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Abstract

Multi-label learning has attracted much attention during the past few years. Many multi-
label learning approaches have been developed, mostly working with surrogate loss func-
tions since multi-label loss functions are usually difficult to optimize directly owing to
non-convexity and discontinuity. Though these approaches are effective, to the best of our
knowledge, there is no theoretical result on the convergence of risk of the learned functions
to the Bayes risk. In this paper, focusing on two well-known multi-label loss functions, i.e.,
ranking loss and hamming loss, we prove a necessary and sufficient condition for the con-
sistency of multi-label learning based on surrogate loss functions. Our results disclose that,
surprisingly, none convex surrogate loss is consistent with the ranking loss. Inspired by
the finding, we introduce the partial ranking loss, with which some surrogate functions are
consistent. For hamming loss, we show that some recent multi-label learning approaches
are inconsistent even for deterministic multi-label classification, and give a surrogate loss
function which is consistent for the deterministic case. Finally, we discuss on the consis-
tency of learning approaches which address multi-label learning by decomposing into a set
of binary classification problems.

1 Introduction

In traditional supervised learning, each instance is associated with a single label. In real-world
applications, however, one object is usually relevant to multiple labels simultaneously. For example,
a document about national education service may be categorized into several predefined topics, such
as government and education; an image containing forests may be annotated with trees and mountains.
For learning with such objects, multi-label learning has attracted much attention during the past
few years and many effective approaches have been developed (Schapire and Singer, 2000, Elisseeff
and Weston, 2002, Zhou and Zhang, 2007, Zhang and Zhou, 2007, Hsu et al., 2009, Dembczynski
et al., 2010, Petterson and Caetano, 2010).

The consistency (also called Bayes consistency) of learning algorithms concerns whether the
expected risk of a learned function converges to the Bayes risk as the training sample size increases
(Lin, 2002, Zhang, 2004b, Steinwart, 2005, Bartlett et al., 2006, Tewari and Bartlett, 2007, Duchi
et al., 2010). Nowadays, it is well-accepted that a good learner should at least be consistent with
large samples. It is noteworthy that, though many efforts have been devoted to multi-label learning,
few theoretical aspects were explored; in particular, to the best of our knowledge, the consistency of
multi-label learning remains untouched although it is a very important theoretical issue.

In this paper, focusing on two well-known multi-label loss functions, i.e., ranking loss and ham-
ming loss, we present a theoretical study on the consistency of multi-label learning. We prove a
necessary and sufficient condition for the consistency of multi-label learning based on surrogate loss
functions. Our analysis discloses that, surprisingly, any convex surrogate loss is inconsistent with
the ranking loss. Based on this finding, we introduce the partial ranking loss, which is consistent
with some surrogate loss functions; we also show that many current multi-label learning approaches
are even not consistent with the partial ranking loss. As for hamming loss, our analysis shows that
some recent multi-label learning approaches are inconsistent even for deterministic multi-label clas-
sification, and we give a surrogate loss which is consistent with hamming loss for the deterministic
case. Finally, we discuss on the consistency of approaches which address multi-label learning by
transforming the problem into a set of binary classification problems.



The rest of this paper is organized as follows. Section 2 briefly introduces the research back-
ground. Section 3 presents our necessary and sufficient condition for the consistency of multi-label
learning. Sections 4 and 5 study the consistency of multi-label learning approaches with regard to
the ranking loss and hamming loss, respectively. Section 6 gives the detailed proofs.

2 Background

Let X be an instance space and £ = {1,2,...,Q} denotes a finite set of possible labels. An
instance X € X is associated with a subset of labels Y C £ which is called relevant labels, while the
complement £\ Y is called irrelevant labels. For convenience of discussion, we represent the labels
as a binary vector Y = (y1,92,...,yq), where y; = +1 if label 7 is relevant to X and —1 otherwise,
and denote by J = {41, —1}? the set of all possible labels. Let D denote an unknown underlying
probability distribution over X x ). For integer m > 0, we denote by [m] = {1,2,...,m}, and for
real 7, [r] denotes the greatest integer which is no more than r.

The formal description of multi-label learning in the probabilistic setting is given as follows: Given
a training sample S = {(X1,Y7), (X2,Y2),..., (Xm, Ym)} drawn i.i.d. according to the distribution
D, the objective is to learn a function h: X — ), which is able to assign a set of labels to unseen
instances. In general, it is not easy to learn h directly, and in practice, one instead learns a real-valued
vector function

f=(f1, fo,..., fx): X — RE for some integer K > 0,

where K = Q or K = 29 are common choices. Based on this vector function f, a prediction function
F: R — Y can be attained for assigning the set of relevant labels to an instance. Another popular
approach for multi-label learning is to learn a real-valued vector function f = (f1, fa,..., fg) such
that f;(X) > f;(X) if y; = +1 and y; = —1 for an instance-label pair (X,Y), and a function F'
should be learned to determine the number of relevant labels.

Essentially, multi-label learning approaches try to minimize the expected risk of f with regard
to some loss L, i.e.,

R(f) =Ex,y)~p [L(f(X),Y)]. (1)

Notice that f could be a prediction function or a vector of real-valued functions according to different
losses. Further denote by R* = infg R(f) the minimal risk (e.g., the Bayes risk) over all measurable
functions. In this paper, we mainly focus on loss functions which are below-bounded and interval,
defined as follows:

Definition 1 A loss function L is said to be below-bounded if L(-,-) > B holds for some constant
B; L is said to be interval if it holds, for some constant v > 0, that either

L(f(X),Y) = L(f(X"),Y") or |L(f(X),Y)— L(E(X"),Y")] =,
for every X, X' € X and Y, Y' € ).

There are many multi-label loss functions (also called evaluation criteria), e.g., ranking loss,
hamming loss, one-error, coverage and average precision (Schapire and Singer, 2000, Zhang and
Zhou, 2006); accuracy, precision, recall and Fy (Godbole and Sarawagi, 2004, Qi et al., 2007); subset
accuracy (Ghamrawi and McCallum, 2005); etc. In this paper, we focus on two well-known losses,
i.e., ranking loss and hamming loss, and leave the discussion on other losses to future work.

Notice that all the above multi-label losses are non-convex and discontinuous. It is difficult, or
even impossible, to optimize these losses directly. A feasible method in practice is to consider instead
a surrogate loss function which can be optimized by efficient algorithms. Actually, most existing
multi-label learning approaches, such as the boosting algorithm AdaBoost.MH (Schapire and Singer,
2000), neural network algorithm BP-MIL (Zhang and Zhou, 2006), SVM-style algorithms (Elisseeff
and Weston, 2002, Taskar et al., 2004, Hariharan et al., 2010), etc., in essence, try to optimize some
surrogate losses such as the exponential loss and hinge loss.

There are many definitions of consistency, e.g., the Fisher consistency (Lin, 2002), infinite-sample
consistency (Zhang, 2004a), classification calibration (Bartlett et al., 2006, Tewari and Bartlett,
2007), edge-consistency (Duchi et al., 2010), etc., and the consistency of learning algorithms based
on optimizing a surrogate loss function has been well-studied for binary classification (Zhang, 2004b,
Steinwart, 2005, Bartlett et al., 2006), multi-class classification (Zhang, 2004a, Tewari and Bartlett,
2007), learning to rank (Cossock and Zhang, 2008, Xia et al., 2008, Duchi et al., 2010), etc. The
consistency of multi-label learning, however, remains untouched, and to the best of our knowledge,
this paper presents the first theoretical analysis on the consistency of multi-label learning.



3 Multi-Label Consistency
Given an instance X € X, we denote by p(X) a vector of conditional probability for Y € Y, i.e.,

pP(X) = (py (X))Yey = (Pr (Y|X))yeyv

for some p(X) € A, where A is the set of all possible conditional probability distribution vectors,
ie.,

Az{pERm: ZyeprZI and pyZO}.

In the following, for notational simplicity, we will suppress dependence of p(X) and f(X) on the
instance X as p and f, respectively, when it is clear from the context.
For an instance X € X, we define the conditional risk of f as

o) =" pyL(EY) =3 PrYIX)LEX),Y). (2)
It is easy to get the expected risk and the minimal risk, respectively, as

R(f) =Ex[i(p,f)] and R*:Ex[irflf[l(p,f)]].

We further define the set of Bayes predictors as
Alp) = {f: I(p,f) = inf I(p, )}

Notice that A(p) # () since L is interval and below-bounded.

As mentioned above, the loss L in multi-label learning is generally non-convex and discontinuous,
and it is difficult, even impossible, to minimize the risk given by Eq.(1) directly. In practice, a
surrogate loss function W is usually considered in place of L. We define the U-risk and Bayes U-risk
of f, respectively, as

Similarly, we define the conditional surrogate risk and the conditional Bayes surrogate risk of f,
respectively, as

Wip.£)=>" _py¥(fY) and W (p)=infW(p,f).
It is obvious that Ry (f) = Ex[W(p,f)] and R}, = Ex[W*(p)].

We now define the multi-label consistency as follows:

Definition 2 Given a below-bounded surrogate loss function ¥ where ¥(-,Y") is continuous for every
Y €Y, VU is said to be multi-label consistent w.r.t. the loss L if it holds, for every p € A, that

W=(p) < inf{W(p,f): f ¢ A(p)}.
The following theorem states that the multi-label consistency is a necessary and sufficient condition
for the convergence of W-risk to the Bayes W-risk, implying R(f) — R*.

Theorem 3 The surrogate loss ¥ is multi-label consistent w.r.t. the loss L if and only if it holds
for any sequence f,, that
Ry (f,)—Ry then R(f,) — R".

The proof of this theorem is inspired by the technique of (Zhang, 2004a) and (Tewari and Bartlett,
2007), and we defer it to Section 6.1.
4 Consistency w.r.t. Ranking Loss

The ranking loss concerns about the average fraction of label pairs which are ordered reversely for
an instance. For a real-valued vector function f = (f1, fa, ..., fg), the ranking loss is given by

Lrankloss(f; (Xa Y)) = Zyli;i aYI[fz(X) > fj(X)] = Zy <y aYI[fz(X) > fj(X)]v (3)

i

where ay is a non-negative penalty and I is the indicator function, i.e., I[r] equals 1 if 7 holds and
0 otherwise. In multi-label learning, the most common penalty is

ay =Wyt yi = =17 x {y;:y; = +1}7"



In this paper we consider the more general penalty, i.e., any non-negative penalty. It is easy to
see that the ranking loss is below-bounded and interval since Lyankioss(f, (X,Y)) > 0, and for every
X, X' e X and Y,Y' € Y, it holds that either

Lrankloss(f7 (X7 Y)) = Lrankloss (f’ (X/, Y/)) or ‘Lrankloss(fv (X7 Y)) - Lrankloss(fa (Xla Y,))‘ >,

where v = min {|iay — jay| > 0:i,5 € [(Q — L%J) : L%J]} Considering Eq.(3), a natural choice for
the surrogate loss is

V(f(X),Y) = Zyi—_i ay ¢(f;(X) = fi(X)) =

=+

ayo(f;(X) — i(X)). (4)

Yi<yj

where ¢ is a convex real-valued function, which was chosen as hinge loss ¢(x) = (1 —z)4 in (Elisseeff
and Weston, 2002) and exponential loss ¢(z) = exp(—=z) in (Schapire and Singer, 2000, Dekel et al.,
2004, Zhang and Zhou, 2006).

Before our discussion, it is necessary to introduce the notations

Ai’j = ZY: vi<ys Py ay and (5(27], k’7 l) = Z Pyay,

Y yi<y;,ye<u
for a given vector p € A and a non-negative vector (ay )ycy. It is easy to get the following lemmas:
Lemma 4 For a vector p € A and a non-negative vector (ay )ycy, the following properties hold:
A;; =0;
6(i, j; k1) = 6(k, 154, 5);
Aij = 6(i,7:4, k) + 63, js k, j) for every k #1, j;
Aig + Ak +Dji = Api + D j + Djis
Ak S Api if A KA and Ay < Ay ;.

AN NI

Proof: The Properties 1 and 2 are immediate from the definitions. For Property 3, we have y; = —1
and y; = +1 forevery Y € Y satisfying y; < y;. For yi (k # ¢, ), there are only two choices: yr = +1
or y, = —1, and thus A; ; = 6(4, j; i, k) + 6(4, j; k, j). For Property 4, we have, from Property 3:

Ai,k = 6(27 k;ja k) + 5(Z7k7z7j)u Ak,i = 5(k7l7.777’) + §(k727 k7j)7
Aj,i = 5(]727 kvl) + 6(]727.77 k)a Ai,j = 5(21J7k»]) + 5(27.7a27k)7
Ak,j - 6(k,ja k,l) + §(k,jala])a Aj,k = 6(]7k7.777’) + 6(]vkazvk)

Thus, it holds by combining with Property 2. Property 5 follows directly from Property 4. ]

Lemma 5 For everyp € A and non-negative vector (ay )y cy, the set of Bayes predictors for ranking
loss is given by

Ap) ={f: foralli<ij, fi>f;if Nij <Ajifi#fi if Aij =20 and f; < f; otherwise}.
Proof: From the definition of the conditional risk given by Eq.(2), we have
l(pa f) = ZYEprLrankloss(fa (Xa Y)) = ZYE)) by qu‘,<yj aYI[fi > fj}
= ZYEpr ZlSiJSQ ayI[fi = fj] - Ily: < y;].
By swapping the two sums, we get
I(p,f) = Zlgi,jSQ Ifi = fj] ZY: poay, DY = Z1gi,j§@ Ifi = fi]A;
= Do [ 2 B8 1S < 105
Hence we complete the proof by combining with Property 5 in Lemma 4. |

The following theorem discloses that none convex surrogate loss is consistent with ranking loss,
and the proof is deferred to Section 6.2.



Theorem 6 For any convex function ¢, the surrogate loss
VEXD,Y) =D avé(f(X) = fiX))
is not multi-label consistent w.r.t. ranking loss.

Intuitively, Property 5 of Lemma 4 implies that {A, ;} defines an order for the label set £ =
{1,2,...,Q} byi = jif A, ; < Aj;,. Notice that, for ¢ > j, there is possible that A; ; = A; ;. The set
of Bayes predictors of a reasonable loss function should include all functions which are compatible
with this order, i.e., f’s which enable f; > f; if ¢ = j. In the definition of ranking loss given by
Eq.(3), the same penalty term is applied to f; < f; and f; = f;; thus, the set of Bayes predictors
with respect to ranking loss does not include some functions which are compatible with the above
order since what enforces by ranking loss is ¢ >~ j or j > 4 if A; ; = A;; for the label set L. For
an extreme example, i.e., when all A; ;’s are equal for all ¢ # j, minimizing the convex surrogate
loss function ¥ leads to the optimal solution f* € {f: f1 = fo = --- = fo} but f* ¢ A(p) (from
Lemma 5). So, the same penalty on f; < f; and f; = f; encumbers the multi-label consistency.

To overcome the deficiency, we instead introduce the partial ranking loss

Lp—rankloss(fa (Xa Y)) = Zy'<y]~ ay <I[f’t(X) > fJ(X)] + %I[fZ(X) = f](X)]) ) (5)

i

which has been commonly used for ranking problems. The only difference from ranking loss lies in
the use of different penalties for }_, . <y 1 [fi = f;j], where the ranking loss uses ay while the partial

ranking loss uses ay /2. With a proof similar to that of Lemma 5, we can get the set of Bayes
predictors with respect to the partial ranking loss:

A(p) = {f for all 1 < j, fz > fj if Ai,j < Aj,i; and fz < fj if Ai,j > Aj,i}' (6)
Now, consider the above extreme example, i.e., A;;’s are equal for all ¢ # j, again. It is easy to
see that by minimizing the surrogate loss function ¥, the optimal solution f* € {f: f; = fo =--- =
fo} € A(p), which exhibits multi-label consistency.

We further study more general cases, and the following theorem provides a sufficient condition
for multi-label consistency w.r.t. partial ranking loss:

Theorem 7 The surrogate loss U given by Fq.(4) is multi-label consistent w.r.t. partial ranking
loss if ¢: R — R is a differential and non-increasing function, and it holds that

¢'(0) <0 and ¢(x)+ ¢(—z) = 24(0), (7)
i.e., (x) + ¢(—x) = 2¢(0) for every x € R.
The proof of Theorem 7 can be found in Section 6.3, and from this theorem we can get:

Corollary 8 The surrogate loss U given by Eq.(4) is multi-label consistent w.r.t partial ranking loss

if

1— e?x
= — t T
o(x) arctan(z) or ¢(x) o
Notice that Theorem 7 could not be applied directly to ¢(z) = —cz?**! for some constant ¢ > 0

and integer k > 0, since such setting yields that the surrogate loss ¥ is not below-bounded. This
problem, however, can be solved by introducing a regularization term. With a proof similar to that
of Theorem 7, we get:

Theorem 9 The following surrogate loss is multi-label consistent w.r.t. partial ranking loss:
VE),Y) =0 avalfi(X) - £:(0) + TY(E(X)),
i <Yj
where T > 0, ¢(x) = —cax® L for some constant ¢ > 0 and integer k > 0, and Y is symmetric, that
is, T(..o, fi(X), .., f5(X), ) =0( ., f5(X), ..o, fi(X),..0).
For example, we can easily construct the following convex surrogate loss
Q
VECO)Y) =3 —ar () - A0+ £,
i <yj =
which is multi-label consistent w.r.t. partial ranking loss.
It is worth noting that it does not mean any convex surrogate loss ¥ given by Eq.(4) is consistent

w.r.t. partial ranking loss. In fact, the following theorem proves that, many non-linear surrogate
losses are inconsistent w.r.t. partial ranking loss.



Theorem 10 If ¢: R — R is a convex, differential, non-linear and non-increasing function, the
surrogate loss W given by Eq.(4) is not multi-label consistent w.r.t. partial ranking loss.

The proof is deferred to Section 6.4. The following corollary shows that some state-of-the-art
multi-label learning approaches (Schapire and Singer, 2000, Dekel et al., 2004, Zhang and Zhou,
2006) are even not multi-label consistent w.r.t. partial ranking loss.

Corollary 11 If ¢(z) = e * or ¢(z) = In(1 4+ exp(—2x)), the surrogate loss ¥ given by Eq.(4) is not
multi-label consistent w.r.t. partial ranking loss.

In summary, the ranking loss has been suggested as a standard from early work by Schapire and
Singer (2000), and many state-of-the-art multi-label learning approaches work with the formulation
given by Eq.(4). However, our analysis shows that none convex surrogate loss functions are consistent
w.r.t. ranking loss. Thus, ranking loss might not be a good loss function and evaluation criterion for
multi-label learning. The partial ranking loss is more reasonable than ranking loss, since it enables
many, though not all, convex surrogate loss functions to have consistency. In future work it would
be interesting to develop some new multi-label learning approaches based on minimizing the partial
ranking loss, and design other loss functions with better consistency.

5 Consistency w.r.t. Hamming Loss

The hamming loss concerns about how many instance-label pairs are misclassified. For a given
vector f and prediction function F', the hamming loss is given by

Lhamloss (F(f( a Q Z y'L 7é yz

where Y = F(f(X)) = (:gla @27 LR 7@@)

Hamming loss is obviously below-bounded and interval since 0 < Lyamloss(F(£(X)),Y) <1, and
for every X, X’ € X and Y, Y’ € Y, it holds either Lyamioss(F(£(X)),Y)) = Lnamioss(F(£(X")),Y"))
or | Lhamloss(F(£(X)),Y)) — Luamioss(F(£(X7)),Y”))| > 1/Q. We have the conditional risk:

I(p, F(£(X))) = Z P Lamioss(V, V) = 5 Zy@ oy 3% 15 £ 3
B Q Zi:l <ZY€y,yi:+1pyl[gi #+1]+ ZYey,yi:ﬂpYI[@i # *1]),

and the set of Bayes predictors with regard to hamming loss:

A(p) = {f = f(X): ¥ = F(f) with §; = sgn (Z Py — %) } (8)

YeY,yi=+1

A straightforward multi-label learning approach is to regard each subset of labels as a new class
and then try to learn 29 functions, i.e., f = (fy)yey. Such a prediction function is given by

F(£(X)) = max fy (X). (9)

This approach can be viewed as a direct extension of the one-vs-all strategy for multi-class learning.
We consider the following formulation:

WO, Y) = max 607, ¥) + f5.(0) — (X)), (10)

where ¢(z) and §(Y,Y) are set as ¢(x) = max(0,z) and 6(Y,Y) = 2?:1 Ily; # 9], respectively, by
Taskar et al. (2004), Hariharan et al. (2010).

Before a further discussion, we divide multi-label classification tasks into two categories, i.e.,
deterministic and non-deterministic, as follows:

Definition 12 In multi-label classification, if for every instance X € X there exists a label Y € Y
such that P(Y|X) > 0.5, the task is deterministic, and non-deterministic otherwise.

Consistency for the deterministic case is easier than non-deterministic case. For example, many
formulations of SVMs are inconsistent for non-deterministic multi-class classification (Zhang, 2004a,
Tewari and Bartlett, 2007), but consistent for deterministic case as indicated by Zhang (2004a). The
following lemma shows that the approaches of (Taskar et al., 2004, Hariharan et al., 2010) are not
multi-label consistent w.r.t. hamming loss, even for the deterministic case.



Lemma 13 For deterministic multi-label classification, the surrogate loss U given by Eq.(10) with
S(Y,Y) = Z?zl I[y; # §i] is not multi-label consistent w.r.t. hamming loss.

However, if we instead choose §(Y,Y) = I[Y # Y], the following theorem guarantees that the
surrogate loss is multi-label consistent w.r.t. hamming loss, at least for the deterministic case.

Theorem 14 For deterministic multi-label classification, the surrogate loss U given by FEq.(10) with
SY,Y) =I[Y #Y] is multi-label consistent w.r.t. hamming loss.

The proofs of Lemma 13 and Theorem 14 can be found in Sections 6.5 and 6.6, respectively.

Alternatively, it is possible to transform a multi-label learning task into () independent binary
classification tasks (Boutell et al., 2004). Now the goal is to learn @ functions, f = (f1, f2,..., fo),
and the prediction function is given by

F(£(X)) = (sgn[f1(X)],sgn[f2(X)], ..., sgn[fo(X)]).
A common choice for the surrogate loss is
B(EX).Y) =37 ssi(X)). (11)

where ¢ is a convex function, which was chosen as hinge loss ¢(t) = (1—t) in (Elisseeff and Weston,
2002) and exponential loss ¢(t) = exp(—t) in (Schapire and Singer, 2000). We have

Q
W f) = Y 0, =3 Y o fi(X)
Q
= > pFofi(X)) + (1= pD)o(—fil X)),

where pj =Y. yi=t1 Py and 1 — =, yi=—1 Py . For simplicity, we denote by

Wi(p, fi) = pi o(fi) + (1 = p)o(—f2).
This yields that minimizing W (p, f) is equivalent to minimizing W;(p;", fi) for every 1 <i < @, i.e.,

Wi Q. P

W (p) = inf W(p.£) = > inf Wi(p', fi).

The consistency for binary classification has been well-studied (Zhang, 2004b, Bartlett et al.,
2006), and based on the work of Bartlett et al. (2006) we can easily get:

Theorem 15 The surrogate loss ¥ given by Fq.(11) is consistent w.r.t. hamming loss for convex
function ¢ with ¢'(0) < 0.

It is evident from this theorem that the surrogate loss ¥ given by Eq.(11) is consistent w.r.t.
hamming loss if ¢ is any of the following:

—T

Exponential: ¢(z) = e™%;

Hinge: ¢(z) = max(0,1 — z);

2.
’

Least squares: ¢(z) = (1 — x)

Logistic regression: ¢(x) = In(1 4 exp(—zx)).

Notice that in this paper, we do not consider how to learn the real-valued functions f for small
data or large number of labels, where many labels or label subsets lack enough training examples,
while this is a challenging task and the exploitation of label correlation is therefore needed. In our
analysis, we assume sufficient training data and ignore the label correlation. Moreover, we do not
consider how to decide the number of relevant labels for ranking loss and partial ranking loss, while
in practice this is very challenging. These are important future issues.



6 Proofs
6.1 Proof of Theorem 3
We first introduce some useful lemmas:

Lemma 16 W*(p) is continuous on A.

Proof: From the Heine definition of continuity, we need to show that W*(p(™) — W*(p) for any
sequence p(™ — p.

Let B, be a closed ball with radius r in R¥. Since |)| is finite, we have ZYeypgf)\Il(f,Y) —
ZY@) py ¥(f,Y) uniformly for every f € B, and sequence p(™ — p, leading to

: )
Jnf ZY U(f,Y) — At > py (£, Y).

From the fact W*(p(™) < infeep, dovey pgll)\ll(f, Y), by letting r — oo, we have:

lim sup W*(p™) < W*(p). (12)

n—oo

Denote by V' = {Y|py >0 for Y € Y} and assume ¥(-,-) > C for some constant C (since ¥ is
below-bounded). We have W*(p("™) > inf¢ Yyvey (n)\I/(f, Y)+C X yey/y pgf) yielding

lim inf W (p (p™) > limn inf (mfz P Y) +C ZYGW, <">> W*(p),
which completes the proof by combining Eq.(12). |

Lemma 17 If the surrogate loss function W is multi-label consistent w.r.t. loss function L, then
for any € > 0 there exists & > 0 such that, for every p € A, l(p,f) — infg I(p,f') > € implies
W(p,f) - W*(p) > 4.

Proof: We proceed by contradiction. Suppose ¥ is multi-label consistent and there exists € > 0 and
a sequence (p(™, (™) such that I(p™,f(™) — infe I(p™ ') > € and W (p™, £(™) — W*(p(™).
From the compactness of A, there exists a convergence sequence nj such that p(™*) — p for some
p € A. From Lemma 16, we have

W (pt™) £)) — W (p).
Similar to the proof of Lemma 16, denoted by )’ = {Y|py > 0 for Y € Y}, we have

lim sup W (p, f"+)) = hmsup (CZYEJJ/JJ’ (me) 4 fzyey' p&”“)\ll(f(”k),Y))

Nk

< lmW(p () £y — W (p).

This gives W(p,f("*)) — W*(p) from the definition of W*(p). Since ¥ is multi-label consistent,
there exists a sequence f(™*:) satisfying I(p, f("*)) — infe I(p, f’), which contradicts the assumption
I(p™, £(™)) —infe I(p(™, ') > ¢, and thus the lemma holds. |

Proof of Theorem 3:
(“=") We first introduce a new notation

H(e) = inf {W(p,f) —inf W(p,f'): i(p,f) — infi(p,f’) > €}.
pEAF £ £

It is obvious that H(0) =0 and H(¢) > 0 for € > 0 from Lemma 17. Corollary 26 of (Zhang, 2004a)
guarantees there exists a concave function 7 on [0, oo] such that 7(0) = 0 and n(e) — 0 as € — 0 and

R(f) = R* < n(Ru(f) — Ry).

Thus, if Ry(f) — R} then R(f) — R*.
(“«<=") We proceed by contradiction. Suppose ¥ is not multi-label consistent, and thus there
exists some p such that W*(p) = infe{W(p,f): f ¢ A(p)}. Let £ ¢ A(p) be a sequence such



that W (p, f(™) — W*(p). For simplicity, we consider X = {z}, i.e., only one instance, and set
f,(z) = f"). Then
Ry(f,) = W(p,f(”)) — W*(p) = Ry,

yielding I(p, f™)) — inf¢ I(p, f) which is contrary to
i(p,£) > nf i(p, ) +7(p)

where y(p) = infego(p) [(P, f) — infel(p,f) > 0, since £f(") ¢ A(p) and L is interval. Thus we
complete the proof. |

6.2 Proof of Theorem 6

We proceed by contradiction. Suppose that the surrogate loss ¥ is multi-label consistent with
ranking loss. We have

Wp,t)= > pyU(EY)= Y pray Y o(fi—fi)= D i = fi)BDij+o(fi =)D
Yey Yey Yi<y; 1<i<j<@Q

Consider the probability vector p = (py )y ey and penalty vector (ay )y ey such that Py, = Py, and
ay, = ay, for every Y; # Ys, Y1,Yp € Y. This yields A; j = Ap, o forall 1 <i# j,m #n < Q, and
thus we get

Wpf) =2y o= fi)+o(fi = [):

From the convexity of ¢, minimizing W (p, f) gives
W(p) = W(p.f) = A1 ZngjSQ 20(0) = Q(Q — 1)9(0)A1 2,
where f = {f: fi=fo=...= fo}. Notice that f ¢ A(p) from Lemma 5, and we have
W (p) = (W (p.6): £ ¢ A(p)).

which completes the proof. |

6.3 Proof of Theorem 7

For any p € A and non-negative vector (ay)yey, we will prove that, f; > f; if A;; < A,,; and
fi < fiif A ; > Ay, for all f satisfying W*(p) = W (p, f). Without loss of generality, it is sufficient
to prove that fi > fo if Ao < Agj.

We proceed by contradiction, and assume that there exists a vector f such that f; < fy and
W*(p) = W(p,f).

For the case f1 < fa, we can introduce another vector f' with f{ = fo, f5 = f1 and f| = fi for
k # 1,2. From the definition of conditional surrogate risk, we have

W(p,f) = Zl§i<j§Q o(f5 — fi)Aij + o(fi — f1)Dja
which yields that
W(p,f) = W(p.f) = (A2 — Do1)(8(f2 = f1) — ¢(f1 — f2))
+ ZZB(AM = 82i)(0(fi = fr) — o(fi — f2)) + Zig(Aivl = Ai2)(o(fr = fi) — o(f2 = fi)).
From Property 4 of Lemma 4, we have
Ay —Dgi— A1+ Ajo=A10—Agy. (13)
It follows that
WD, £) = W (B, 1) = (Ao — A0) (60 — i) = 01 = L)+ 30 (8 = f1) = (i — 12)))
+ 3% (Bir = D)6 — 1)+ 6(fi — Fr) — 0fi — f2) — 62 — )
= (A12 = D21)(0(f2 — f1) — d(f1 — f2)) + (A2 — Agy) ZQ (o(fi — f1) — o(fi — f2))

=3



where the last equality holds by the condition ¢(z) 4+ ¢(—x) = 2¢(0). For non-increasing function ¢
with ¢'(0) < 0, we have ¢(z) < ¢(—2) for all z > 0, and ¢(f; — f1) < &(f; — f2). From the condition
A1 < Ay we get W(p,f) > W(p,f’), which is contrary to W (p, f) = W*(p).

We now consider the case f; = fo. For the optimal solution, we have the first-order condition
%W(p,f) =0fori=1,2:

Zi# ¢ (fr — fi)Ain = Z#l ¢'(fi — f1)A1; and Z#z ' (fi — f2) Ao = Z#Q o' (fa— fi)Aia.
By combining Eq.(13), f1 = f2 and ¢'(z) = ¢/(—=z) from Eq.(7), we have:
(A1 — A 2) (2¢'(0) + Z#LQ ¢'(f1 = fi)) =0,

which is impossible since Ajo < Agq and 2¢'(0) + 32,4, ,¢'(f1 — fi) < 24/(0) < 0. Thus, we
complete the proof. |

6.4 Proof of Theorem 10

For convex function ¢ we have ¢'(z) < ¢/'(y) for every x < y from (Rockafellar, 1997), and the
derivative function ¢'(z) is continuous for € R if ¢ is differential and convex. Since ¢ is non-
increasing, we have ¢/(x) < 0 for all z € R, and without loss of generality, we assume ¢’(z) < 0.

We proceed by contradiction. Assume the surrogate loss ¥ is multi-label consistent with partial
ranking loss for some non-linear function ¢. Then, from the continuity of ¢'(z), there exists an
interval (c,d) for ¢ < d < 0 or 0 < ¢ < d, such that

@' (x) < ¢'(y) for every x < y,z,y € (c,d).

In the following, we focus on the case 0 < ¢ < d, and similar consideration could be made for the
case c < d < 0.
We first fix a € (¢,d) and introduce a new function

G(z) = (¢/(x —a) = ¢/(a — 2))(¢'(a) + ¢ (2)) + ¢/ () (¢ (—a) — ¢/ (a)).

It is easy to find that G(a) = ¢/(a)(¢'(—a) — ¢/(a)) > 0 and G(z) is continuous. Thus there exists
b>a and b € (¢,d) such that

G(b) = (¢'(b—a) = ¢'(a—1b))(¢'(a) + ¢'(0)) + &' (b)(¢'(—a) — ¢'(a)) > O,
which gives
¢'(b—a)(¢'(a) + ¢'(b)) + ¢'(b)¢'(—a)
¢'(a—b)(¢'(a) + ¢/ (b)) + ¢'(b)¢' (a)
Moreover, from ¢'(a) < ¢/'(b) < 0 and ¢'(—b) < ¢'(—a) < 0, we have
¢'(=a) _ ¢'(=b) _ ¢'(=b)
"W oW S el
We consider the following multi-label classification with @ = 3 labels:
Y1 =(-1,41,41),Ys = (+1,-1,-1),Y3 = (+1,+1,-1), Y, = (-1, -1, +1).

Let £ = (f1, fo, f3) such that a = f5 — f1 and b = f3 — f5, and thus f; > fo. For every probability
vector p = (Py,, Pyas Pys» Py, ) € A and every penalty vector (ay,, ay,, ay,, ay, ), we have

W(p,f) = Ai26(fe — f1) + B2190(f1 — f2) + D130(fs — f1) + Az 1d(f1 — f3)
+A230(f3 — f2) + Az 20(f2 — f3),
where ALQ = P, A2,1 = P, Al’g = P + Py, AB,l =P+ P37 A2,3 = P, and A372 = P
with P; = py,ay, for ¢ = 1,2,3,4. In the following, we will construct some p and a such that
W*(p) = W(p,f) and A1 5 > Ay .
The subgradient condition for optimality of W (p, f) gives that
oW (p,f)/0f1 = —P1¢/(a—b) + P2¢'(b— a) — (P1 + P1)¢'(a) + (P + P3)¢'(—a) =0,
OW(p,£)/0f2 = P1d'(a — b) — P2/ (b — a) — Py’ (b) + P3¢'(~b) = 0,
oW (p,£)/0fs = (PL+ P1)¢'(a) — (P2 + Ps3)¢'(—a) + P1¢/(b) — P3¢'(—b) = 0,

> 1. (14)

10



Figure 1: Lines I; (solid) and I5 (dash) corresponding to Eqgs. (16) and (17), respectively.

equivalent to
Pi¢'(a—0b)— Py (b—a) = P’ (b) — P3¢’ (=b), (16)
—P1¢(a) + Pr¢'(—a) Py(¢/(a) + &' (b)) — P3(¢'(—a) + ¢'(-D)). (17)

From Lemma 18, there exists p = (Dy;, Pys, Dys, Py,) and (ayy, Gys, ay,, dy, ) satisfying Eqgs. (16),
(17) and P, > P,. Hence this yields W(p,f) = W*(p). Notice that £ ¢ A(p) from Eq.(6), since
ALQ =P >P = Ag,l and f1 > fg, we have

W=(p) = mf{W(p.f): £ ¢ A(D)},

which completes the proof. |

Lemma 18 There exist some Py > P, > 0, P3 > 0 and Py, > 0 satisfying Eqs. (16) and (17), if
Egs. (14) and (15) hold for some 0 < a < b.

Proof: From Eq.(14), we set

B _ (b= a)(¢'(a) + (b)) + ¢'(b)¢'(~a)
Py ¢'(a—b)(¢'(a) + ¢/ (b)) + ¢'(b)¢/ (a) -
For a < b, we have ¢'(a —b) < ¢/(b— a) < 0, yielding

Py o1> ¢'(b—a)

Py ~¢'(a—10)’

which gives Pi1¢'(a — b) — Po¢/(b — a) < 0. Thus, Eq.(16) corresponds to the Line I; in Figure 1.
From Eq.(15), we further obtain

1<

(18)

S (a)+ (b _ §(b)
¢'(a) + ¢'(b) ¢/ (b)
To guarantee P; > 0 and P, > 0 satisfying Eqgs. (16) and (17), as shown in Figure 1, we need:
Pidf(a—b) = Pod'(b—a) _—P¢/(a) + Poe(~a)
¢/ (b) ¢'(a) + ¢'(b)
The above holds obviously from Eq.(18). Thus, we complete the proof. [ ]

0<

6.5 Proof of Lemma 13

We consider a multi-label classification task with @ = 2 labels, i.e., £ = {1,2} and let Y1 = (-1, —1),
Yo =(-1,1), Y3=(1,1) and Yy = (1, —1). Suppose py, = 0 and py, + py;, < py, < 2py, + py,. It is
evident that py, > 0.5 and thus, this multi-label classification task is deterministic. It is necessary
to consider f = (fy,, fyv,, fvs). By combining Egs. (8) and (10), we get

A(p) = {f fY1 > fyz and fyl 2 fya}'

11



We also have

W(p,f) = py,max{¢(l+ fv, — fv1),d(2+ fvy — fri)}
+py, max{o(1 + fv; — fvy), (1 + fvs — fru)}
+ Pv; max{(/)(Q + fY1 - fY3)7 (b(l + fyz - fYS)}’

and

where f* = (fy , fy,, fy,) such that f3. = fy. and fy = fy, — 1. Hence f ¢ A(p) and is not
multi-label consistent. |

6.6 Proof of Theorem 14

We first introduce a useful lemma:

Lemma 19 For the surrogate loss U given by Eq.(10) with 6(Y,Y) = I[Y # Y], and for every
p € A and £ such that W (p,f) = W*(p), we have fy, > fy, if by, > Dy, -

Proof: We proceed by contradiction. Assume there exist some p € A and f such that fy, < fv,,
Py, > py, and W*(p) = W(p,f). We define a new real-valued vector f such that f'y, = fy,,
[y, = fv, and f'y, = fy, for i # 1,2. This follows that

W(p,£) = W(p,£) = (pvi = pva) (max o(1+ fy (X) = i (X)) — max 6(1 + fr (X) — fra (X)).
From the assumption fy, < fy,, we have
Inax o(1+ fy(X) — fri (X)) > Inax o1+ fr(X) = fra(X)),

leading to
W(p7f) - W(p7f,) > 07
which is contrary to the assumption W*(p) = W (p, f). Thus, we complete the proof. ]

Proof of Theorem 14: Without loss of generality, we consider a probability vector p = (py)yey
satisfying py; > py, > Py; - .- = Py, and py; > 0.5. It is easy to get

A(p) = {f: fv, > fy for Y £ Y1},
from Egs. (8) and (9). On the other hand, for each f satisfying W(p, f) = W*(p), we have
le ZfY2 Z ZfY2Q

from Lemma 19. Thus, we complete the proof from py, > >y 2y, by and the fact that

W(p.f) =pyv,o(1 + fv, — i) + ZYiYI py o1+ fyvi — fr).
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