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Abstract. Support vector machines (SVMs) and Boosting are possibly
the two most popular learning approaches during the past two decades. It
is well known that the margin is a fundamental issue of SVMs, whereas
recently the margin theory for Boosting has been defended, establish-
ing a connection between these two mainstream approaches. The recent
theoretical results disclosed that the margin distribution rather than a
single margin is really crucial for the generalization performance, and
suggested to optimize the margin distribution by maximizing the mar-
gin mean and minimizing the margin variance simultaneously. Inspired
by this recognition, we advocate the large margin distribution learning, a
promising research direction that has exhibited superiority in algorithm
designs to traditional large margin learning.

1 Introduction

Support vector machines (SVMs) and Boosting have both been very popular
during the past two decades. SVMs belong to the family of large margin methods
[18] whereas Boosting belongs to the family of ensemble methods [22]. The former
roots in the statistical learning theory [19], exploiting the kernel trick explicitly
to handle nonlinearity with linear classifiers; the latter comes from the proof
construction [13] to the theoretical problem that whether weakly learnable equals
strongly learnable [8]. It is clearly that these two approaches were born with
apparent differences.

The margin [19] is a fundamental issue of SVMs as an intuitive understand-
ing of the behavior of SVMs is to search for a large margin separator in a RKHS
(reproducing kernel Hilbert space). It is worth noting that there is also a long
history of research trying to explain Boosting with a margin theory. Though
there were twists and turns in this line of studies, recently the margin theory for
Boosting has finally been defended [5], establishing a connection between these
two mainstream learning approaches. It is interesting that in contrast to large
margin methods that focus on the maximization of a single margin, the recent
theoretical results disclosed that the margin distribution rather than a single
margin is really crucial for the generalization performance, and suggested to op-
timize the margin distribution by maximizing the margin mean and minimizing
the margin variance simultaneously. Inspired by this recognition, we advocate
large margin distribution learning, a promising research direction that has al-
ready exhibited superiority in algorithm designs [21].



In this article, we will first briefly introduce the efforts on establishing the
margin theory of Boosting, and then explain the basic idea of large margin
distribution learning. After that, we will show some simple implementation of
large margin distribution learning, followed by concluding remarks.

2 The Long March of Margin Theory for Boosting

Overfitting is among the most serious obstacles for learning approaches to achieve
strong generalization performances, and great efforts have been devoted to mech-
anisms that help reduce overfitting risk, such as decision tree pruning, neural
networks early stopping, minimum description length constraint, structural risk
minimization, etc. It is typically believed that when the training error reaches
zero (even much before that), the training process should be terminated because
the further training will unnecessarily increase the model complexity and there-
fore, leading to overfitting. Indeed, according to the Occam’s razor, if we have
multiple hypotheses consistent with observations, then the simpler, the better.

However, for AdaBoost, the most famous representative of Boosting, it has
been observed that the generalization performance can be improved further if
the training process continues even after the training error reaches zero, though
the ensemble model becomes more complicated owing to the inclusion of more
base learners. This seems contradictory to previous knowledge, and thus, to
understand why AdaBoost seems resistant to overfitting is the most fascinating
fundamental theoretical issue in Boosting studies.

To explain this phenomenon, Schapire et al. [14] presented the margin theory
for Boosting. Let 𝒳 and 𝒴 denote the input and output spaces, respectively. A
training set of size 𝑚 is an i.i.d. sample 𝑆 = {(𝒙1, 𝑦1), ⋅ ⋅ ⋅ , (𝒙𝑚, 𝑦𝑚)} drawn
according to 𝐷, an unknown underlying probability distribution over 𝒳 × 𝒴.
Denote Pr𝐷[⋅] and Pr𝑆 [⋅] as the probability w.r.t. 𝐷 and w.r.t. uniform distri-
bution over 𝑆, respectively. Let ℋ be a hypothesis space, and a base learner is a
function ℎ : 𝒳 → 𝒴. Here, we focus on binary classification, i.e., 𝒴 = {+1,−1}.
Let 𝒞(ℋ) denote the convex hull of ℋ, i.e., the ensemble model 𝑓 ∈ 𝒞(ℋ) is of
the form

𝑓 =
∑

𝑖
𝛼𝑖ℎ𝑖 with

∑
𝑖
𝛼𝑖 = 1 and 𝛼𝑖 ≥ 0. (1)

We call this ensemble model a voting classifier because the base learners are
combined via voting (also called additive model in statistical literatures). Given
an example (𝒙, 𝑦), themargin w.r.t. the voting classifier 𝑓 =

∑
𝛼𝑖ℎ𝑖(𝒙) is defined

as 𝑦𝑓(𝒙); in other words,

𝑦𝑓(𝒙) =
∑

𝑖 : 𝑦=ℎ𝑖(𝒙)

𝛼𝑖 −
∑

𝑖 : 𝑦 ∕=ℎ𝑖(𝒙)

𝛼𝑖, (2)

which shows the difference between the weights of base learners that classify
(𝒙, 𝑦) correctly and the weights of base learners that classify (𝒙, 𝑦) incorrectly.

Based on the concept of margin, Schapire et al. [14] proved the first margin
theorem for AdaBoost and upper bounded the generalization error as follows,
where 𝜃 > 0 is a threshold of margin over the training sample 𝑆.



Theorem 1. (Schapire et al., 1998) For any 𝛿 > 0 and 𝜃 > 0, with probability
at least 1 − 𝛿 over the random choice of sample 𝑆 with size 𝑚, every voting
classifier 𝑓 ∈ 𝒞(ℋ) satisfies the following bound:

Pr
𝐷
[𝑦𝑓(𝒙) < 0] ≤ Pr

𝑆
[𝑦𝑓(𝒙) ≤ 𝜃] +𝑂

(
1√
𝑚

(
ln𝑚 ln ∣ℋ∣

𝜃2
+ ln

1

𝛿

)1/2
)
. (3)

This theorem implies that, when other variables are fixed, the larger the margin
over the training sample, the better the generalization performance; this offers
an explanation to why AdaBoost tends to be resistant to overfitting: It is able
to increase the margin even after the training error reaches zero.

The margin theory looks intuitive and reasonable, and thus, it attracted a
lot of attention. Notice that Schapire et al.’s bound (3) depends heavily on the
smallest margin, because Pr𝑆 [𝑦𝑓(𝒙) ≤ 𝜃] will be small if the smallest margin is
large. Thus, Breiman [3] explicitly considered the minimum margin, 𝑦1𝑓(𝒙̂1) =
min𝑖∈{1..𝑚}{𝑦𝑖𝑓(𝒙𝑖)}, and proved the following margin theorem:

Theorem 2. (Breiman, 1999) For any 𝛿 > 0, if 𝜃 = 𝑦1𝑓(𝒙̂1) > 4
√

2
∣ℋ∣ and 𝑅 ≤

2𝑚, with probability at least 1− 𝛿 over the random choice of sample 𝑆 with size
𝑚, every voting classifier 𝑓 ∈ 𝒞(ℋ) satisfies the following bound:

Pr
𝐷
[𝑦𝑓(𝒙) < 0] ≤ 𝑅

(
ln(2𝑚) + ln

1

𝑅
+ 1
)
+

1

𝑚
ln

∣ℋ∣
𝛿

, (4)

where 𝑅 = 32 ln 2∣ℋ∣
𝑚𝜃2 .

Breiman’s minimum margin bound (4) is in 𝑂(ln𝑚/𝑚), sharper than Schapire
et al.’s bound (3) that is in 𝑂(

√
ln𝑚/𝑚). Thus, it was believed that the mini-

mum margin is essential. Breiman [3] designed the arc-gv algorithm, a variant
of AdaBoost, which directly maximizes the minimum margin. The margin theory
would appear to predict that arc-gv should perform better than AdaBoost; how-
ever, empirical results show that though arc-gv does produce uniformly larger
minimum margin than AdaBoost, its generalization error increases drastically
in almost every case.1 Thus, Breiman raised serious doubt about the margin
theory, and almost sentenced the margin theory to death.

Seven years later, Reyzin and Schapire [12] found that, amazingly, Breiman
had not controlled the model complexity well in experiments. To study the mar-
gin, one must fix the model complexity of base learners as it is meaningless to
compare the margins of models with different complexities. In his experiments,
Breiman [3] used CART decision trees, and considering that each decision tree
leaf corresponds to an equivalent class in the instance space, Breiman tried to
fix the model complexity by using trees with fixed number of leaves. Reyzin
and Schapire found that the trees of arc-gv are generally deeper than that

1 Similar empirical evidences have been reported by other researchers such as [7].



of AdaBoost, and they argued that trees with different heights may be with
different model complexities. Then, they repeated Breiman’s experiments using
decision stumps with two leaves and observed that, comparing to AdaBoost,
arc-gv is with larger minimum margin but smaller margin distribution. Thus,
they claimed that the minimum margin is not essential, while the margin distri-
bution characterized by the average or median margin is important.

Though Reyzin and Schapire showed that the empirical attack of Breiman
is not deadly, it is far from validating the essentiality of margin distribution,
because Breiman’s generalization bound based on the minimum margin is quite
tight. To enable the margin theory to gets renascence, it is crucial to have a
sharper bound based on margin distribution.

For this purpose, Wang et al. [20] presented a sharper bound in term of the

Emargin, i.e., arg inf𝑞∈{𝑞0,𝑞0+ 1
𝑚 ,⋅⋅⋅ ,1} 𝐾𝐿−1(𝑞;𝑢[𝜃(𝑞)]), as follows:

Theorem 3. (Wang et al., 2008) For any 𝛿 > 0, if 8 < ∣ℋ∣ < ∞, with proba-
bility at least 1 − 𝛿 over the random choice of sample 𝑆 with size 𝑚 > 1, every
voting classifier 𝑓 ∈ 𝒞(ℋ) satisfies the following bound:

Pr
𝐷
[𝑦𝑓(𝒙) < 0] ≤ ln ∣ℋ∣

𝑚
+ inf

𝑞∈{𝑞0,𝑞0+ 1
𝑚 ,⋅⋅⋅ ,1}

𝐾𝐿−1(𝑞;𝑢[𝜃(𝑞)]), (5)

where 𝑞0 = Pr𝑆

[
𝑦𝑓(𝒙) ≤√8/∣ℋ∣

]
< 1, 𝑢[𝜃(𝑞)] = 1

𝑚

(
8 ln ∣ℋ∣
𝜃2(𝑞)

ln 2𝑚2

ln ∣ℋ∣ + ln ∣ℋ∣ +
ln 𝑚

𝛿

)
, 𝜃(𝑞) = sup

{
𝜃 ∈ (√8/∣ℋ∣, 1] : Pr𝑆 [𝑦𝑓(𝒙) ≤ 𝜃] ≤ 𝑞

}
.

Here 𝐾𝐿−1(𝑞;𝑢) = inf𝑤 {𝑤 : 𝑤 ≥ 𝑞 and 𝐾𝐿(𝑞∣∣𝑤) ≥ 𝑢} is the inverse of the KL
divergence 𝐾𝐿(𝑞∣∣⋅) for a fixed 𝑞. Notice that the factors considered by (5) are
different from that considered by (3) and (4). Though (5) was believed to be
a generalization bound based on margin distribution, the Emargin is too un-
intuitive to inspire algorithm design.

Several years later, Gao and Zhou [5] revealed that both the minimum margin
and Emargin are special cases of the 𝑘-th margin, which is still a single mar-
gin. Fortunately, they proved a sharper generalization bound based on margin
distribution as follows by considering the same factors as in (3) and (4).

Theorem 4. (Gao and Zhou, 2013) For any 𝛿 > 0, with probability at least
1−𝛿 over the random choice of sample 𝑆 with size 𝑚 ≥ 5, every voting classifier
𝑓 ∈ 𝒞(ℋ) satisfies the following bound:

Pr
𝐷
[𝑦𝑓(𝒙) < 0] ≤ 2

𝑚
+ inf

𝜃∈(0,1]

[
Pr
𝑆
[𝑦𝑓(𝒙) < 𝜃] +

7𝜇+ 3
√
3𝜇

3𝑚
+

√
3𝜇

𝑚
Pr
𝑆
[𝑦𝑓(𝒙) < 𝜃]

]
,

(6)

where 𝜇 = 8
𝜃2 ln𝑚 ln(2∣ℋ∣) + ln 2∣ℋ∣

𝛿 .



Fig. 1. A simple illustration of linear separators optimizing the minimum margin,
margin mean and margin distribution, respectively.

This result proves the essentiality of margin distribution to generalization per-
formance. Thus, the margin theory for Boosting finally stands.2

Now, it is clear that the margin distribution can be improved further even af-
ter the training error reaches zero, and therefore, the generalization performance
of AdaBoost can be improved further if the training process continues. This also
implies that overfitting will finally occur, although very late, since the margin
distribution cannot be improved endlessly. As for the contradictory to the Oc-
cam’s razor, now our understanding is that the complexity of ensemble models
is related to not only the number of learners but also the structural relation
between the learners; thus, including more base learners in an ensemble does not
necessarily lead to a higher model complexity. This is likely to be relevant to
the diversity issue of ensemble methods [22], and theoretical exploration of this
point may offer model complexity some new comprehension.

2 Notice that instead of considering the whole function space, there are some stud-
ies about data-dependent margin-based generalization bounds, based on techniques
such as the empirical cover number [15], empirical fat-shattering dimension [2] and
Rademacher and Gaussian complexities [9, 10]. Some of these bounds are proven to
be sharper than (3), but hard to show sharper than (4)-(6). Moreover, they fail to
explain the resistance of AdaBoost to overfitting.



3 Optimizing Margin Distribution

Fig. 1 provides a simple illustration. Suppose we are trying to separate two cat-
egories of data points, i.e., red circles and blue triangles. For simplicity, consider
the separable case. First, we can see that classifiers maximizing the minimum
margin, the margin mean3 and the margin distribution, respectively, are usually
significantly different. For example, in Fig. 1 the classifier trying to maximize the
minimum margin will favor the separator ℎ𝑚𝑖𝑛, the classifier trying to maximize
the margin mean will favor the separator ℎ𝑚𝑒𝑎𝑛, whereas the classifier trying to
maximize the margin distribution will favor ℎ𝑑𝑖𝑠𝑡. Second, the classifier optimiz-
ing the margin distribution can be intuitively better as the predictive confidence
of ℎ𝑑𝑖𝑠𝑡 on most data points are larger than the predictive confidence of ℎ𝑚𝑖𝑛

and ℎ𝑚𝑒𝑎𝑛.
Fig. 2 shows a more complicated case where there are outliers or noisy data

points. If we insist on optimizing the minimum margin, in Fig. 2 the classifier
will almost be dominated by the outliers or noisy data points. If we try to
optimize the margin distribution instead, the influence of the outliers or noisy
data points will diminish automatically. In other words, classifiers optimizing the
margin distribution will be more robust than classifiers optimizing the minimum
margin. Moreover, optimizing the margin distribution can also accommodate
class imbalance and unequal misclassification costs naturally.

Fig. 2. Another illustration of linear separators with outliers or noisy data points.

Notice that though the theoretical results proving the essentiality of margin
distribution in Section 3 were derived for Boosting, the implications are far be-
yond Boosting. There are many learning approaches trying to optimize actually
a single margin, particularly the minimum margin; the most famous representa-
tives are SVMs.

For SVMs, 𝑓(𝒙) = 𝒘⊤𝜙(𝒙) where 𝒘 is a linear predictor, 𝜙(𝒙) is a feature
mapping of 𝒙 induced by a kernel 𝑘, i.e., 𝑘(𝒙𝑖,𝒙𝑗) = 𝜙(𝒙𝑖)

⊤𝜙(𝒙𝑗). Given an

3 Notice that the mean instances are not necessarily observed in training data.



example (𝒙, 𝑦), similar to that in Section 2, the margin 𝛾 w.r.t. 𝑓 is defined as
𝑦𝑓(𝒙) [4, 19]:

𝛾 = 𝑦𝑓(𝒙) = 𝑦𝒘⊤𝜙(𝒙). (7)

The SVMs formulation for separable case (hard-margin SVMs) is indeed a max-
imization of the minimum margin, i.e., min{𝛾𝑖}𝑚𝑖=1:

min
𝒘

1

2
𝒘⊤𝒘 (8)

s.t. 𝑦𝑖𝒘
⊤𝜙(𝒙𝑖) ≥ 1

𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚.

The formulation for non-separable case (soft-margin SVMs) introduces the slack
variables 𝝃 = [𝜉1, ⋅ ⋅ ⋅ , 𝜉𝑚]⊤ to measure the losses of different instances, where 𝐶
is a trading-off parameter:

min
𝒘,𝝃

1

2
𝒘⊤𝒘 + 𝐶

𝑚∑
𝑖=1

𝜉𝑖 (9)

s.t. 𝑦𝑖𝒘
⊤𝜙(𝒙𝑖) ≥ 1− 𝜉𝑖,

𝜉𝑖 ≥ 0, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚.

There exists a constant 𝐶 such that (9) can be equivalently reformulated as
follows, showing that the soft-margin SVMs are maximizing the 𝑘-th margin
(i.e., the 𝑘-th smallest margin) [5]:

max
𝒘

𝛾0 − 𝐶
∑𝑚

𝑖=1
𝜉𝑖 (10)

s.t. 𝛾𝑖 ≥ 𝛾0 − 𝜉𝑖,

𝜉𝑖 ≥ 0, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚.

Hence, both hard-margin and soft-margin SVMs are indeed trying to optimize
a single margin. It is very likely that they can be improved by replacing the
optimization of a single margin by the optimization of margin distribution, while
keeping the other parts of their solution strategies unchanged; this also applies
to other large margin methods. Thus, the large margin distribution learning
offers a promising way to derive more powerful learning approaches by simple
adaptations.

To accomplish large margin distribution learning, we need to understand
how to optimize the margin distribution. Reyzin and Schapire [12] suggested to
maximize the average or median margin, and there are also efforts on maximizing
the average margin or weighted combination margin [1,6,11]. These arguments,
however, are all heuristics without theoretical justification.

In addition to (6), Gao and Zhou [5] proved anther form of their margin
theorem, disclosing that the average or median mean is not enough, and to
characterize the margin distribution, it is important to consider not only the



margin mean but also the margin variance. This suggests a new direction for
algorithm design, i.e., to optimize the margin distribution by maximizing the
margin mean and minimizing the margin variance simultaneously. This argument
has got supported empirically by some recent Boosting studies [16,17].

4 A Simple Implementation of Large Margin Distribution
Learning

For a straightforward implementation of large margin distribution learning, as
an example, we adapt the simple SVMs formulation (8) to the optimization of
margin distribution [21].

Denote 𝑿 = [𝜙(𝒙1), ⋅ ⋅ ⋅ , 𝜙(𝒙𝑚)] as the matrix whose 𝑖-th column is 𝜙(𝒙𝑖),
𝒚 = [𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑚]⊤, and 𝒀 as a 𝑚×𝑚 diagonal matrix whose diagonal elements
are 𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑚. According to the definition in (7), the margin mean is

𝛾 =
1

𝑚

𝑚∑
𝑖=1

𝑦𝑖𝒘
⊤𝜙(𝒙𝑖) =

1

𝑚
(𝑿𝒚)⊤𝒘, (11)

and the margin variance is

𝛾 =
1

𝑚2

𝑚∑
𝑖=1

𝑚∑
𝑗=1

(𝑦𝑖𝒘
⊤𝜙(𝒙𝑖)− 𝑦𝑗𝒘

⊤𝜙(𝒙𝑗))
2

=
2

𝑚2
(𝑚𝒘⊤𝑿𝑿⊤𝒘 −𝒘⊤𝑿𝒚𝒚⊤𝑿⊤𝒘).

(12)

By incorporating into (8) the maximization of margin mean and the mini-
mization of margin variance simultaneously, we get the hard-margin LDM (Large
Margin distribution Machine) formulation [21]:

min
𝒘

1

2
𝒘⊤𝒘 + 𝜆1𝛾 − 𝜆2𝛾 (13)

s.t. 𝑦𝑖𝒘
⊤𝜙(𝒙𝑖) ≥ 1

𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚,

where 𝜆1 and 𝜆2 are trading-off parameters. It is evident that (8) is a special
case of (13) when 𝜆1 and 𝜆2 equal zero.

Similarly, we have the soft-margin LDM which degenerates to (10) when 𝜆1

and 𝜆2 equals zero:

min
𝒘,𝝃

1

2
𝒘⊤𝒘 + 𝜆1𝛾 − 𝜆2𝛾 + 𝐶

𝑚∑
𝑖=1

𝜉𝑖 (14)

s.t. 𝑦𝑖𝒘
⊤𝜙(𝒙𝑖) ≥ 1− 𝜉𝑖,

𝜉𝑖 ≥ 0, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚.



Notice that in (14) the influence of the 𝐶
∑𝑚

𝑖=1 𝜉𝑖 term can be subsumed by the
𝜆1 and 𝜆2 terms, whereas we keep it to let (14) and (10) look similar such that
it is easy to perceive that adapting the soft-margin SVMs to the optimization
of margin distribution is quite straightforward.

Solving (13) and (14) is not difficult. For example, by substituting (11)-(12),
(14) leads to a quadratic programming problem:

min
𝒘,𝝃

1

2
𝒘⊤𝒘 +

2𝜆1

𝑚2
(𝑚𝒘⊤𝑿𝑿⊤𝒘 −𝒘⊤𝑿𝒚𝒚⊤𝑿⊤𝒘)

− 𝜆2
1

𝑚
(𝑿𝒚)⊤𝒘 + 𝐶

𝑚∑
𝑖=1

𝜉𝑖 (15)

s.t. 𝑦𝑖𝒘
⊤𝜙(𝒙𝑖) ≥ 1− 𝜉𝑖, (16)

𝜉𝑖 ≥ 0, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚.

A dual coordinate descent method for kernel LDM and an average stochastic
gradient descent method for large-scale linear kernel LDM have been developed,
with details in [21]. Table 1 shows some experimental results of comparing LDM
to SVM, where it can be seen that LDM is significantly better on more than
half of the experimental datasets and never worse than SVM. Such a simple
implementation of large margin distribution learning also exhibits superior per-
formance to many other related methods [1, 6, 11] in experiments [21].

5 Conclusion

Recently the margin theory for Boosting has been defended [5], showing that
the margin is not only a fundamental issue of SVMs but also an essential factor
of Boosting. In contrast to previous belief on single margins such as the mini-
mum margin optimized by SVMs, the recent theoretical results disclosed that the
margin distribution rather than a single margin is crucial for the generalization
performance. Inspired by this recognition, in this article we advocate large mar-
gin distribution learning. We also briefly introduce how the SVMs can be easily
adapted to large margin distribution learning by maximizing the margin mean
and minimizing the margin variance simultaneously, while such a simple imple-
mentation leads to the LDMs that exhibit superior performance to SVMs [21].
Overall, large margin distribution learning exhibits a promising direction to de-
rive powerful learning approaches.
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Table 1. Comparing predictive accuracy (mean±std.) of SVM and LDM. ∙/∘ indicates
the performance of LDM is significantly better/worse than SVM (paired 𝑡-tests at 95%
significance level). The win/tie/loss counts are summarized in the last row.

Data sets Linear kernel RBF kernel
SVM LDM SVM LDM

promoters .723±.071 .721±.069 .684±.100 .715±.074∙
planning-relax .683±.031 .706±.034∙ .708±.035 .707±.034
colic .814±.035 .832±.026∙ .822±.033 .841±.018∙
parkinsons .846±.038 .865±.030∙ .929±.029 .927±.029
colic.ORIG .618±.027 .619±.042 .638±.043 .641±.044
sonar .725±.039 .736±.036 .842±.034 .846±.032
vote .934±.022 .970±.014∙ .946±.016 .968±.013∙
house .942±.015 .968±.011∙ .953±.020 .964±.013∙
heart .799±.029 .791±.030 .808±.025 .822±.029∙
breast-cancer .717±.033 .725±.027∙ .729±.030 .753±.027∙
haberman .734±.030 .738±.020 .727±.024 .731±.027
vehicle .959±.012 .959±.013 .992±.007 .993±.006
clean1 .803±.035 .814±.019∙ .890±.020 .891±.024
wdbc .963±.012 .968±.011∙ .951±.011 .961±.010∙
isolet .995±.003 .997±.002∙ .998±.002 .998±.002
credit-a .861±.014 .864±.013∙ .858±.014 .861±.013
austra .857±.013 .859±.015 .853±.013 .857±.014∙
australian .844±.019 .866±.014∙ .815±.014 .854±.016∙
fourclass .724±.014 .723±.014 .998±.003 .998±.003
german .711±.030 .738±.016∙ .731±.019 .743±.016∙
w/t/l (SVM vs. LDM) 0/8/12 0/10/10

References

1. F. Aiolli, G. San Martino, and A. Sperduti. A kernel method for the optimization
of the margin distribution. In Proceedings of the 18th International Conference on
Artificial Neural Networks, pages 305–314, Prague, Czech, 2008.
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