8)
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This follows

𝑊 (𝒑,𝒇)−𝑊 (𝒑,𝒇 ′)

=
∑𝑞

𝑖=3
(Δ𝑖,1 −Δ𝑖,2)(𝜙(𝑓1 − 𝑓𝑖) + 𝜙(𝑓𝑖 − 𝑓1)− 𝜙(𝑓𝑖 − 𝑓2)− 𝜙(𝑓2 − 𝑓𝑖))

+(Δ1,2 −Δ2,1)(𝜙(𝑓2 − 𝑓1)− 𝜙(𝑓1 − 𝑓2))

+(Δ1,2 −Δ2,1)
∑𝑞

𝑖=3

(
𝜙(𝑓𝑖 − 𝑓1)− 𝜙(𝑓𝑖 − 𝑓2)

)
= (Δ1,2 −Δ2,1)

(
𝜙(𝑓2 − 𝑓1)− 𝜙(𝑓1 − 𝑓2)

)
+(Δ1,2 −Δ2,1)

∑𝑞

𝑖=3

(
𝜙(𝑓𝑖 − 𝑓1)− 𝜙(𝑓𝑖 − 𝑓2)

)
,

where the last equality holds from 𝜙(𝑡) + 𝜙(−𝑡) ≡ 2𝜙(0). For non-increasing
function 𝜙 with 𝜙′(0) < 0, we have 𝜙(𝑡) < 𝜙(−𝑡) for all 𝑡 > 0, and this yields

(Δ1,2 −Δ2,1)
(
𝜙(𝑓2 − 𝑓1)− 𝜙(𝑓1 − 𝑓2)

)
> 0.

Meanwhile, we also have 𝜙(𝑓𝑖 − 𝑓1) ≤ 𝜙(𝑓𝑖 − 𝑓2), which yields

(Δ1,2 −Δ2,1)
∑𝑞

𝑖=3

(
𝜙(𝑓𝑖 − 𝑓1)− 𝜙(𝑓𝑖 − 𝑓2)

) ≥ 0.

Thus, we prove 𝑊 (𝒑,𝒇) > 𝑊 (𝒑,𝒇 ′) which is contrary to 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑).
We now consider the case 𝑓1 = 𝑓2. The subgradient conditions for opti-

mality of ∂
∂𝑓𝑖

𝑊 (𝒑,𝒇) = 0 for 𝑖 = 1, 2 give∑
𝑖∕=1

𝜙′(𝑓1 − 𝑓𝑖)Δ𝑖,1 =
∑

𝑖∕=1
𝜙′(𝑓𝑖 − 𝑓1)Δ1,𝑖,∑

𝑖∕=2
𝜙′(𝑓𝑖 − 𝑓2)Δ2,𝑖 =

∑
𝑖∕=2

𝜙′(𝑓2 − 𝑓𝑖)Δ𝑖,2.

By combining Eqn. (8), 𝑓1 = 𝑓2 and 𝜙′(𝑡) = 𝜙′(−𝑡) from Eqn. (7), we have

(Δ2,1 −Δ1,2)
(
2𝜙′(0) +

∑
𝑖∕=1,2

𝜙′(𝑓1 − 𝑓𝑖)
)
= 0,

which is contrary to Δ1,2 < Δ2,1 and 2𝜙′(0)+
∑

𝑖∕=1,2 𝜙
′(𝑓1−𝑓𝑖) ≤ 2𝜙′(0) < 0.

Thus, we complete the proof. □

The condition 𝜙(𝑡) + 𝜙(−𝑡) ≡ 2𝜙(0) is motivated from linear loss and
sigmoid-type losses used for neural networks. Based on this theorem, we can
easily get the following consistency for sigmoid-type functions.
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Corollary 11. The surrogate loss Ψ given by Eqn. (4) is consistent w.r.t
partial ranking loss for sigmoid-type loss functions 𝜙(𝑡) = 1/(1 + exp(𝑡)),
𝜙(𝑡) = − arctan(𝑡), etc.

It is noteworthy that Theorem 10 cannot be applied directly to 𝜙(𝑡) =
−𝑐𝑡2𝑘+1 for some constant 𝑐 > 0 and integer 𝑘 ≥ 0, because it is not below-
bounded. This problem, however, can be solved by introducing a regular-
ization term as in (Duchi et al., 2010). Here, the regularization can be used
to control the model complexity, and guarantee that the linear loss is below-
bounded. With a proof similar to that of Theorem 10, we get:

Theorem 12. The following surrogate loss is consistent w.r.t. partial rank-
ing loss:

Ψ(𝒇(𝒙),𝒚) =
∑

𝑦𝑖<𝑦𝑗
𝑎𝒚𝜙(𝑓𝑗(𝒙)− 𝑓𝑖(𝒙)) + 𝜏Υ(𝒇(𝒙)),

where 𝜏 > 0, 𝜙(𝑥) = −𝑐𝑥2𝑘+1 for some constant 𝑐 > 0 and integer 𝑘 ≥ 0,
and Υ is symmetric, that is,

Υ(. . . , 𝑓𝑖(𝒙), . . . , 𝑓𝑗(𝒙), . . .) = Υ(. . . , 𝑓𝑗(𝒙), . . . , 𝑓𝑖(𝒙), . . .).

From this theorem, we can easily construct the following convex surrogate
loss function:

Ψ(𝒇(𝒙),𝒚) =
∑

𝑦𝑖<𝑦𝑗
−𝑎𝒚(𝑓𝑗(𝒙)− 𝑓𝑖(𝒙)) + 𝜏

∑𝑞

𝑖=1
𝑓 2
𝑖 (𝒙),

which is consistent w.r.t. partial ranking loss.

It is worth noting that this does not imply that any convex surrogate loss
Ψ given by Eqn. (4) is consistent w.r.t. partial ranking loss. In fact, the fol-
lowing theorem proves that, many non-linear surrogate losses are inconsistent
w.r.t. partial ranking loss.

Theorem 13. If 𝜙 : ℝ → ℝ is a convex, differentiable, non-linear and non-
increasing function, then the surrogate loss Ψ given by Eqn. (4) is inconsistent
w.r.t. partial ranking loss.

Before giving the detailed proof, we first introduce a lemma, whose proof
is deferred to Section 6.3.
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Lemma 14. Let 𝜙 : ℝ → ℝ be a convex, differentiable, non-linear and non-
increasing function. For 𝑏 > 𝑎 > 0, if the followings hold:

𝜙′(𝑏− 𝑎)(𝜙′(𝑎) + 𝜙′(𝑏)) + 𝜙′(𝑏)𝜙′(−𝑎)

𝜙′(𝑎− 𝑏)(𝜙′(𝑎) + 𝜙′(𝑏)) + 𝜙′(𝑏)𝜙′(𝑎)
> 1, (9)

0 <
𝜙′(−𝑎)

𝜙′(𝑎)
≤ 𝜙′(−𝑏)

𝜙′(𝑎)
<

𝜙′(−𝑏)

𝜙′(𝑏)
, (10)

then there exist some 𝑃1 > 𝑃2 > 0, 𝑃3 > 0 and 𝑃4 > 0 such that

𝑃1𝜙
′(𝑎− 𝑏)− 𝑃2𝜙

′(𝑏− 𝑎) = 𝑃4𝜙
′(𝑏)− 𝑃3𝜙

′(−𝑏), (11)

−𝑃1𝜙
′(𝑎) + 𝑃2𝜙

′(−𝑎) = 𝑃4(𝜙
′(𝑎) + 𝜙′(𝑏))− 𝑃3(𝜙

′(−𝑎) + 𝜙′(−𝑏)). (12)

Proof of Theorem 13 For convex function 𝜙 we have 𝜙′(𝑡1) ≤ 𝜙′(𝑡2) for
every 𝑡1 ≤ 𝑡2 from (Rockafellar, 1997), and the derivative function 𝜙′(𝑡) is
continuous for 𝑡 ∈ ℝ if 𝜙 is differentiable and convex. As 𝜙 is non-increasing,
we have 𝜙′(𝑡) ≤ 0 for all 𝑡 ∈ ℝ, and without loss of generality, we assume
𝜙′(𝑡) < 0.

We proceed by contradiction. Assume the surrogate loss Ψ is consistent
with partial ranking loss for some non-linear function 𝜙. Then, from the
continuity of 𝜙′(𝑡), there exists a distinguishable (𝑐, 𝑑) for 𝑐 < 𝑑 < 0 or
0 < 𝑐 < 𝑑, such that

𝜙′(𝑡1) < 𝜙′(𝑡2) for every 𝑡1 < 𝑡2 and 𝑡1, 𝑡2 ∈ (𝑐, 𝑑).

In the following, we focus on the case 0 < 𝑐 < 𝑑, and similar consideration
can be made for the case 𝑐 < 𝑑 < 0.

We first fix 𝑎 ∈ (𝑐, 𝑑) and introduce a new function

𝐺(𝑡) =
(
𝜙′(𝑡− 𝑎)− 𝜙′(𝑎− 𝑡)

)(
𝜙′(𝑎) + 𝜙′(𝑡)

)
+ 𝜙′(𝑡)

(
𝜙′(−𝑎)− 𝜙′(𝑎)

)
.

It is easy to find that 𝐺(𝑡) is continuous and

𝐺(𝑎) = 𝜙′(𝑎)
(
𝜙′(−𝑎)− 𝜙′(𝑎)

)
> 0.

Thus, there exists 𝑏 > 𝑎 and 𝑏 ∈ (𝑐, 𝑑) such that

𝐺(𝑏) =
(
𝜙′(𝑏− 𝑎)− 𝜙′(𝑎− 𝑏)

)(
𝜙′(𝑎) + 𝜙′(𝑏)

)
+ 𝜙′(𝑏)

(
𝜙′(−𝑎)− 𝜙′(𝑎)

)
> 0,
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which gives
𝜙′(𝑏− 𝑎)(𝜙′(𝑎) + 𝜙′(𝑏)) + 𝜙′(𝑏)𝜙′(−𝑎)

𝜙′(𝑎− 𝑏)(𝜙′(𝑎) + 𝜙′(𝑏)) + 𝜙′(𝑏)𝜙′(𝑎)
> 1. (13)

Moreover, from 𝜙′(𝑎) < 𝜙′(𝑏) < 0 and 𝜙′(−𝑏) ≤ 𝜙′(−𝑎) < 0, we have

0 <
𝜙′(−𝑎)

𝜙′(𝑎)
≤ 𝜙′(−𝑏)

𝜙′(𝑎)
<

𝜙′(−𝑏)

𝜙′(𝑏)
. (14)

We consider the following multi-label task with 𝑞 = 3 labels:

𝒚1 = (−1,+1,+1),𝒚2 = (+1,−1,−1),𝒚3 = (+1,+1,−1),𝒚4 = (−1,−1,+1).

Let 𝒇 = (𝑓1, 𝑓2, 𝑓3) such that 𝑎 = 𝑓3 − 𝑓1 and 𝑏 = 𝑓3 − 𝑓2, and thus 𝑓1 > 𝑓2.
For every probability simplex 𝒑 = (𝑝𝒚1 , 𝑝𝒚2 , 𝑝𝒚3 , 𝑝𝒚4) ∈ Λ and non-negative
penalty vector (𝑎𝒚1 , 𝑎𝒚2 , 𝑎𝒚3 , 𝑎𝒚4), we have

𝑊 (𝒑,𝒇) = Δ1,2𝜙(𝑓2 − 𝑓1) + Δ2,1𝜙(𝑓1 − 𝑓2) + Δ1,3𝜙(𝑓3 − 𝑓1)

+Δ3,1𝜙(𝑓1 − 𝑓3) + Δ2,3𝜙(𝑓3 − 𝑓2) + Δ3,2𝜙(𝑓2 − 𝑓3),

where Δ1,2 = 𝑃1, Δ2,1 = 𝑃2, Δ1,3 = 𝑃1 + 𝑃4, Δ3,1 = 𝑃2 + 𝑃3, Δ2,3 = 𝑃4

and Δ3,2 = 𝑃3 with 𝑃𝑖 = 𝑝𝒚1𝑎𝒚1 for 𝑖 = 1, 2, 3, 4. In the following, we
will construct some 𝒑 and (𝑎̄1, 𝑎̄2, 𝑎̄3, 𝑎̄4) such that 𝑊 ∗(𝒑) = 𝑊 (𝒑,𝒇) and
Δ1,2 > Δ2,1.

The subgradient conditions for optimality of ∂𝑊 (𝒑,𝒇)
∂𝑓𝑖

= 0 (𝑖 = 1, 2, 3) give

−𝑃1𝜙
′(𝑎− 𝑏) + 𝑃2𝜙

′(𝑏− 𝑎)− (𝑃1 + 𝑃4)𝜙
′(𝑎) + (𝑃2 + 𝑃3)𝜙

′(−𝑎) = 0,

𝑃1𝜙
′(𝑎− 𝑏)− 𝑃2𝜙

′(𝑏− 𝑎)− 𝑃4𝜙
′(𝑏) + 𝑃3𝜙

′(−𝑏) = 0,

(𝑃1 + 𝑃4)𝜙
′(𝑎)− (𝑃2 + 𝑃3)𝜙

′(−𝑎) + 𝑃4𝜙
′(𝑏)− 𝑃3𝜙

′(−𝑏) = 0,

which are equivalent to

𝑃1𝜙
′(𝑎− 𝑏)− 𝑃2𝜙

′(𝑏− 𝑎) = 𝑃4𝜙
′(𝑏)− 𝑃3𝜙

′(−𝑏),

−𝑃1𝜙
′(𝑎) + 𝑃2𝜙

′(−𝑎) = 𝑃4(𝜙
′(𝑎) + 𝜙′(𝑏))− 𝑃3(𝜙

′(−𝑎) + 𝜙′(−𝑏)).

Lemma 14 shows that there exist 𝒑 = (𝑝𝒚1 , 𝑝𝒚2 , 𝑝𝒚3 , 𝑝𝒚4) and (𝑎̄𝒚1 , 𝑎̄𝒚2 , 𝑎̄𝒚3 , 𝑎̄𝒚4)
s.t. the above hold and 𝑃1 > 𝑃2 from Eqns. (13) and (14). Hence this yields
𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑). We also have 𝒇 /∈ 𝒜(𝒑) from Δ1,2 = 𝑃1 > 𝑃2 = Δ2,1 yet
𝑓1 > 𝑓2; thus, 𝑊

∗(𝒑) = inf𝒇{𝑊 (𝒑,𝒇) : 𝒇 /∈ 𝒜(𝒑)}, and the theorem holds.□

Based on this theorem, many state-of-the-art multi-label learning ap-
proaches (Schapire and Singer, 2000; Dekel et al., 2004; Zhang and Zhou,
2006) are proven to be inconsistent w.r.t. partial ranking loss.
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Corollary 15. The surrogate loss Ψ given by Eqn. (4) is inconsistent w.r.t.
partial ranking loss for exponential loss 𝜙(𝑡) = exp(−𝑡), logistic loss 𝜙(𝑡) =
ln(1 + exp(−𝑡)) and least square hinge loss 𝜙(𝑡) = (max(0, 1− 𝑡))2.

It is noteworthy that Theorem 13 cannot be used directly to study the
consistency of hinge loss because it is non-differentiable, whereas the follow-
ing theorem shows the inconsistency for hinge loss:

Theorem 16. For hinge loss 𝜙(𝑡) = max(0, 1−𝑡), the surrogate loss Ψ given
by Eqn. (4) is inconsistent w.r.t. partial ranking loss.

Proof: We consider the following multi-label task with 𝑞 = 3 labels:

𝒚1 = (−1,+1,+1),𝒚2 = (+1,−1,−1),𝒚3 = (+1,+1,−1),𝒚4 = (−1,−1,+1),

and focus on the probability simplex 𝒑 = (𝑝𝒚1 , 𝑝𝒚2 , 𝑝𝒚3 , 𝑝𝒚4) ∈ Λ and non-
negative penalty vector (𝑎𝒚1 , 𝑎𝒚2 , 𝑎𝒚3 , 𝑎𝒚4) such that 𝑃2 < 𝑃1 ≤ 2𝑃2, 𝑃1 +
𝑃3 < 𝑃2 + 𝑃4 and 𝑃3 < 𝑃4, where 𝑃𝑖 = 𝑝𝒚𝑖

𝑎𝒚𝑖
for 1 ≤ 𝑖 ≤ 4. For every

𝒇 = (𝑓1, 𝑓2, 𝑓3), we have

𝑊 (𝒑,𝒇) = Δ1,2𝜙(𝑓2 − 𝑓1) + Δ2,1𝜙(𝑓1 − 𝑓2) + Δ1,3𝜙(𝑓3 − 𝑓1)

+Δ3,1𝜙(𝑓1 − 𝑓3) + Δ2,3𝜙(𝑓3 − 𝑓2) + Δ3,2𝜙(𝑓2 − 𝑓3),

where Δ1,2 = 𝑃1, Δ2,1 = 𝑃2, Δ1,3 = 𝑃1 + 𝑃4, Δ3,1 = 𝑃2 + 𝑃3, Δ2,3 = 𝑃4 and
Δ3,2 = 𝑃3. Minimizing 𝑊 (𝒑,𝒇) gives the optimal solution 𝒇 = (𝑓1, 𝑓2, 𝑓3)
such that 𝑓1 = 𝑓2 = 𝑓3−1. This gives 𝒇 /∈ 𝒜(𝒑) from Δ1,2 = 𝑃1 > 𝑃2 = Δ2,1.
Thus, we have 𝑊 ∗(𝒑) = inf𝒇 /∈𝒜(𝒑)𝑊 (𝒑,𝒇), and this theorem follows. □

Also, the following theorem shows that the least square loss is inconsistent
with partial ranking loss:

Theorem 17. For least square loss 𝜙(𝑡) = (1 − 𝑡)2, the surrogate loss Ψ
given by Eqn. (4) is inconsistent w.r.t. partial ranking loss.

Proof: We consider the following multi-label task with 𝑞 = 3 labels:

𝒚1 = (−1,+1,+1),𝒚2 = (+1,−1,−1),𝒚3 = (+1,+1,−1),

and focus on the probability simplex 𝒑 = (𝑝𝒚1 , 𝑝𝒚2 , 𝑝𝒚3) ∈ Λ and non-negative
penalty vector (𝑎𝒚1 , 𝑎𝒚2 , 𝑎𝒚3) such that 𝑃2 = 3𝑃1/2 and 𝑃3 > 5𝑃1/4, where
𝑃𝑖 = 𝑝𝒚𝑖

𝑎𝒚𝑖
> 0 for 1 ≤ 𝑖 ≤ 3. For least square loss, we have

𝑊 (𝒑,𝒇) = 𝑃1(1− 𝑓2 + 𝑓1)
2 + 𝑃2(1− 𝑓1 + 𝑓2)

2

+𝑃1(1− 𝑓3 + 𝑓1)
2 + (𝑃2 + 𝑃3)(1− 𝑓1 + 𝑓3)

2 + 𝑃3(1− 𝑓2 + 𝑓3)
2.

18



The subgradient conditions for optimality of ∂𝑊 (𝒑,𝒇)
∂𝑓𝑖

= 0 (𝑖 = 1, 2, 3) give the

optimal solution 𝒇 ∗ = (𝑓 ∗
1 , 𝑓

∗
2 , 𝑓

∗
3 ) such that

𝑓 ∗
1 − 𝑓 ∗

2 = (𝑃 2
2 − 𝑃 2

1 + 2𝑃3(𝑃2 − 2𝑃1))/𝜅 = 𝑃1(5/4𝑃1 − 𝑃3)/𝜅 < 0

where 𝜅 = (𝑃1 + 𝑃2 + 𝑃3)
2 + 𝑃3(𝑃1 + 𝑃2) and we use 𝑃2 = 3𝑃1/2 and 𝑃3 >

5𝑃1/4. This theorem follows since 𝒇 /∈ 𝒜(𝒑) from Δ1,2 = 𝑃1 < 𝑃2 = Δ2,1. □

4.2. Consistency of Univariate Surrogate Loss

Now we consider the univariate surrogate loss as follows:

Ψ(𝒇(𝒙),𝒚) = 𝑎𝒚
∑𝑞

𝑖=1
𝜙(𝑦𝑖𝑓𝑖(𝒙)), (15)

where 𝜙 is a convex function, e.g., exponential loss 𝜙(𝑡) = exp(−𝑡), logistic
loss 𝜙(𝑡) = ln(1+exp(−𝑡)), hinge loss 𝜙(𝑡) = max(0, 1− 𝑡), etc. We have the
following sufficient condition for consistency of univariate surrogate loss:

Theorem 18. If 𝜙 : ℝ → ℝ is a convex, non-increasing and differentiable
function with 𝜙′(0) < 0, then the univariate surrogate loss Ψ of Eqn. (15) is
consistent w.r.t. partial ranking loss.

Proof: For every probability simplex 𝒑 = (𝑝𝒚)𝒚∈𝒴 and non-negative vector
(𝑎𝒚)𝒚∈𝒴 , we have

𝑊 (𝒑,𝒇) =
∑

𝒚∈𝒴
𝑝𝒚𝑎𝒚

∑𝑞

𝑖=1
𝜙(𝑦𝑖𝑓𝑖) =

∑𝑞

𝑖=1
Δ−

𝑖 𝜙(−𝑓𝑖) + (Δ−Δ−
𝑖 )𝜙(𝑓𝑖).

It suffices to prove that 𝑓𝑖 > 𝑓𝑗 if Δ𝑖,𝑗 < Δ𝑗,𝑖 for every 𝒇 such that 𝑊 ∗(𝒑) =
𝑊 (𝒑,𝒇). Without loss of generality, we will prove that 𝑓1 < 𝑓2 if Δ1,2 > Δ2,1.

From Property 2 in Lemma 7, we have Δ−
1 − Δ−

2 = Δ1,2 − Δ2,1, and if
Δ1,2 > Δ2,1, we have

Δ−
1 > Δ−

2 ⇒ Δ/Δ−
1 < Δ/Δ−

2 ⇒ (Δ−Δ−
1 )/Δ

−
1 < (Δ−Δ−

2 )/Δ
−
2 .

The subgradient conditions for optimality of ∂𝑊 (𝒑,𝒇)
∂𝑓𝑖

= 0 (𝑖 = 1, 2) give

Δ−
1 𝜙

′(−𝑓1) = (Δ−Δ−
1 )𝜙

′(𝑓1) and Δ−
2 𝜙

′(−𝑓2) = (Δ−Δ−
2 )𝜙

′(𝑓2).

This yields that

𝜙′(−𝑓1) < 0, 𝜙′(𝑓1) < 0, 𝜙′(−𝑓2) < 0, 𝜙′(𝑓2) < 0,
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for non-increasing function 𝜙 with 𝜙′(0) < 0. For convex function 𝜙, its
derivative 𝜙′(𝑡) is non-decreasing from (Rockafellar, 1997). Therefore, if 𝑓1 ≥
𝑓2 then 𝜙′(𝑓1) ≥ 𝜙′(𝑓2), and we further have

𝜙′(−𝑓1) =
Δ−Δ−

1

Δ−
1

𝜙′(𝑓1) >
Δ−Δ−

2

Δ−
2

𝜙′(𝑓1) ≥ Δ−Δ−
2

Δ−
2

𝜙′(𝑓2) = 𝜙′(−𝑓2),

i.e., 𝜙′(−𝑓1) > 𝜙′(−𝑓2), leading to 𝑓1 < 𝑓2, whereas it is contrary. The
theorem follows as desired. □

Based on this theorem, it is easy to get the consistency of the univariate
surrogate loss with exponential loss, logistic loss and least square hinge loss.

Corollary 19. The surrogate loss Ψ of Eqn. (15) is consistent w.r.t. partial
ranking loss for exponential loss 𝜙(𝑡) = exp(−𝑡), logistic loss 𝜙(𝑡) = ln(1 +
exp(−𝑡)) and least square hinge loss 𝜙(𝑡) = (max(0, 1− 𝑡))2.

It is noteworthy that, after we published our preliminary work (Gao and
Zhou, 2011), Dembczyński et al. (2012a) proved that the following surrogate
losses are consistent w.r.t. partial ranking loss (the partial ranking loss was
referred to as ranking loss in (Dembczyński et al., 2012a))

Ψ(𝒇 ,𝒚) = 𝑎𝒚
∑𝑞

𝑖=1
exp(−𝑦𝑖𝑓𝑖),

Ψ(𝒇 ,𝒚) = 𝑎𝒚
∑𝑞

𝑖=1
ln(1 + exp(−𝑦𝑖𝑓𝑖)),

and they further derived their corresponding consistent bounds. It is clear
that these results of (Dembczyński et al., 2012a) are special cases of Theo-
rem 18.

Notice that the least square loss 𝜙(𝑡) = (1 − 𝑡)2 increases for 𝑡 > 1;
therefore, Theorem 18 cannot be applied to least square loss, whereas we can
obtain its consistency with partial ranking loss from the following theorem:

Theorem 20. For integer 𝑘 > 0 and 𝜙(𝑡) = (1− 𝑡)2𝑘, the univariate surro-
gate loss Ψ of Eqn. (15) is consistent w.r.t. partial ranking loss.

Proof: Similarly to the proof of Theorem 18, we will prove that 𝑓1 < 𝑓2
if Δ1,2 > Δ2,1. The subgradient conditions for optimality of ∂𝑊 (𝒑,𝒇)

∂𝑓𝑖
= 0

(𝑖 = 1, 2) give

Δ−
1 𝜙

′(−𝑓1) = (Δ−Δ−
1 )𝜙

′(𝑓1) and Δ−
2 𝜙

′(−𝑓2) = (Δ−Δ−
2 )𝜙

′(𝑓2),
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which implies(
1 + 𝑓1
1− 𝑓1

)2𝑘−1

=
Δ

Δ−
1

− 1 and

(
1 + 𝑓2
1− 𝑓2

)2𝑘−1

=
Δ

Δ−
2

− 1, (16)

respectively. From Property 2 in Lemma 7, we have Δ−
1 −Δ−

2 = Δ1,2 −Δ2,1,
and this follows that

Δ−
1 > Δ−

2 ⇒ Δ/Δ−
1 < Δ/Δ−

2

from Δ1,2 > Δ2,1. Therefore, we have 𝑓1 < 𝑓2 from Eqn. (16), and this
completes the proof. □

It is also noteworthy that the hinge loss 𝜙(𝑡) = max(0, 1 − 𝑡) is not
differentiable at 𝑡 = 1; therefore, Theorem 18 cannot be used to study the
consistency of hinge loss. The following theorem illustrates the difficulties for
consistency without differentiability even if 𝜙 is a convex and non-increasing
function with 𝜙′(0) < 0.

Theorem 21. For hinge loss 𝜙(𝑡) = max(0, 1− 𝑡), the univariate surrogate
loss Ψ of Eqn. (15) is inconsistent w.r.t. partial ranking loss.

Proof: We consider a multi-label task with 𝑞 = 2 labels:

𝒚1 = (−1,−1),𝒚2 = (−1,+1),𝒚3 = (+1,−1),𝒚4 = (+1,+1),

and focus on the probability simplex 𝒑 = (𝑝𝒚1 , 𝑝𝒚2 , 𝑝𝒚3 , 𝑝𝒚4) and non-negative
vector (𝑎𝒚1 , 𝑎𝒚2 , 𝑎𝒚3 , 𝑎𝒚4) such that 𝑝𝒚1𝑎𝒚1/2 > 𝑝𝒚2𝑎𝒚2 > 𝑝𝒚3𝑎𝒚3 > 𝑝𝒚4𝑎𝒚4 .
From Eqn. (15), we have

𝑊 (𝒑,𝒇) = (𝑝𝒚1𝑎𝒚1 + 𝑝𝒚2𝑎𝒚2)𝜙(−𝑓1) + (𝑝𝒚3𝑎𝒚3 + 𝑝𝒚4𝑎𝒚4)𝜙(𝑓1)

+(𝑝𝒚1𝑎𝒚1 + 𝑝𝒚3𝑎𝒚3)𝜙(−𝑓2) + (𝑝𝒚2𝑎𝒚2 + 𝑝𝒚4𝑎𝒚4)𝜙(𝑓2).

Minimizing 𝑊 (𝒑,𝒇) gives the optimal solution 𝒇 = (𝑓1, 𝑓2) = (−1,−1), i.e.,
𝑓1 = 𝑓2, yet Δ1,2 = 𝑝𝒚2𝑎𝒚2 > 𝑝𝒚3𝑎𝒚3 = Δ2,1. This implies 𝒇 /∈ 𝒜(𝒑), which
completes the proof. □

Many univariate surrogate losses are proven to be consistent with partial
ranking loss, although they solve the problems by a series of independent
(weighted) binary classifications; in other words, the success of approaches
optimizing univariate surrogate losses requires that a multi-label learning
problem can be learned well by decomposing them into a series of binary
classification problems.
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5. Consistency w.r.t. Hamming Loss

The hamming loss concerns about how many instance-label pairs are mis-
classified. For a given vector 𝒇 and prediction function 𝐹 , the hamming loss
is given by

𝐿hamloss(𝐹 (𝒇(𝒙)),𝒚) =
1

𝑞

∑𝑞

𝑖=1
𝐼[𝑦𝑖 ∕= 𝑦𝑖],

where 𝒚 = 𝐹 (𝒇(𝒙)) = (𝑦1, 𝑦2, . . . , 𝑦𝑞). Hamming loss is below-bounded from
𝐿hamloss(𝐹 (𝒇(𝒙)),𝒚) ≥ 0, and distinguishable because it holds that

𝐿hamloss(𝐹 (𝒇(𝒙)),𝒚)) = 𝐿hamloss(𝐹 (𝒇(𝒙′)),𝒚′)) or

∣𝐿hamloss(𝐹 (𝒇(𝒙)),𝒚))− 𝐿hamloss(𝐹 (𝒇(𝒙′)),𝒚′))∣ ≥ 1/𝑞,

for every 𝒙,𝒙′ ∈ 𝒳 and 𝒚,𝒚′ ∈ 𝒴 . Further, we have the conditional risk

𝑙(𝒑, 𝐹 (𝒇(𝒙))) =
∑

𝒚∈𝒴
𝑝𝒚𝐿hamloss(𝒚,𝒚) =

1

𝑞

∑
𝒚∈𝒴

𝑝𝒚
∑𝑞

𝑖=1
𝐼[𝑦𝑖 ∕= 𝑦𝑖]

=
1

𝑞

∑𝑞

𝑖=1

(∑
𝒚 : 𝑦𝑖=+1

𝑝𝒚𝐼[𝑦𝑖 ∕= +1] +
∑

𝒚 : 𝑦𝑖=−1
𝑝𝒚𝐼[𝑦𝑖 ∕= −1]

)
,

and for hamming loss, the set of Bayes predictions is given by

𝒜(𝒑) =
{
𝒇 = 𝒇(𝒙) : 𝒚 = 𝐹 (𝒇) with 𝑦𝑖 = sgn

(∑
𝒚 : 𝑦𝑖=+1

𝑝𝒚 − 1

2

)}
. (17)

5.1. Consistency of Multi-Class Extensions

It is possible to solve a multi-label problem by regarding each subset of
labels as a meta-class and then try to learn 2𝑞 functions, i.e., 𝒇 = (𝑓𝒚)𝒚∈𝒴 .
Then, a prediction function is given by

𝐹 (𝒇(𝒙)) = max
𝒚∈𝒴

𝑓𝒚(𝒙). (18)

Motivated from multi-class learning, it is natural to consider the following
surrogate losses.

∙ One-vs-all:
Ψ(𝒇(𝒙),𝒚) = 𝜙(𝑓𝒚(𝒙)−max

𝒚 ∕=𝒚
𝑓𝒚(𝒙)), (19)

where 𝜙 is an appropriately chosen function. This formulation has been
used for multi-label learning (Taskar et al., 2004; Hariharan et al., 2010)
and multi-class learning (Crammer and Singer, 2001).
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∙ Pairwise comparison:

Ψ(𝒇(𝒙),𝒚) =
∑

𝒚 ∕=𝒚
𝜙(𝑓𝒚(𝒙)− 𝑓𝒚(𝒙)), (20)

where 𝜙 is a convex function such as 𝜙(𝑡) = max(0, 1− 𝑡) in multi-class
learning (Weston and Watkins, 1998).

The following two theorems show that neither the one-vs-all method nor
the pairwise comparison method is consistent w.r.t. hamming loss.

Theorem 22. If 𝜙 is a non-increasing function with 𝜙′(0) < 0, then the
one-vs-all method of Eqn. (19) is inconsistent with hamming loss.

Theorem 23. If 𝜙 is a non-increasing function with 𝜙′(0) < 0, then the
pairwise comparison method of Eqn. (20) is inconsistent with hamming loss.

Based on Theorems 22 and 23, it is clear that neither the one-vs-all
method of Eqn. (19) nor the pairwise comparison method of Eqn. (20) is
consistent w.r.t. hamming loss for many commonly-used loss functions, e.g.,
exponential loss 𝜙(𝑡) = exp(−𝑡), logistic loss 𝜙(𝑡) = ln(1 + exp(−𝑡)), hinge
loss 𝜙(𝑡) = max(0, 1− 𝑡), least square hinge loss 𝜙(𝑡) = (max(0, 1− 𝑡))2, etc.

It is also noteworthy that the pairwise comparison method of Eqn. (20) is
consistent in multi-class learning (Zhang, 2004a, Theorem 6) for exponential
loss, logistic loss, hinge loss, etc., whereas in multi-label learning, Theorem 23
shows their inconsistency.

Proofs of Theorems 22 and 23 We consider a multi-label task with 𝑞 = 2
labels:

𝒚1 = (−1,−1),𝒚2 = (−1,+1),𝒚3 = (+1,+1),𝒚4 = (+1,−1),

and focus on the probability simplex 𝒑 = (𝑝𝑦1 , 𝑝𝑦2 , 𝑝𝑦3 , 𝑝𝑦4) such that 𝑝𝒚1 >
𝑝𝒚2 > 𝑝𝒚3 > 𝑝𝒚4 , 𝑝𝒚1 + 𝑝𝒚4 < 𝑝𝒚2 + 𝑝𝒚3 and 𝑝𝒚1 + 𝑝𝒚2 + 𝑝𝒚3 + 𝑝𝒚4 = 1. From
Eqns. (17) and (18), it is easy to get the set of Bayes predictions

𝒜(𝒑) = {𝒇 : 𝑓𝒚2 > 𝑓𝒚𝑖
for 𝑖 = 1, 3, 4}.

For Theorem 22, we have, from Eqn. (19),

𝑊 (𝒑,𝒇) =
∑4

𝑖=1
𝑝𝒚𝑖

𝜙(𝑓𝒚𝑖
−max

𝑗 ∕=𝑖
𝑓𝒚𝑗

).
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We complete the proof by showing that 𝒇 /∈ 𝒜(𝒑) for every 𝒇 s.t. 𝑊 (𝒑,𝒇) =
𝑊 ∗(𝒑). Assume that there exists 𝒇 = (𝑓𝒚1 , 𝑓𝒚2 , 𝑓𝒚3 , 𝑓𝒚4) ∈ 𝒜(𝒑) and𝑊 (𝒑,𝒇) =

𝑊 ∗(𝒑). We construct another 𝒇 = (𝑓𝒚2 , 𝑓𝒚1 , 𝑓𝒚3 , 𝑓𝒚4), and get

𝑊 (𝒑,𝒇)−𝑊 (𝒑,𝒇) = (𝑝𝒚1 −𝑝𝒚2)
(
𝜙(𝑓𝒚1 −max

𝑖∕=1
𝑓𝒚𝑖

)−𝜙(𝑓𝒚2 −max
𝑖 ∕=2

𝑓𝒚𝑖
)
)
. (21)

From our assumption 𝒇 ∈ 𝒜(𝒑), we have 𝑓𝒚2 > max𝑖 ∕=2 𝑓𝒚𝑖
and

𝑓𝒚1 − 𝑓𝒚2 < 0 ≤ 𝑓𝒚2 −max
𝑖∕=2

𝑓𝒚𝑖
.

For non-increasing function 𝜙 with 𝜙′(0) < 0, it holds that

𝜙(𝑓𝒚1 − 𝑓𝒚2) > 𝜙(𝑓𝒚2 −max
𝑖∕=2

𝑓𝒚𝑖
).

From Eqn. (21) and 𝑝𝒚1 > 𝑝𝒚2 , we have𝑊 (𝒑,𝒇) > 𝑊 (𝒑,𝒇), which is contrary
to 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑). Thus, Theorem 22 follows.

For Theorem 23, we have, from Eqn. (20),

𝑊 (𝒑,𝒇) =
∑4

𝑖=1
𝑝𝒚𝑖

∑
𝑗 ∕=𝑖

𝜙(𝑓𝒚𝑖
− 𝑓𝒚𝑗

).

Therefore, we complete the proof by showing that 𝒇 /∈ 𝒜(𝒑) for every 𝒇 such
that 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑). Suppose that there exists 𝒇 = (𝑓𝒚1 , 𝑓𝒚2 , 𝑓𝒚3 , 𝑓𝒚4) ∈
𝒜(𝒑) such that 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑). Then, we can construct another 𝒇 =
(𝑓𝒚2 , 𝑓𝒚1 , 𝑓𝒚3 , 𝑓𝒚4), and get

𝑊 (𝒑,𝒇 ∗)−𝑊 (𝒑,𝒇) = (𝑝𝒚1 − 𝑝𝒚2)×(
𝜙(𝑓𝒚1 − 𝑓𝒚2)− 𝜙(𝑓𝒚2 − 𝑓𝒚1) +

∑4

𝑖=3
𝜙(𝑓𝒚1 − 𝑓𝒚𝑖

)− 𝜙(𝑓𝒚2 − 𝑓𝒚𝑖
)
)
. (22)

From our assumption 𝒇 ∈ 𝒜(𝒑), we have 𝑓𝒚1 < 𝑓𝒚2 . For non-increasing
function 𝜙, we have

𝜙(𝑓𝒚1 − 𝑓𝒚𝑖
) ≥ 𝜙(𝑓𝒚2 − 𝑓𝒚𝑖

) for 𝑖 = 3, 4;

meanwhile, we also have 𝜙(𝑓𝒚1 − 𝑓𝒚2) > 𝜙(𝑓𝒚2 − 𝑓𝒚1) from 𝜙′(0) < 0. From

Eqn. (22), we have 𝑊 (𝒑,𝒇) > 𝑊 (𝒑,𝒇), contrary to 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑). This
completes the proof. □

Notice that Theorems 22 and 23 cannot be applied directly to least square
loss 𝜙(𝑡) = (1− 𝑡)2 because it is increasing for 𝑡 > 1, whereas we have:
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Theorem 24. For least square loss 𝜙(𝑡) = (1 − 𝑡)2, neither the one-vs-all
method of Eqn. (19) nor the pairwise comparison method of Eqn. (20) is
consistent w.r.t. hamming loss.

Proof: Similarly to the proofs of Theorems 22 and 23, we consider the
multi-label task with 𝑞 = 2 labels:

𝒚1 = (−1,−1),𝒚2 = (−1,+1),𝒚3 = (+1,+1),𝒚4 = (+1,−1),

with 𝑝𝒚1 > 𝑝𝒚2 > 𝑝𝒚3 > 𝑝𝒚4 , 𝑝𝒚1+𝑝𝒚4 < 𝑝𝒚2+𝑝𝒚3 and 𝑝𝒚1+𝑝𝒚2+𝑝𝒚3+𝑝𝒚4 = 1,
and it is easy to get the set of Bayes predictions

𝒜(𝒑) = {𝒇 : 𝑓𝒚2 > 𝑓𝒚𝑖
for 𝑖 = 1, 3, 4}.

For the one-vs-all method of Eqn. (19), our proof is rather similar to the
proof of Theorem 22. From Eqn. (21), we have

𝑊 (𝒑,𝒇)−𝑊 (𝒑,𝒇) = (𝑝𝒚1 − 𝑝𝒚2)
(
𝜙(𝑓𝒚1 −max

𝑖∕=1
𝑓𝒚𝑖

)− 𝜙(𝑓𝒚2 −max
𝑖∕=2

𝑓𝒚𝑖
)
)
,

and, for least square loss 𝜙(𝑡) = (1 − 𝑡)2, we have 𝜙(𝑓𝒚1 − max𝑖∕=1 𝑓𝒚𝑖
) >

𝜙(𝑓𝒚2 −max𝑖 ∕=2 𝑓𝒚𝑖
) from the condition 𝑓𝒚2 > max𝑖∕=2 𝑓𝒚𝑖

. This is contrary to
𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑).

For the pairwise comparison method of Eqn. (20), we have

𝑊 (𝒑,𝒇) =
∑4

𝑖=1
𝑝𝒚𝑖

∑
𝑗 ∕=𝑖

𝜙(𝑓𝒚𝑖
− 𝑓𝒚𝑗

),

and the subgradient conditions for optimality of ∂
∂𝑓𝑖

𝑊 (𝒑,𝒇) = 0 (1 ≤ 𝑖 ≤ 4)

give 𝒇 ∗ = (𝑓 ∗
1 , 𝑓

∗
2 , 𝑓

∗
3 , 𝑓

∗
4 ) such that

𝑓∗
1 − 𝑓∗

2 = (𝑝𝒚1 − 𝑝𝒚2)(𝑝𝒚1 + 𝑝𝒚2 + 5𝑝𝒚3 + 𝑝𝒚4)(𝑝𝒚1 + 𝑝𝒚2 + 𝑝𝒚3 + 5𝑝𝒚4)/𝜅,

where 𝜅 = 𝑝3𝒚1
+ 𝑝3𝒚2

+ 𝑝3𝒚3
+ 𝑝3𝒚4

+ 16(𝑝𝒚1𝑝𝒚2𝑝𝒚3 + 𝑝𝒚1𝑝𝒚2𝑝𝒚4 + 𝑝𝒚1𝑝𝒚3𝑝𝒚4 +
𝑝𝒚2𝑝𝒚3𝑝𝒚4) + 5𝑝2𝒚1

(𝑝𝒚2 + 𝑝𝒚3 + 𝑝𝒚4) + 5𝑝2𝒚2
(𝑝𝒚1 + 𝑝𝒚3 + 𝑝𝒚4) + 5𝑝2𝒚3

(𝑝𝒚1 + 𝑝𝒚2 +
𝑝𝒚4)+5𝑝2𝒚4

(𝑝𝒚1 + 𝑝𝒚2 + 𝑝𝒚3). This leads to 𝑓 ∗
1 > 𝑓 ∗

2 , implying that 𝒇 ∗ /∈ 𝒜(𝒑).
Thus, this theorem follows as desired. □

It is interesting to further understand why those algorithms are incon-
sistent. Intuitively, the prediction rule 𝐹 (𝒇(𝒙)) = max𝒚∈𝒴 𝑓𝒚(𝒙) prefers to
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choosing 𝒚 ∈ argmax{𝑝𝒚 : 𝒚 ∈ 𝒴}, whereas for hamming loss, Eqn. (17)
gives the set of Bayes predictions

𝒜(𝒑) =
{
𝒇 = 𝒇(𝒙) : 𝒚 = 𝐹 (𝒇) where 𝑦𝑖 = sgn

(∑
𝒚 : 𝑦𝑖=+1

𝑝𝒚 − 1

2

)}
.

In practice, it does not always hold that

{𝒚 : 𝒚 ∈ argmax{𝑝𝒚}} =
{
𝒚 : 𝑦𝑖 = sgn

(∑
𝒚 : 𝑦𝑖=+1

𝑝𝒚 − 1

2

)}
;

this may explain why these algorithms are inconsistent. It leads us to consider
other prediction rules such as 𝐹 (𝒇(𝒙)) = 𝒚 = (𝑦1, 𝑦2, . . . , 𝑦𝑞) with 𝑦𝑖 =
sgn(

∑
𝒚∈𝒴,𝑦𝑖=+1 𝑓𝒚 −∑

𝒚∈𝒴,𝑦𝑖=−1 𝑓𝒚), and we leave it to future work.

Finally, it is interesting to consider the following formulation

Ψ(𝒇(𝒙),𝒚) = max
𝒚 ∕=𝒚

𝜙(𝛿(𝒚,𝒚) + 𝑓𝒚(𝒙)− 𝑓𝒚(𝒙)), (23)

where 𝜙(𝑡) = max(0, 𝑡) and 𝛿(𝒚,𝒚) =
∑𝑞

𝑖=1 𝐼[𝑦𝑖 ∕= 𝑦𝑖]; this formulation has
been used in (Taskar et al., 2004; Hariharan et al., 2010). It is easy to see that
these approaches (Taskar et al., 2004; Hariharan et al., 2010) are variations of
the one-vs-all method, because Eqn. (23) degenerates to Eqn. (19) by setting
𝛿(𝒚,𝒚) = 𝐼[𝒚 ∕= 𝒚]. We have

Theorem 25. The surrogate loss Ψ of Eqn. (23) is inconsistent w.r.t. ham-
ming loss for 𝜙(𝑡) = max(0, 𝑡) and 𝛿(𝒚,𝒚) =

∑𝑞
𝑖=1 𝐼[𝑦𝑖 ∕= 𝑦𝑖].

Proof: We consider the multi-label task with 𝑞 = 3 labels:

𝒚1 = (1,−1,−1),𝒚2 = (−1, 1,−1),𝒚3 = (−1,−1, 1),𝒚4 = (1, 1, 1),

𝒚5 = (−1,−1,−1),𝒚6 = (1, 1,−1),𝒚7 = (1,−1, 1),𝒚8 = (−1, 1, 1),

and probability simplex 𝒑 = (𝑝𝑦1 , 𝑝𝑦2 , 𝑝𝑦3 , 𝑝𝒚4) such that 𝑝𝒚𝑖
= 0 (𝑖 ≥ 4),

𝑝𝒚1 + 𝑝𝒚2 + 𝑝𝒚3 = 1, 𝑝𝒚1 < 𝑝𝒚2 + 𝑝𝒚3 , 𝑝𝒚2 < 𝑝𝒚1 + 𝑝𝒚3 , 𝑝𝒚3 < 𝑝𝒚1 + 𝑝𝒚2 . By
combining Eqns. (17) and (23), we get the set of Bayes predictions

𝒜(𝒑) = {𝒇 : 𝑓𝒚5 > 𝑓𝒚𝑖
for 𝑖 ∕= 5}.

We also have

𝑊 (𝒑,𝒇) = 𝑝𝒚1 max
𝒚 ∕=𝒚1

{𝜙(𝛿(𝒚,𝒚1) + 𝑓𝒚(𝒙)− 𝑓𝒚1(𝒙))}
+𝑝𝒚2 max

𝒚 ∕=𝒚2

{𝜙(𝛿(𝒚,𝒚2) + 𝑓𝒚(𝒙)− 𝑓𝒚2(𝒙))}
+𝑝𝒚3 max

𝒚 ∕=𝒚3

{𝜙(𝛿(𝒚,𝒚3) + 𝑓𝒚(𝒙)− 𝑓𝒚3(𝒙))}.
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Minimizing 𝑊 (𝒑,𝒇) gives an optimal solution 𝒇 = (𝑓𝒚1 , . . . , 𝑓𝒚8) such that
𝑓𝒚1 − 3 = 𝑓𝒚2 − 3 = 𝑓𝒚3 − 3 = 𝑓𝒚5 − 2 = 𝑓𝒚4 = 𝑓𝒚6 = 𝑓𝒚7 = 𝑓𝒚8 . It is obvious
that 𝒇 /∈ 𝒜(𝒑) and we complete the proof. □

Theorem 25 shows the inconsistency of Eqn. (23) under all measurable
functions. Hariharan et al. (2010) considered the special function 𝒇 =
𝒘⊤(𝜇(𝒙)⊗𝜈(𝒚)) based on the prior label-correlation assumption 𝜈(𝒚) = 𝑃𝒚
for some invertible matrix 𝑃 , where ⊗ is the Kronecker product, 𝜇 and 𝜈
are the feature and label space mappings, respectively. An interesting direc-
tion is to study the consistency of Eqn. (23) under specific function space
and specific label-correlation assumptions as in (Hariharan et al., 2010), and
(Ben-David et al., 2012) may shed some light.

5.2. Consistency of Dominating Setting

Though the previous analysis indicates that the one-vs-all and pairwise
comparison methods are inconsistent with hamming loss in general cases, it is
noteworthy that they may be used successfully in some practical applications,
especially for the formulation (23) as in (Hariharan et al., 2010). This is
partly because that such methods may work well in special cases, e.g., the
dominating setting:

Definition 26. A multi-label task is said to be in a dominating setting if for
every instance 𝒙 ∈ 𝒳 , there exists a 𝒚 ∈ 𝒴 such that 𝑃 (𝒚∣𝒙) > 0.5.

Intuitively, the dominating setting implies that, for every instance, there
exists a label subset which dominates other label subsets, and it is sufficient to
find the dominating label subset. This learning setting exists in real scenarios
where the true label set can definitely be predicted accurately. Under such
setting, the following theorem shows that the one-vs-all method is consistent
w.r.t. hamming loss.

Theorem 27. If 𝜙 is a continuous, convex and non-increasing function with
𝜙′(0) < 0, then the one-vs-all method of Eqn. (19) is consistent with hamming
loss under the dominating setting.

Proof: Without loss of generality, we consider a probability simplex 𝒑 =
(𝑝𝒚)𝒚∈𝒴 such that 𝑝𝒚1 > 0.5 > 𝑝𝒚𝑘

for 𝑘 ∕= 1. From Eqns. (17) and (18), it is
easy to get the set of Bayes predictions

𝒜(𝒑) = {𝒇 : 𝑓𝒚1 > 𝑓𝒚 for 𝒚 ∕= 𝒚1}.

27



It suffices to prove 𝒇 ∈ 𝒜(𝒑) for every 𝒇 s.t. 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑). We proceed
by contradiction. Suppose that there exists 𝒇 /∈ 𝒜(𝒑) and𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑),
i.e., there is 𝒚 ∈ argmax𝒚∈𝒴{𝑓𝒚} such that 𝒚1 ∕= 𝒚 and 𝑓𝒚 ≥ 𝑓𝒚1 .

If 𝑓𝒚 > 𝑓𝒚1 , then we construct another 𝒇 ′ by

𝑓 ′
𝒚1

= 𝑓𝒚, 𝑓 ′
𝒚 = 𝑓𝒚1 , 𝑓 ′

𝒚 = 𝑓𝒚 for 𝒚 ∕= 𝒚1,𝒚,

and get

𝑊 (𝒑,𝒇)−𝑊 (𝒑,𝒇 ′) = (𝑝𝒚1 − 𝑝𝒚)
(
𝜙(𝑓𝒚1 − 𝑓𝒚)− 𝜙(𝑓𝒚 −max

𝒚 ∕=𝒚
𝑓𝒚)

)
. (24)

From 𝒚 ∈ argmax𝒚∈𝒴{𝑓𝒚}, we have 𝑓𝒚1 − 𝑓𝒚 < 0 ≤ 𝑓𝒚 −max𝒚 ∕=𝒚 𝑓𝒚, and for
non-increasing function 𝜙 with 𝜙′(0) < 0, we further get

𝜙(𝑓𝒚1 − 𝑓𝒚) > 𝜙(𝑓𝒚 −max
𝒚 ∕=𝒚

𝑓𝒚).

From Eqn. (24) and 𝑝𝒚1 > 𝑝𝒚, it holds that 𝑊 (𝒑,𝒇) > 𝑊 (𝒑,𝒇 ′), which is
contrary to the assumption 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑).

We now consider the case 𝑓𝒚 = 𝑓𝒚1 . For very small 𝜉1 > 0 and from
𝜙′(0) < 0, we have

𝜙(𝜉1) ≈ 𝜙(0) + 𝜉1𝜙
′(0), and 𝜙(−𝜉1) ≈ 𝜙(0)− 𝜉1𝜙

′(0). (25)

We further denote by ℬ = {𝒚 ∈ 𝒴 : 𝑓𝒚 = 𝑓𝒚1}. If ℬ = 𝒴 , then we set
𝜉2 = ∣𝑓𝒚1 ∣/2; otherwise, 𝜉2 = (𝑓𝒚1−max𝒚/∈ℬ 𝑓𝒚)/2. Now, we set 𝜉 = min(𝜉1, 𝜉2)
and construct another 𝒇 ′ by

𝑓 ′
𝒚1

= 𝑓𝒚1 , 𝑓 ′
𝒚 = 𝑓𝒚 for 𝒚 /∈ ℬ, and 𝑓 ′

𝒚 = 𝑓𝒚 − 𝜉 for 𝒚 ∕= 𝒚1 and 𝒚 ∈ ℬ.

This follows that, from Eqn. (25),

𝑊 (𝒑,𝒇)−𝑊 (𝒑,𝒇 ′) = 𝑝𝒚1(𝜙(0)− 𝜙(𝜉))−
∑

𝒚∈ℬ
𝒚 ∕=𝒚1

𝑝𝒚(𝜙(−𝜉)− 𝜙(0))

≈ 𝜉𝜙′(0)
(∑

𝒚∈ℬ
𝒚 ∕=𝒚1

𝑝𝒚 − 𝑝𝒚1

)
> 0,

where the last inequality holds from 𝜙′(0) < 0 and 𝑝𝒚1 > 0.5 > 𝑝𝒚 for 𝒚 ∕= 𝒚1.
Therefore, we have 𝑊 (𝒑,𝒇) > 𝑊 (𝒑,𝒇 ′), which is contrary to the assumption
𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑). This theorem follows. □
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Based on this theorem, we can see clearly that, under the dominating
setting, the one-vs-all method of Eqn. (19) is multi-label consistent w.r.t.
hamming loss for exponential loss 𝜙(𝑡) = exp(−𝑡), logistic loss 𝜙(𝑡) = ln(1 +
exp(−𝑡)), hinge loss 𝜙(𝑡) = max(0, 1 − 𝑡), least square hinge loss 𝜙(𝑡) =
(max(0, 1− 𝑡))2, etc.

Before discussing on the consistency of the pairwise comparison method,
we introduce the following lemma whose proof is deferred to Section 6.4.

Lemma 28. For the pairwise comparison method of Eqn. (20), if 𝜙 is a
non-increasing function with 𝜙′(0) < 0, then for every 𝒑 ∈ Λ and 𝒇 such that
𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑), we have 𝑓𝒚𝑖

≥ 𝑓𝒚𝑗
for 𝑝𝒚𝑖

> 𝑝𝒚𝑗
.

Based on this lemma, we have:

Theorem 29. If 𝜙 is a convex, non-increasing and differentiable function
with 𝜙′(0) < 0, then the pairwise comparison method of Eqn. (20) is consis-
tent w.r.t. hamming loss under the dominating setting.

Proof: Without loss of generality, we consider a probability simplex 𝒑 =
(𝑝𝒚)𝒚∈𝒴 such that 𝑝𝒚1 > 0.5 > 𝑝𝒚𝑘

for 𝑘 ∕= 1. From Eqns. (17) and (18), it is
easy to get the set of Bayes predictions

𝒜(𝒑) = {𝒇 : 𝑓𝒚1 > 𝑓𝒚 for 𝒚 ∕= 𝒚1}.
It suffices to prove that 𝒇 ∈ 𝒜(𝒑) for every 𝒇 s.t. 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑). From
Lemma 28, we have

𝑓𝒚1 ≥ 𝑓𝒚 for 𝒚 ∕= 𝒚1

for every 𝒇 s.t. 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑). It remains to prove 𝑓𝒚1 ∕= 𝑓𝒚 for 𝒚 ∕= 𝒚1.
Suppose that there exists 𝒇 such that 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑) yet 𝑓𝒚1 = 𝑓𝒚2

for 𝒚1 ∕= 𝒚2. The subgradient conditions ∂𝑊 (𝒑,𝒇)
∂𝑓𝑖

= 0 (𝑖 = 1, 2) give

𝑝𝒚1

∑
𝒚 ∕=𝒚1

𝜙′(𝑓𝒚1 − 𝑓𝒚)−
∑

𝒚 ∕=𝒚1

𝑝𝒚𝜙
′(𝑓𝒚 − 𝑓𝒚1) = 0,

𝑝𝒚2

∑
𝒚 ∕=𝒚2

𝜙′(𝑓𝒚2 − 𝑓𝒚)−
∑

𝒚 ∕=𝒚2

𝑝𝒚𝜙
′(𝑓𝒚 − 𝑓𝒚2) = 0.

This yields

2(𝑝𝒚1 − 𝑝𝒚2)𝜙
′(0) + (𝑝𝒚1 − 𝑝𝒚2)

∑
𝒚 ∕=𝒚1,𝒚2

𝜙′(𝑓𝒚1 − 𝑓𝒚) = 0,
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which is contrary to the facts 𝑝𝒚1 > 𝑝𝒚2 , 𝜙
′(0) < 0 and 𝜙′(𝑓𝒚1 − 𝑓𝒚) ≤ 0. □

From this theorem, we can see that, under the dominating setting, the
pairwise comparison method of Eqn. (20) is consistent w.r.t. hamming loss
for exponential loss 𝜙(𝑡) = exp(−𝑡), logistic loss 𝜙(𝑡) = ln(1+exp(−𝑡)), least
square hinge loss 𝜙(𝑡) = (max(0, 1− 𝑡))2, etc.

It is also noteworthy that the hinge loss 𝜙(𝑡) = max(0, 1− 𝑡) is not differ-
entiable at 𝑡 = 1, and Theorem 29 cannot be used to study the consistency
of pairwise comparison method w.r.t. hinge loss, whereas we have:

Theorem 30. For hinge loss 𝜙(𝑡) = max(0, 1− 𝑡), the pairwise comparison
method of Eqn. (20) is consistent under the dominating setting.

Proof: Without loss of generality, we consider the probability simplex 𝒑 =
(𝑝𝒚)𝒚∈𝒴 such that 𝑝𝒚1 > 0.5 > 𝑝𝒚𝑘

for 𝑘 ∕= 1. From Eqns. (17) and (18), it is
easy to get the set of Bayes predictions

𝒜(𝒑) = {𝒇 : 𝑓𝒚1 > 𝑓𝒚 for 𝒚 ∕= 𝒚1}.
It suffices to prove 𝒇 ∈ 𝒜(𝒑) for every 𝒇 s.t. 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑). From
Lemma 28, we have

𝑓𝒚1 ≥ 𝑓𝒚 for 𝒚 ∕= 𝒚1,

for every 𝒇 s.t. 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑). It remains to prove 𝑓 ∗
𝒚1

∕= 𝑓 ∗
𝒚 for 𝒚 ∕= 𝒚1.

Assume that there exists 𝒇 = (𝑓𝒚𝑖
)𝒚𝑖∈𝒴 such that 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑) yet

𝑓𝒚1 = 𝑓𝒚2 for 𝒚1 ∕= 𝒚2. For small 𝜉 ∈ (0, 1), we construct another 𝒇 ′ by

𝑓 ′
𝒚1

= 𝑓𝒚1 + 𝜉, and 𝑓 ′
𝒚 = 𝑓𝒚 for 𝒚 ∕= 𝒚1.

For hinge loss 𝜙(𝑡) = max(0, 1− 𝑡), we have

𝑊 (𝒑,𝒇)−𝑊 (𝒑,𝒇 ′)

= 𝑝𝒚1(𝜙(0)− 𝜙(𝜉)) + 𝑝𝒚1

∑
𝒚 ∕=𝒚1
𝒚 ∕=𝒚2

(
𝜙(𝑓𝒚1 − 𝑓𝒚)− 𝜙(𝑓𝒚1 − 𝑓𝒚 + 𝜉)

)
−
∑

𝒚 ∕=𝒚1

𝑝𝒚
(
𝜙(𝑓𝒚 − 𝑓𝒚1 − 𝜉)− 𝜙(𝑓𝒚 − 𝑓𝒚1)

)
≥ 𝑝𝒚1(𝜙(0)− 𝜙(𝜉))−

∑
𝒚 ∕=𝒚1

𝑝𝒚(𝜙(𝑓𝒚 − 𝑓𝒚1 − 𝜉)− 𝜙(𝑓𝒚 − 𝑓𝒚1))

= 𝜉(2𝑝𝒚1 − 1) > 0.

This implies 𝑊 (𝒑,𝒇) > 𝑊 (𝒑,𝒇 ′), yet it is contrary to 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑). □
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We now consider the formulation Eqn. (23) of (Taskar et al., 2004; Hari-
haran et al., 2010) under the dominating case:

Theorem 31. Under the dominating setting, the surrogate loss Ψ of Eqn. (23)
is consistent w.r.t. hamming loss for 𝛿(𝒚,𝒚) =

∑𝑞
𝑖=1 𝐼[𝑦𝑖 ∕= 𝑦𝑖] and 𝜙(𝑡) =

max(0, 𝑡).

Proof: Without loss of generality, we consider the probability simplex 𝒑 =
(𝑝𝒚)𝒚∈𝒴 such that 𝑝𝒚1 > 0.5 > 𝑝𝒚𝑘

for 𝑘 ∕= 1. From Eqns. (17) and (18), it is
easy to get the set of Bayes predictions

𝒜(𝒑) = {𝒇 : 𝑓𝒚1 > 𝑓𝒚 for 𝒚 ∕= 𝒚1}.
It suffices to prove that 𝒇 ∈ 𝒜(𝒑) for every 𝒇 s.t. 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑).

Suppose that there exists 𝒇 /∈ 𝒜(𝒑) and 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑), i.e., it holds
that 𝑓𝒚1 ≤ 𝑓𝒚 for some 𝒚 ∈ 𝒴 and 𝒚1 ∕= 𝒚. Then, we can construct another
𝒇 ′ by

𝒇 ′
𝒚1

= 𝒇𝒚1 + 1, 𝒇 ′
𝒚 = 𝒇𝒚 for 𝒚 ∕= 𝒚1,𝒚 ∈ 𝒴 .

Since 𝒚1 ∕= 𝒚 and 𝑓𝒚1 ≤ 𝑓𝒚, we have 𝛿(𝒚1,𝒚) ≥ 1 and

𝑝𝒚1 max
𝒚 ∕=𝒚1

{𝜙(𝛿(𝒚,𝒚1) + 𝑓𝒚 − 𝑓𝒚1)}− 𝑝𝒚1 max
𝒚 ∕=𝒚1

{𝜙(𝛿(𝒚,𝒚1) + 𝑓𝒚 − 𝑓𝒚1 − 1)} = 𝑝𝒚1 .

Further, it holds that

𝑝𝒚𝑖
max
𝒚 ∕=𝒚𝑖

{𝜙(𝛿(𝒚,𝒚𝑖) + 𝑓𝒚 − 𝑓𝒚𝑖
)} − 𝑝𝒚𝑖

max
𝒚 ∕=𝒚𝑖

{𝜙(𝛿(𝒚,𝒚𝑖) + 𝑓 ′
𝒚 − 𝑓 ′

𝒚𝑖
)}

= 𝑝𝒚𝑖
max{𝜙(𝛿(𝒚1,𝒚𝑖) + 𝑓𝒚1 − 𝑓𝒚𝑖

), max
𝒚 ∕=𝒚𝑖,𝒚1

𝜙(𝛿(𝒚,𝒚𝑖) + 𝑓𝒚 − 𝑓𝒚𝑖
)}

− 𝑝𝒚𝑖
max{𝜙(𝛿(𝒚1,𝒚𝑖) + 𝑓𝒚1 + 1− 𝑓𝒚𝑖

), max
𝒚 ∕=𝒚𝑖,𝒚1

𝜙(𝛿(𝒚,𝒚𝑖) + 𝑓𝒚 − 𝑓𝒚𝑖
)}

≥ −𝑝𝒚𝑖
.

Therefore, we have

𝑊 (𝒑,𝒇)−𝑊 (𝒑,𝒇 ′)

= 𝑝𝒚1 max
𝒚 ∕=𝒚1

{𝜙(𝛿(𝒚,𝒚1) + 𝑓𝒚 − 𝑓𝒚1)} − 𝑝𝒚1 max
𝒚 ∕=𝒚1

{𝜙(𝛿(𝒚,𝒚1) + 𝑓𝒚 − 𝑓𝒚1 − 1)}

+
∑
𝒚𝑖 ∕=𝒚1

𝑝𝒚𝑖
max
𝒚 ∕=𝒚𝑖

{𝜙(𝛿(𝒚,𝒚𝑖) + 𝑓𝒚 − 𝑓𝒚𝑖
)} − 𝑝𝒚𝑖

max
𝒚 ∕=𝒚𝑖

{𝜙(𝛿(𝒚,𝒚𝑖) + 𝑓 ′
𝒚 − 𝑓 ′

𝒚𝑖
)}

≥ 𝒑𝒚1 −
∑

𝒚 ∕=𝒚1

𝒑𝒚 > 0,

which is contrary to 𝑊 (𝒑,𝒇) = 𝑊 ∗(𝒑). This completes the proof. □
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5.3. Solving Multi-Label Learning by Binary Classifications

It is possible to decompose a multi-label learning task into 𝑞 independent
binary classification tasks (Boutell et al., 2004) when hamming loss is con-
cerned, especially when there are just a few labels. Now the goal is to learn
𝑞 functions, 𝒇 = (𝑓1, 𝑓2, . . . , 𝑓𝑞), and the prediction function is given by

𝐹 (𝒇(𝒙)) = (sgn[𝑓1(𝒙)], sgn[𝑓2(𝒙)], . . . , sgn[𝑓𝑞(𝒙)]).

A common choice for the surrogate loss is

Ψ(𝒇(𝒙),𝒚) =
∑𝑞

𝑖=1
𝜙(𝑦𝑖𝑓𝑖(𝒙)), (26)

where 𝜙 is a convex function. For example, it was chosen as hinge loss 𝜙(𝑡) =
(1−𝑡)+ in (Elisseeff andWeston, 2002) and exponential loss 𝜙(𝑡) = exp(−𝑡) in
(Schapire and Singer, 2000), respectively. We have the conditional surrogate
loss

𝑊 (𝒑,𝒇) =
∑

𝒚∈𝒴
𝑝𝒚Ψ(𝒇(𝒙),𝒚) =

∑𝑞

𝑖=1

∑
𝒚∈𝒴

𝑝𝒚𝜙(𝑦𝑖𝑓𝑖(𝒙))

=
∑𝑞

𝑖=1
𝑝+𝑖 𝜙(𝑓𝑖(𝒙)) + (1− 𝑝+𝑖 )𝜙(−𝑓𝑖(𝒙)),

where 𝑝+𝑖 =
∑

𝒚 : 𝑦𝑖=+1 𝑝𝒚 and 1 − 𝑝+𝑖 =
∑

𝒚 : 𝑦𝑖=−1 𝑝𝒚. For simplicity, we
denote by

𝑊𝑖(𝑝
+
𝑖 , 𝑓𝑖) = 𝑝+𝑖 𝜙(𝑓𝑖) + (1− 𝑝+𝑖 )𝜙(−𝑓𝑖).

This yields that minimizing 𝑊 (𝒑,𝒇) is equivalent to minimizing 𝑊𝑖(𝑝
+
𝑖 , 𝑓𝑖)

for every 1 ≤ 𝑖 ≤ 𝑞, that is,

𝑊 ∗(𝒑) = inf
𝒇
𝑊 (𝒑,𝒇) =

∑𝑞

𝑖=1
inf
𝑓𝑖

𝑊𝑖(𝑝
+
𝑖 , 𝑓𝑖).

The consistency for binary classification has been well-studied (Zhang,
2004b; Bartlett et al., 2006), and based on the work of Bartlett et al. (2006),
we can easily get:

Theorem 32. If 𝜙 is a convex function with 𝜙′(0) < 0, then the surrogate
loss Ψ given by Eqn. (26) is consistent w.r.t. hamming loss.

It is evident from this theorem that the surrogate loss Ψ given by Eqn. (26)
is consistent w.r.t. hamming loss if 𝜙 is any of the following:
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∙ Exponential loss: 𝜙(𝑡) = exp(−𝑡);

∙ Hinge loss: 𝜙(𝑡) = max(0, 1− 𝑡);

∙ Least squares loss: 𝜙(𝑡) = (1− 𝑡)2;

∙ Logistic loss: 𝜙(𝑡) = ln(1 + exp(−𝑡));

∙ Least squares hinge loss: 𝜙(𝑡) = (max(0, 1− 𝑡))2.

6. Proofs of Lemmas

In this section, we provide the detailed proofs of lemmas.

6.1. Proof of Lemma 5
From the Heine definition of continuity, it is sufficient to show

𝑊 ∗(𝒑(𝑛)) → 𝑊 ∗(𝒑)

for any sequence 𝒑(𝑛) → 𝒑.
Let 𝐵𝑟 be a closed ball with radius 𝑟 in ℝ𝐾 . Because ∣𝒴∣ is finite, we have∑

𝒚∈𝒴
𝑝(𝑛)𝒚 Ψ(𝒇 ,𝒚) →

∑
𝒚∈𝒴

𝑝𝒚Ψ(𝒇 ,𝒚)

uniformly for every 𝒇 ∈ 𝐵𝑟 and every sequence 𝒑(𝑛) → 𝒑, leading to

inf
𝒇∈𝐵𝑟

∑
𝒚∈𝒴

𝑝(𝑛)𝒚 Ψ(𝒇 ,𝒚) → inf
𝒇∈𝐵𝑟

∑
𝒚∈𝒴

𝑝𝒚Ψ(𝒇 ,𝒚).

From
𝑊 ∗(𝒑(𝑛)) ≤ inf

𝒇∈𝐵𝑟

∑
𝒚∈𝒴

𝑝(𝑛)𝒚 Ψ(𝒇 ,𝒚),

and letting 𝑟 → ∞, we have

lim sup
𝑛→∞

𝑊 ∗(𝒑(𝑛)) ≤ 𝑊 ∗(𝒑). (27)

Denote by 𝒴 ′ = {𝒚∣𝑝𝒚 > 0 for 𝒚 ∈ 𝒴} and assume Ψ(⋅, ⋅) ≥ 𝐶 for some
constant 𝐶 (since Ψ is below-bounded). We have

𝑊 ∗(𝒑(𝑛)) ≥ inf
𝒇

∑
𝒚∈𝒴 ′ 𝑝

(𝑛)
𝒚 Ψ(𝒇 ,𝒚) + 𝐶

∑
𝒚∈𝒴/𝒴 ′ 𝑝

(𝑛)
𝒚 ,

which yields

lim inf
𝑛→∞

𝑊 ∗(𝒑(𝑛)) ≥ lim inf
𝑛→∞

⎛⎝inf
𝒇

∑
𝒚∈𝒴 ′

𝑝(𝑛)𝒚 Ψ(𝒇 ,𝒚) + 𝐶
∑

𝒚∈𝒴/𝒴′
𝑝(𝑛)𝒚

⎞⎠ = 𝑊 ∗(𝒑),

which completes the proof by combining Eqn. (27). □
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6.2. Proof of Lemma 6

We proceed by contradiction. Suppose Ψ is multi-label consistent and
there exists 𝜖 > 0 and a sequence (𝒑(𝑛),𝒇 (𝑛)) such that

𝑙(𝒑(𝑛),𝒇 (𝑛))− inf
𝒇 ′

𝑙(𝒑(𝑛),𝒇 ′) ≥ 𝜖 and 𝑊 (𝒑(𝑛),𝒇 (𝑛)) → 𝑊 ∗(𝒑(𝑛)).

From the compactness of Λ, there exists a convergence sequence 𝑛𝑘 such that
𝒑(𝑛𝑘) → 𝒑 for some 𝒑 ∈ Λ. From Lemma 5, we have

𝑊 (𝒑(𝑛𝑘),𝒇 (𝑛𝑘)) → 𝑊 ∗(𝒑).

Similar to the proof of Lemma 5, we set 𝒴 ′ = {𝒚∣𝑝𝒚 > 0 for 𝒚 ∈ 𝒴}, and get

lim sup
𝑛𝑘

𝑊 (𝒑,𝒇 (𝑛𝑘))

= lim sup
𝑛𝑘

(
𝐶
∑

𝒚∈𝒴/𝒴′ 𝑝
(𝑛𝑘)
𝒚 + inf

𝒇

∑
𝒚∈𝒴 ′ 𝑝

(𝑛𝑘)
𝒚 Ψ(𝒇 (𝑛𝑘),𝒚)

)
≤ lim

𝑛𝑘

𝑊 (𝒑(𝑛𝑘),𝒇 (𝑛𝑘)) = 𝑊 ∗(𝒑).

This gives 𝑊 (𝒑,𝒇 (𝑛𝑘)) → 𝑊 ∗(𝒑) from the definition of 𝑊 ∗(𝒑). Since Ψ is
multi-label consistent, there exists a sequence 𝒇 (𝑛𝑘𝑖

) such that

𝑙(𝒑,𝒇 (𝑛𝑘𝑖
)) → inf

𝒇 ′
𝑙(𝒑,𝒇 ′),

which contradicts the assumption 𝑙(𝒑(𝑛),𝒇 (𝑛))− inf𝒇 ′ 𝑙(𝒑(𝑛),𝒇 ′) ≥ 𝜖, and the
lemma follows. □

6.3. Proof of Lemma 14

From Eqn. (9), we set

1 <
𝑃1

𝑃2

<
𝜙′(𝑏− 𝑎)(𝜙′(𝑎) + 𝜙′(𝑏)) + 𝜙′(𝑏)𝜙′(−𝑎)

𝜙′(𝑎− 𝑏)(𝜙′(𝑎) + 𝜙′(𝑏)) + 𝜙′(𝑏)𝜙′(𝑎)
. (28)

For 𝑎 < 𝑏, we have 𝜙′(𝑎− 𝑏) ≤ 𝜙′(𝑏− 𝑎) < 0, yielding

𝑃1

𝑃2

> 1 ≥ 𝜙′(𝑏− 𝑎)

𝜙′(𝑎− 𝑏)
,
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Figure 1: Lines 𝐼1 (solid) and 𝐼2 (dash) corresponding to Eqns. (11) and (12), respectively.

which gives 𝑃1𝜙
′(𝑎 − 𝑏) − 𝑃2𝜙

′(𝑏 − 𝑎) < 0. Thus, Eqn. (11) corresponds to
the Line 𝐼1 in Figure 1. From Eqn. (10), we further obtain

0 <
𝜙′(−𝑎) + 𝜙′(−𝑏)

𝜙′(𝑎) + 𝜙′(𝑏)
<

𝜙′(−𝑏)

𝜙′(𝑏)
.

To guarantee 𝑃3 > 0 and 𝑃4 > 0 satisfying Eqns. (11) and (12), as shown in
Figure 1, we need:

𝑃1𝜙
′(𝑎− 𝑏)− 𝑃2𝜙

′(𝑏− 𝑎)

𝜙′(𝑏)
<

−𝑃1𝜙
′(𝑎) + 𝑃2𝜙

′(−𝑎)

𝜙′(𝑎) + 𝜙′(𝑏)
.

The above holds obviously from Eqn. (28). Thus, we complete the proof. □

6.4. Proof of Lemma 28

We proceed by contradiction. Suppose there exists a probability simplex
𝒑 ∈ Λ and 𝒇 such that 𝑓𝒚1 < 𝑓𝒚2 , 𝑝𝒚1 > 𝑝𝒚2 and 𝑊 ∗(𝒑) = 𝑊 (𝒑,𝒇). We can
construct another 𝒇 ′ by

𝑓 ′
𝒚1

= 𝑓𝒚2 , 𝑓 ′
𝒚2

= 𝑓𝒚1 , and 𝑓 ′
𝒚𝑘

= 𝑓𝒚𝑘
for 𝑘 ∕= 1, 2.

This follows

𝑊 (𝒑,𝒇)−𝑊 (𝒑,𝒇 ′) = (𝑝𝒚1 − 𝑝𝒚2)
(
𝜙(𝑓𝒚1 − 𝑓𝒚2)− 𝜙(𝑓𝒚2 − 𝑓𝒚1)

)
+ (𝑝𝒚1 − 𝑝𝒚2)

∑
𝒚𝑘 ∕=𝒚1
𝒚𝑘 ∕=𝒚2

(𝜙(𝑓𝒚1 − 𝑓𝒚𝑘
)− 𝜙(𝑓𝒚2 − 𝑓𝒚𝑘

)) . (29)

For non-increasing function 𝜙, we have

𝜙(𝑓𝒚1 − 𝑓𝒚𝑖
) ≥ 𝜙(𝑓𝒚2 − 𝑓𝒚𝑖

),

and from 𝜙′(0) < 0, we further get

𝜙(𝑓𝒚1 − 𝑓𝒚2) > 𝜙(𝑓𝒚2 − 𝑓𝒚1).

From Eqn. (29), we have 𝑊 (𝒑,𝒇) > 𝑊 (𝒑,𝒇 ′), which is contrary to the
assumption 𝑊 ∗(𝒑) = 𝑊 (𝒑,𝒇). The lemma holds as desired. □
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Table 1: Summary of consistency result, where
√
/× indicates consistency/inconsistency.

ranking loss partial ranking loss hamming loss

loss function 𝜙 Eqn. (4) Eqn. (4) Eqn. (15) Eqn. (19) Eqn. (20)

logistic × × √ × ×
hinge × × × × ×

exponential × × √ × ×
least square × × √ × ×

least square hinge × × √ × ×
regularized linear × √ √ × ×

7. Conclusion and Future Work

During the past decade, multi-label learning has attracted significant at-
tention in the machine learning community. Most studies have been devoted
to the algorithm designs and diverse applications. Theoretical analysis, how-
ever, remains almost untouched for multi-label learning. This paper extends
our preliminary work (Gao and Zhou, 2011), which tries to study the con-
sistency of multi-label learning based on surrogate losses. We present a nec-
essary and sufficient condition for multi-label consistency, and study two
well-known loss functions, i.e., ranking loss and hamming loss. Our main
results are summarized in Table 1.

The ranking loss is one of the most popularly used multi-label criterion
and many approaches (Schapire and Singer, 2000; Elisseeff and Weston, 2002;
Dekel et al., 2004; Zhang and Zhou, 2006) try to optimize it under the for-
mulation of Eqn. (4). Our analysis, however, discloses that none of convex
surrogate loss is consistent w.r.t. ranking loss; therefore, ranking loss might
not be a good criterion for multi-label learning. The partial ranking loss is
more reasonable than ranking loss because, on one hand it keeps the nature
of ranking loss (by ranking relevant labels higher than irrelevant ones), and
on the other hand, it enables many, though not all, convex surrogate losses
to be consistent.

The hamming loss is also one of the most popularly used multi-label cri-
terion, based on which it is natural to develop some learning approaches from
multi-class learning, e.g., the one-vs-all method and the pairwise comparison
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method. Our results disclose that these approaches are inconsistent w.r.t.
hamming loss for general cases yet consistent under the dominating setting,
and similar results also hold for some multi-label approaches (Taskar et al.,
2004; Hariharan et al., 2010) that are variations of the one-vs-all method. In
addition, we discuss on the consistency of approaches that address multi-label
learning by decomposing the task into a set of binary classification problems.

An important future work is to investigate the convergence rate of con-
sistent surrogate loss functions as in (Bartlett et al., 2006). How to incorpo-
rate label correlation into the study of multi-label consistency also remains
an open problem. In addition, our work may motivate the consistency re-
searches on other multi-label criteria such as one-error, F1, etc. It is also
interesting to develop some new multi-label learning approaches by minimiz-
ing the partial ranking loss. Note that we do not consider how to decide
the number of relevant labels for ranking loss and partial ranking loss in
this work, whereas in practice this is quite challenging. For hamming loss,
it is extremely important to explore new surrogate losses and find new pre-
diction rules for developing consistent approaches, because none of existing
algorithms is consistent in general cases. It is also interesting to make a
comprehensive empirical study on various approaches and formulations for
multi-label learning.
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