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Abstract. Co-training is a semi-supervised learning paradigm which
trains two learners respectively from two different views and lets the
learners label some unlabeled examples for each other. In this paper, we
present a new PAC analysis on co-training style algorithms. We show that
the co-training process can succeed even without two views, given that
the two learners have large difference, which explains the success of some
co-training style algorithms that do not require two views. Moreover, we
theoretically explain that why the co-training process could not improve
the performance further after a number of rounds, and present a rough
estimation on the appropriate round to terminate co-training to avoid
some wasteful learning rounds.

1 Introduction

Unlabeled training data are usually much easier than labeled training data to
be obtained in many practical machine learning applications, so semi-supervised
learning which attempts to exploit unlabeled data to help improve the perfor-
mance of learning with limited labeled training data has attracted much atten-
tion during the past few years [5, 9, 13, 6, 12, 10, 17, 3]. Co-training is a well-
known semi-supervised learning paradigm. In its initial form [5], co-training
trains two classifiers separately on two sufficient and redundant views, i.e., two
attribute sets each of which is sufficient for learning and conditionally indepen-
dent to the other given the class label, and lets the two classifiers label some
unlabeled instances for each other. Since in most real-world scenarios sufficient
and redundant views do not exist, variants of co-training that do not require two
views have been developed. For example, rather than using two views, Goldman
and Zhou [8] used two different supervised learning algorithms, Zhou and Li [16]
used two different parameter configurations of the same base learner, etc.

There are several theoretical studies on co-training. Dasgupta et al. [7] proved
that when the requirement of sufficient and redundant views is met, the co-
trained classifiers could make fewer generalization errors by maximizing their
agreement over the unlabeled data. Balcan et al. [2] showed that given appro-
priately strong PAC-learners on each view, an assumption of expansion on the
underlying data distribution, which is weaker than the assumption of sufficient
and redundant views, is sufficient for iterative co-training to succeed. This tells
that the conditional independence [5] or even the weak dependence [1] between



the two views is not needed, at least, for iterative co-training which is the popular
routine taken by many variants of co-training.

Previous theoretical studies mainly investigate co-training with two views.
Although the applicability of co-training style algorithms that do not require
two views is better in practice and empirical studies have shown the effectiveness
of those algorithms, there is no theoretical analysis that can explain that why
co-training without two views can succeed. On the other hand, in experiments
we have observed that the co-training process could not improve the learning
performance further after a number of rounds, which has not been analyzed by
previous theoretical studies.

In this paper, we present a new PAC analysis which addresses the above
issues. In detail, we derive a theorem on why co-training can work without two
views, and a theorem on why co-training could not improve the performance after
a number of learning rounds. The second theorem provides a rough estimation
on the appropriate round to terminate the co-training process to avoid some
wasteful learning rounds, which is validated by an empirical study in this paper.

The rest of this paper is organized as follows. After stating some preliminaries
in Section 2, we present our theoretical results in Section 3, then report on our
empirical study on determining the appropriate round to terminate co-training
in Section 4, and finally conclude the paper in Section 5.

2 Preliminaries

Given data set S = L ∪ U , where L = {(x1, y1), · · · , (xl, yl)} ⊂ X × Y is the
labeled data set and U = {(xl+1, xl+2, · · · , xn)} ⊂ X is the unlabeled data set.
Y = {−1,+1}; X is with distribution D. Let H : X → Y denote the hypothesis
space. Assume that |H| is finite, and D is generated by the ground truth h∗ ∈ H.
It is obvious that the generalization error of h∗ is zero. Since we have only finite
sample, it is hard to achieve h∗ over S. Suppose we obtain a classifier hi ∈ H
from S, which is somewhat different from h∗. Let d(hi, h∗) denote the difference
between the two classifiers hi and h∗, then

d(hi, h∗) = Prx∈D[hi(x) 6= h∗(x)]. (1)

Let ε bound the generalization error of the classifiers what we wish to achieve
finally. That is, if d(hi, h∗) = Prx∈D[hi(x) 6= h∗(x)] < ε, we say that we have
obtained a desired classifier since the difference between this classifier and the
ground truth h∗ is very small; otherwise we say that the classifier hi is ‘bad’. Of
course we wish to have a high probability to achieve a good classifier. The confi-
dence parameter δ can play this role. The learning process is said to do probably
approximately correct learning of h∗ if and only if Pr[d(hi, h∗) ≥ ε] ≤ δ, where
the probability is taken over all possible training data. Formally, the require-
ment is that the difference between the ground truth h∗ and the hypothesis hi

be small (less than ε) with high probability (more than 1− δ).



3 Main Results

Given the initial labeled data L and unlabeled data U , consider the following
co-training learning process:

Co-Training Process: At first, two initial classifiers h0
1 and h0

2 are trained
using L which contains l labeled examples. Then, h0

1 selects u number of unlabeled
instances from U to label, and puts these newly labeled examples into the data set
σ2 which contains all the examples in L; at the same time, h0

2 selects u number
of unlabeled instances from U to label, and puts these newly labeled examples into
the data set σ1 which contains all the examples in L. h1

1 and h1
2 are trained from

σ1 and σ2, respectively. After that, h1
1 selects u number of unlabeled instances to

label, and uses these newly labeled examples to update σ2; while h1
2 also selects u

number of unlabeled instances to label, and uses these newly labeled examples to
update σ1. Such a process is repeated for a pre-set number of learning rounds.

Different learners have different biases, which is an intuitive explanation to
that why co-training style algorithms can succeed. The two classifiers that have
different biases will label some instances with different labels. The difference
d(hi, hj) between the two classifiers hi and hj implies the different biases between
them. If the examples labeled by the classifier hi is useful for the classifier hj ,
hi should know some information that hj does not know. In other words, hi and
hj should have large difference. As the Co-Training Process proceeds, the two
classifiers will become more and more similar and the difference between them
will become smaller and smaller since the two classifiers label more and more
unlabeled instances for each other. The difference can be helpful for analyzing
the co-training style algorithms.

In the i-th learning round, let ai and bi denote the upper bound of the gen-
eralization error of hi

1 and hi
2, respectively; let d(hi−1

1 , hi
2) denote the difference

between hi−1
1 and hi

2, and let d(hi
1, h

i−1
2 ) denote the difference between hi

1 and
hi−1

2 . It is feasible to estimate the difference when there are a large mount of
unlabeled instances. Now we present our main result.

Theorem 1. Given the initial labeled data set L, assuming that the size of L
is sufficient to learn two classifiers h0

1 and h0
2 whose upper bound of the gener-

alization error is a0 < 0.5 and b0 < 0.5 respectively with high probability (more
than 1− δ) in the PAC model, i.e., l ≥ max{ 1

a0
ln |H|δ , 1

b0
ln |H|δ }. Then h0

1 selects
u number of unlabeled instances from U to label and puts them into σ2 which
contains all the examples in L, and then h1

2 is trained from σ2 by minimizing
the empirical risk. If lb0 ≤ e M

√
M !−M , then

Pr[d(h1
2, h∗) ≥ b1] ≤ δ. (2)

where M = ua0 and b1 = max{ lb0+ua0−ud(h0
1,h1

2)
l , 0}.

Proof. Firstly, we analyze the expected rate of disagreement between the
classifier hi and the sample sequence σ2 which consists of u number of newly
labeled examples and L. By minimizing the empirical risk, the classifier which



has the lowest observed rate of disagreement with the sample sequence σ2 will
be generated. Let d(hi, σ2) denote the expected rate of disagreement between hi

and σ2. Then

d(h∗, σ2) =
u× d(h0

1, h
∗)

l + u
(3)

d(h1
2, σ2) =

l × d(h1
2, h

∗) + u× d(h0
1, h

1
2)

l + u
(4)

In order to achieve ‘good’ classifiers whose generalization errors are less than b1

by minimizing the empirical risk, the sample sequence σ2 must be sufficient to
guarantee that no classifier whose generalization error is no smaller than b1 has
a lower observed rate of disagreement with σ2 than h∗ with a probability bigger
than 1− δ.

Since the upper bound of the generalization error of the classifier h0
1 is a0,

d(h∗, σ2) is no more than ua0
l+u . Let M = ua0, the probability that the classifier

h1
2 has a lower observed rate of disagreement with σ2 than h∗ is less than

CM
l+ud(h1

2, σ2)M [1− d(h1
2, σ2)]l+u−M . (5)

Let b1 = max{ lb0+ua0−ud(h0
1,h1

2)
l , 0}, if d(h1

2, h
∗) ≥ b1,

d(h1
2, σ2) =

l × d(h1
2, h

∗) + u× d(h0
1, h

1
2)

l + u

≥ lb1 + u× d(h0
1, h

1
2)

l + u

≥ lb0 + ua0

l + u

>
M

l + u
.

The function Cs
mxs(1 − x)m−s is monotonically decreasing as x increases when

s/m < x < 1. So, if d(h1
2, h

∗) ≥ b1, the value of Eq.5 is smaller than

CM
l+u(

lb0 + ua0

l + u
)M (1− lb0 + ua0

l + u
)l+u−M . (6)

In other words, the probability for that the classifier with generalization error
no less than b1 has a lower observed rate of disagreement with σ2 than h∗ is
smaller than the value of Eq.6.

The calculation of the real value of Eq.6 is quite complex, so we approximate
it by using the Poisson Theorem:

CM
l+u(

lb0 + ua0

l + u
)M (1− lb0 + ua0

l + u
)l+u−M ≈ (lb0 + ua0)M

M !
e−(lb0+ua0) (7)

When lb0 ≤ e M
√

M !−M , the right-hand term of Eq.7 is no more than e−lb0 . Since
the classifier h0

2 is PAC-learnable and the sample size of L is at least 1
b0

ln |H|δ ,



e−lb0 ≤ δ/|H|. Therefore, the value of Eq.6 is no more than δ/|H|. Considering
that there are at most |H| − 1 classifiers with generalization error no less than
b1 having a lower observed rate of disagreement with σ2 than h∗ in H, the prob-
ability that Pr[d(h1

2, h
∗) ≥ b1] is at most δ. ¤

Theorem 1 shows that given the initial labeled data, if we can train two
learners which have large difference, the learners can be improved by exploiting
the unlabeled data through the Co-Training Process. It is easy to see that the
Co-Training Process reassembles the main process of existing co-training style
algorithms [5, 8, 16]. It can be recognized that the two views used in the standard
co-training algorithm [5], the two different supervised learning algorithms used
in Goldman and Zhou’s algorithm [8], and the different configurations of the
base learner used in Zhou and Li’s algorithm [16] are actually exploited to make
the classifiers to have large difference. This explains why co-training without two
views [8, 16] can succeed.

When co-training style algorithms are executed, the number of labeled ex-
amples is usually small while the initial classifiers are usually not very bad, thus
the condition that lb0 ≤ e M

√
M ! −M in Theorem 1 can be satisfied. Note that

using a bigger u will increase the upper bound of lb0. This is because that a
bigger u will result in a bigger M since M = ua0, while Fig. 1 shows that the
value of the function f(M) = e M

√
M !−M increases as M increases.
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Fig. 1. The value of f(M) = e M
√

M !−M

In Theorem 1 we know that when the difference d(h0
1, h

1
2) is bigger than a0,

the upper bound b1 = max{ lb0+ua0−ud(h0
1,h1

2)
l , 0} is smaller than b0. The bigger

the difference d(h0
1, h

1
2), the smaller the upper bound of the generalization error

of the classifiers h1
2. In the Co-Training Process, the difference between the two

learners decreases as the value of u increases. When u increases to a certain
degree, the difference between the two learners becomes very small. This is easy



to understand since the learner h1
2 is trained by minimizing the empirical risk

with a large number of examples provided by h0
1.

From the above we know that when d(h0
1, h

1
2) is larger than a0, we can gener-

ate ‘good’ classifiers according to Theorem 1. But when d(h0
1, h

1
2) is smaller than

a0, what is the performance of the Co-Training Process? In this case, if d(h1
2, σ2)

is bigger than d(h∗, σ2) (for any d(h1
2, h

∗) ≥ b1), we can still obtain ‘good’ clas-
sifiers (d(h1

2, h
∗) < b1) by minimizing the empirical risk because the expected

rate of disagreement between the ‘bad’ classifiers and sample sequence is big-
ger than that between the ground truth h∗ and sample sequence. So, with the
Co-Training Process we can obtain classifiers which satisfy d(h1

2, h
∗) < b1 with

big probability. It is requested that u should be smaller than lb1/[a0− d(h0
1, h

1
2)]

for searching the ‘good’ classifiers. Thus, if d(h0
1, h

1
2) is smaller than a0, the Co-

Training Process will work well when u < lb1/[a0 − d(h0
1, h

1
2)]. For u À l, we

have Theorem 2:

Theorem 2. In the Co-Training Process, if u À l, then for any 0 < ε < 1,

Pr[d(h0
1, h

1
2) ≥ ε] ≤ δ, (8)

and

Pr[|d(h0
1, h

∗)− d(h1
2, h

∗)| ≥ ε] ≤ δ. (9)

Proof. In the Co-Training Process, the training data of the classifier h1
2 contain

the l number of initial labeled examples and the u number of newly labeled
examples given by the classifier h0

1 . When u À l, it could be considered that the
training data of the classifier h1

2 comes from another distribution D′
generated by

the classifier h0
1 which is different from h∗. In distribution D′

, the ground truth
is h0

1. According to the PAC learning theory, for any 0 < ε < 1, in distribution
D′

if u is large enough,

Pr[d(h0
1, h

1
2) ≥ ε] ≤ δ.

Eq.9 is true considering

Prx∈D[h0
1(x) 6= h∗(x))]− Prx∈D[h1

2(x) 6= h0
1(x))]

≤ Prx∈D[h1
2(x) 6= h∗(x))]

≤ Prx∈D[h0
1(x) 6= h∗(x))] + Prx∈D[h1

2(x) 6= h0
1(x))]

¤

From Theorem 2 we can find that when u À l, the difference between the
two learners is very small (less than ε). The two learners become very similar
and could not improve each other any more. In Section 4, we will report on
an empirical study to show that whether the appropriate learning round of co-
training could be estimated based on Theorem 2.

In the above we have discussed the situation when we should proceed with the
Co-Training Process to improve the two learners, and when we should terminate
the Co-Training Process. As a short summary, our theoretical study shows that



– If the two initial learners have large difference, they can be improved through
the Co-Training Process;

– If the two initial learners have small difference, they can be improved if u/l
is small;

– As the Co-Training Process proceeds, more and more unlabeled data are
labeled for the learners each other, which makes the difference between the
two learners become smaller and smaller. Thus, after a number of learning
rounds the Co-Training Process could not improve the performance further.

4 Empirical Study

In order to study that whether the appropriate number of learning rounds of
co-training could be estimated based on Theorem 2, we perform an empirical
study.

4.1 Configurations

In the experiments we use the course data set [5], ads data set [11] and three
UCI data sets , i.e. kr-vs-kp, mushroom and tic-tac-toe [4]. The course and ads
data sets have multiple views but the UCI data sets have only one view.

The course data set has two views (pages view and links view) and con-
tains 1,051 examples each corresponds to a web page, and the task is to predict
whether an unseen web page is a course page or not. There are 230 positive
examples (roughly 22%). Sixty-six attributes are used in pages view and five
attributes in links view. The ads data set has five views. We use the 1st and 3rd
views since the standard co-training algorithm only uses two views. This data set
contains 983 examples, among which there are 138 positive examples (roughly
14%). As for the UCI data sets, kr-vs-kp contains 3,196 examples, among which
there are 1,527 positive examples (roughly 48%); mushroom contains 8,124 exam-
ples, among which there are 3,916 positive examples (roughly 48%); tic-tac-toe
contains 958 examples, among which there are 332 positive examples (roughly
35%). For each of these data sets, we randomly use 25% data as the test set while
using the remaining 75% data to generate a labeled data set L whose concrete
size will be mentioned later, and using the rest of the 75% data to generate the
unlabeled data set U .

In each learning round, each classifier labels the positive and negative ex-
amples on which it is with the most confidence for the other classifier, and the
number of newly labeled positive and negative examples is in proportion to that
of the positive and negative examples in L. Since the size of L plays an impor-
tant role in the Co-Training Process, we run experiments with different sizes of
L on each data set. Moreover, each experiment is repeated for 20 runs and the
average performance is recorded.

We study whether we can estimate the appropriate number of learning rounds
to terminate the co-training process for avoiding wasteful further training. Here



we estimate the value of d(hi
1, h

i
2) using L ∪ U . Note that this is a simpli-

fication since as described in Section 3, the difference between hi−1
1 and hi

2

and that between hi
1 and hi−1

2 should be estimated. When the difference be-
tween the two classifiers is smaller than min[ai, bi] and u > max{Lbi/[ai−1 −
d(hi−1

1 , hi
2)], Lai/[bi−1 − d(hi

1, h
i−1
2 )]}, we terminate the Co-Training Process.

Since in real-world tasks we do not have the test data to estimate the error of
the two classifiers, we could not estimate the value of ai and bi directly. In Theo-
rem 2 we know that the difference between the two classifiers will be stable when
u is large, so we could utilize the stability of the difference to roughly estimate
the appropriate round for termination. Note that this is an approximation which
may cause the estimated round inaccurate. In our experiments we set to termi-
nate the Co-Training Process when the change of the difference in consecutive
three rounds is smaller than 0.001. We run the Co-Training Process with various
classifiers including SMO, NaiveBayes and MultilayerPerceptron in WEKA [15].

4.2 Results on Data with Two Views

Firstly, we run experiments with the same classifier (SMO) on data sets with
two views (i.e., the course and ads data sets) using the standard co-training
algorithm [5]. The results are shown in Table 1.

Table 1. Experimental results on data sets with two views. SMO is used to train the
classifiers. data-a-b-c-d means that on the data set data, the initial labeled training set
contains a positive examples and b negative examples, and in each round each classifier
labels c positive and d negative examples for the other classifier. eC1 and eC2 denote
the error rates of the two classifiers trained in the two views, respectively. dis denotes
the disagreement of the two classifiers. r denotes the number of learning rounds.

Initial round Estimated round Last round

Data set eC1 eC2 dis r eC1 eC2 dis r eC1 eC2 dis r

course-3-9-1-3 .151 .179 .157 0 .119 .127 .145 60 .119 .127 .145 60
course-6-18-1-3 .127 .155 .177 0 .124 .121 .166 20 .113 .122 .143 60
course-9-27-1-3 .125 .136 .171 0 .118 .116 .154 49 .114 .118 .148 60

ads-4-24-1-6 .114 .100 .046 0 .086 .075 .038 15 .079 .068 .032 25
ads-8-48-1-6 .104 .081 .055 0 .079 .067 .034 21 .078 .062 .031 25
ads-12-72-1-6 .093 .072 .058 0 .082 .065 .041 11 .076 .059 .034 25

We can find from Table 1 that the performances of the classifiers at the
estimated round can be quite close to the performances of the classifiers at the
last learning round, e.g. on course-9-27-1-3. This suggests that estimating the
appropriate terminating round based on Theorem 2 is feasible for the standard
co-training algorithm.



4.3 Results on Data without Two Views

Then, we run experiments on data sets without two views, by using two differ-
ent classifiers on the same view. Here we use SMO and NaiveBayes as the two
different base learners on the kr-vs-kp, mushroom and tic-tac-toe data set. The
results are shown in Table 2.

Table 2. Experimental results on data sets without two views. SMO and NaiveBayes
are used to train the two classifiers, respectively. data-a-b-c-d means that on the data
set data, the initial labeled training set contains a positive examples and b negative
examples, and in each round each classifier labels c positive and d negative examples
for the other classifier. eC1 and eC2 denote the error rates of the classifiers SMO and
NaiveBayes, respectively. dis denotes the disagreement of the two classifiers. r denotes
the number of learning rounds.

Initial round Estimated round Last round

Data set eC1 eC2 dis r eC1 eC2 dis r eC1 eC2 dis r

kr-vs-kp-35-35-1-1 .137 .220 .175 0 .134 .164 .096 50 .134 .164 .096 50
kr-vs-kp-50-50-1-1 .096 .186 .178 0 .097 .136 .079 50 .097 .136 .079 50
kr-vs-kp-65-65-1-1 .087 .182 .172 0 .090 .128 .079 50 .090 .128 .079 50

mushroom-3-3-1-1 .173 .168 .060 0 .130 .129 .026 32 .130 .134 .027 50
mushroom-6-6-1-1 .096 .100 .059 0 .089 .093 .044 26 .082 .088 .028 50
mushroom-12-12-1-1 .077 .097 .064 0 .069 .085 .043 19 .066 .080 .030 50

tic-tac-toe-10-10-1-1 .432 .433 .197 0 .423 .419 .099 39 .424 .424 .084 50
tic-tac-toe-15-15-1-1 .378 .410 .191 0 .370 .403 .104 31 .373 .399 .102 50
tic-tac-toe-20-20-1-1 .355 .392 .181 0 .353 .403 .102 39 .359 .396 .093 50

We can find that the performances of the classifiers at the estimated round
can be quite close to the performances of the classifiers at the last learning round,
e.g. on mushroom-3-3-1-1. This suggests that estimating the appropriate termi-
nating round based on Theorem 2 is also feasible for co-training style algorithms
which do not require two views, e.g. [8, 16].

The estimated round is sometimes relatively loose, but the results shown in
Tables 1 and 2 verify that after a number of learning rounds, continuing the co-
training process could not improve the performance further. It is expected that
by developing better methods for estimating the difference between the learn-
ers, tighter estimation on the appropriate terminating round could be obtained,
which is a future issue.

4.4 Further Experiments and Discussion

In order to study the influence of the difference between the two learners further,
more experiments are conducted. We run the Co-Training Process with two
different groups of base learners on the pages view of the course data set. The



first group is SMO and MultilayerPerceptron and the second group is SMO
and NaiveBayes. With this experiment, it could be more clear that whether the
learners with larger difference could be improved more than the learners with
smaller difference. The results are shown in Table 3.

Table 3. Comparing the performance of co-training using two different groups of base
learners on the pages view of the course data set. SMO and MultilayerPerceptron (or
SMO and NaiveBayes) denote the two classifiers, respectively. data-a-b-c-d means that
on the data set data, the initial labeled training set contains a positive examples and
b negative examples, and in each round each classifier labels c positive and d negative
examples for the other classifier. eC1 and eC2 denote the error rates of the classifiers
SMO and MultilayerPerceptron(or SMO and NaiveBayes), respectively. dis denotes
the disagreement of the two classifiers. r denotes the number of learning rounds.

Initial round Estimated round Last round

Data set eC1 eC2 dis r eC1 eC2 dis r eC1 eC2 dis r

C1 = SMO & C2 = MultilayerPerceptron

pagesview -3-9-1-3 .137 .139 .018 0 .127 .126 .043 11 .123 .118 .026 50
pagesview -9-27-1-3 .113 .118 .036 0 .107 .108 .041 13 .099 .105 .028 50
pagesview -15-45-1-3 .100 .101 .038 0 .089 .090 .033 35 .087 .087 .029 50

C1 = SMO & C2 = NaiveBayes

pagesview -3-9-1-3 .137 .133 .069 0 .106 .095 .040 15 .097 .087 .031 50
pagesview -9-27-1-3 .113 .097 .075 0 .096 .085 .045 23 .087 .078 .036 50
pagesview -15-45-1-3 .100 .081 .076 0 .089 .075 .048 20 .078 .074 .032 50

It can be found from Table 3 that the difference between the second group
of classifiers is larger than that between the first group of classifiers. Note that
the SMO classifier appears in both groups, while its improvement is larger in
the second group than in the first group. This confirms that the larger the
difference between the two learners, the more the improvement from the Co-
Training Process.

5 Conclusion

In this paper, we present a new PAC analysis on co-training style algorithms. We
theoretically explain that why co-training without two views can succeed, and
that why co-training could not improve the performance further after a number
of learning rounds. Our theoretical result on the second issue provides a feasible
approach for estimating the appropriate learning rounds to terminate the co-
training process to avoid wasteful learning rounds. We study the effectiveness of
the approach in empirical study.

The current estimation of the appropriate learning rounds requires informa-
tion on the generalization ability of the learners. Since such information is not
available in real-world tasks, we use an approximation to realize the approach.



So, although the approach has a theoretical foundation and empirical study
shows that it works not bad, the approximation makes the estimation not as
accurate as we have expected. To improve the estimation in real-world tasks is
a future issue.

Note that in some empirical study of the natural language processing com-
munity, it has been found that sometimes the performances of the two learners
can degrade if the co-training process is run to convergence [14]. Our theoretical
study in this paper gives an explanation to this phenomenon. That is, after a
number of learning rounds the co-training process could not improve the perfor-
mance further since the difference between the learners becomes very small. In
other words, the two learners becomes very similar. Thus, if the co-training pro-
cess is continued to convergence, these two learners will have very high chance to
make similar errors. Since the co-trained learners are usually combined to use,
the similar errors will be reinforced. Thus, overfitting is aggravated and therefore
the degradation of performance is observed.
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