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Abstract new synthetic minor class examples by randomly interpolat-
ing pairs of closest neighbors in the minor class.
Under-sampling is a class-imbalance learning method  Among various class-imbalance learning methods,
which uses only a subset of major class examples and thusinder-sampling has been popularly used [14,17]. Given the
is very efficient. The main deficiency is that many major minor example seP and the major example saf, under-
class examples are ignored. We propose two algorithmssampling randomly samples a subsgét from A/, where
to overcome the deficiendgasyEnsemble samples sev-  |N’| < |N]|. Usually we chooséN’| = |P|, and have
eral subsets from the major class, trains a learner using |A’| < | V| for highly imbalanced problems.
each of them, and combines the outputs of those learners. Since under-sampling uses only a subset of the ma-
BalanceCascade is similar toEasyEnsemble except  jor class examples to train the classifier, the training pro-
that it removes correctly classified major class examples of cess is very efficient. However, potentially useful infor-
trained learners from further consideration. Experiments mation contained in these ignored examples, i.e. examples
show that both of the proposed algorithms have better AUCin A/ A7, are neglected, which is the main deficiency of
scores than many existing class-imbalance Iearning meth-under_samp”ng_ In this paper, we propose two algorithms,
ods. Moreover, they have approximately the same training EasyEnsemble and BalanceCascade , to overcome
time as that of under-sampling, which trains significantly the deficiency but keeping the efficiency of under-sampling.
faster than other methods. The intuition is to build ensemble of classifiers generated
from multiple under-sampled training sets such that these
ignored data can be wisely explored. Experiments show

1 Introduction that both algorithms have achieved better performance than
many existing class-imbalance learning methods.

Data in real-world tasks are usually imbalanced, i.e.
some classes have much more instances than others. Thﬁ
level of imbalance (ratio of size of major class to that of
minor class) can be as huge H¥ [16]. Learning algo-
rithms that do not consider class-imbalance tend to be over- EasyEnsemble is probably the most straightforward
whelmed by the major class and ignore the minor one [6]. way to further exploit the examples iV (\A’. In this

Sampling is a class of methods that alters the sizes ofmethod, we independently sample several subsgts\Vs,
training sets. Under-sampling and over-sampling change. .., N from A, For each subsé¥; (1 <i < T'), a classi-
the training sets by sampling a smaller major training set fier H; is trained usingV; andP. All generated classifiers
and repeating minor class instances, respectively [8]. Theare then combined for the final decision. Many learning
level of imbalance is reduced in both methods, with the algorithms can be employed to generate the individual clas-
hope that a more balanced training set can give better re-sifiers. Here AdaBoost [11] is used. The pseudo-code of
sults. Both sampling methods are easy to implement andEasyEnsemble is shown in Algorithm 1.
have been shown to be helpful in imbalanced learning prob-  The idea behindEasyEnsemble is quite simple. Sim-
lems [14, 17]. Besides the basic under-sampling and over-ilar to the balanced Random Forest [EasyEnsemble
sampling methods, there are also methods that sample irgenerated” balanced sub-problems. The output of itie
more complex ways. SMOTE [5] is an example, which adds sub-problem ig7;, an ensemble with weak learndis; ; }.

EasyEnsemble



Algorithm 1 TheEasyEnsemble algorithm. Algorithm 2 TheBalanceCascade algorithm.

1: {Input: A set of minor class exampl&s a set of major 1: {Input: A set of minor class exampl@s a set of major
class exampled/, |P| < |N|, andT, the number of class exampled/, [P| < |N|, andT, the number of
subsets to be sampled fraoki.} subsets to be sampled froki.}

2: 7«0 2.9+ 0

3: repeat 3: repeat

> Random le a substf from AV, [\;| = |P)| $ icitlf— iy

5: andomly sample a subsgf from N, |V;| = |P|.

6: LearnH; usingP andN;. H; is an AdaBoost en- 5. Randomly sample a subskf from AV, || = [P].

6: LearnH; usingP and\;. H; is an AdaBoost en-
semble with weak learners; ; and corresponding
weightsey; ;, i.e.

semble with weak classifiefs; ; and corresponding
weightsa; ;, i.e.

i .Hi(;) - (Zji:l Aeahis@) Hi) ’ Hj(x) = sgn (Ej;l aijhij(x) — 9”) '
;: lg:ﬂ St,_ An ensemble: 7 Adjusté; such thatH;’s false positive rate (the error
' put. - B . rate of misclassifying a major class example to the
H(z) = sgn (Zi:l Zj;l g ihij(®) =>4 9i> : minor class) isf.

8: Remove fromV all examples that are correctly clas-
sified by H;.

An alternative view ofh, ; is to treat it as a feature that ~ 9: until i =T

is extracted by the ensemble learning method and can only10: Output: A single ensemble:

take k_)i_nary \_/aluesH,», in this viewpoint, is simply a linear H(zx) = sgn (ZiTzl Zj;l i jhi () — ZiTzl gi) .

classifier built on these features. Features extracted from '

different subsetsV; thus contain information of different

aspects of the original major training skf. Finally, in-

stead of counting votes from thE;’s, we collect all the

featuresh, ; (1 =1,2,...,7;5=1,2,...,s;) and forman

ensemble classifier from them.

lowing under-sampling process, hoping to explore as much
useful information as possible.

BalanceCascade is similar to EasyEnsemble in
structure. The main difference between them is the lines
7 and 8 of Algorithm 2. Line 8 removes the true major
class examples fronV, and line 7 specifies how many ma-
jor class examples can be removed. At the beginning of the

EasyEnsemble is an unsupervised strategy to explore 7th iteration, A" has been shrank — 1 times, and there-

N since it uses independent random sampling with replace-fore its current size iSV] - fT-1 = |P|. Thus, afterH is
ment. Our second algorithmBalanceCascade , ex- trained andV is shrank again, the size &f is smaller than
plores in a supervised manner. The idea is as follows. |P|. We can stop the training process at this time.

After H, is trained, if an example* € N is classified cor-
rectly as major class byiy, it is reasonable to conjecture
thatz* is somewhat redundant K, given that we already
haveH;. Thus, we can remove part of the correctly classi-

3 BalanceCascade

4 Experiments

fied major class examples fram. AsinEasyEnsemble , 4.1 Settings
we use AdaBoost in this method. The pseudo-code of
BalanceCascade is described in Algorithm 2. Sixteen UCI data sets [1] are used. Information about

This method is calleBalanceCascade since it is these data sets are summarized in Table 1, wlzes the
similar to the cascade classifier in [13)/ is shrank after  number of exampleJargetis used as minor class while the

every nodeH; is trained, and every; deals with a bal-  union of all other classes is used as major cl&ssin/#maj
anced sub-problemA/;| = |P|). However, the final clas- is the size of minor/major class, amhtio is the size of
sifier is different. A cascade classifier is the conjunction major class divided by that of minor class.

of all H;’s, i.e. H(z) predicts positive if and only if ev- Since the data sets are imbalanced, AUC [2] is used as

ery H;(z) (i = 1,2,...,T) predicts positive. Viola and the performance measure. For every data set, 5 times 10-
Jones [13] used the cascade classifier mainly to achieve fastold stratified cross validation are executed. In order to
testing speed. While iBalanceCascade , sequentialde- reduce the influence of the randomness introduced by the
pendency between classifiers is mainly exploited for reduc- sampling process on evaluation, within each fold the learn-
ing the redundant information in the major class. This sam- ing process is repeated for 10 times. Finally, the averaged
pling strategy leads to a restricted sample space for the fol-AUC score is recorded.



Since all methods use the same type and same number

Table 1. Experimental Data Sets of weak learners, the training time of these methods mainly

Dataset Size | Target | #min/#maj | Ratio depends on the number of training examplegsder uses
abalone | 4177 | Ring=7 | 391/3786 | 9.7 the smallest numbeR(P|) of examples and therefore is the
balance 625 Balance 49/576 11.8

fastestEasy, Cascade andChan use as same number of

car 1728 acc 384/1344 | 3.5 weak learners adnder , and use as same number of exam-
cmc 1473 class 2 333/1140 | 3.4 .

haberman | 306 class 2 81/225 28 ples asUpder tq _tram every weak learnét The;e meth-
housing 506 20, 23] 106/400 | 3.8 ods require gddltlonal_ time (_:ost to sam_pl_e or split subsets of
ionosphere| 351 bad 126/225 | 1.8 N, but this time cost is obviously negligible. Thusasy,
letter 20000 A 789/19211| 24.3 Cascade andChan have approximately the same training
mf-morph | 2000 | class10 | 200/1800 | 9.0 time cost as that dfnder . Note that when the imbalance
mf-zernike | 2000 | class 10 | 200/1800 | 9.0 level is higher than 40Chan will use more weak learners
phoneme | 5404 | class1l | 1586/3818| 2.4 and therefore its time cost will be bigger than thataky
pima 768 class1 | 268/500 | 1.9 andCascade . BothAda andAsym use|P| + || exam-
satimage | 6435 | class4 | 626/5809 | 9.3 ples. SincgN'| > |P|, these methods are much slower
ﬁﬂ)‘g'e 228 macl)iZilant gggg‘?‘ ig thanUnder . SMOTEuses eithert|P| or 2|P| + |N| ex-
wpbe 108 recur 47/151 3.9 amples, and therefore it is slower theimder , Easy and

Cascade . Among all the compared method3yer is the
most time-consuming since it usgig\'| examples. On data

. sets with large number of examples, degter, the trainin
Our proposed algorithms (abbEasy and Cascade) time ovaergis 100 long to be prgcticaliq 9

are compared with seven existing class-imbalance learn-
ing methods, includingBagging (abbr. Bagg) [3],

AdaBoost (abbr. Ada), AsymBoost (abbr. Asym) [12], 4.2 Results
Under-sampling (abbr. Under ), Over-sampling . . . .
(abbr. Over ), SMOTEand Chan & Stolfo’s method (abbr. We divide the sixteen data sets into two groups according
Chan) [4]. In Under, a subset\” is sampled from\/, tq the performance oﬁda. The AUC scores ofAda are _
IA”| = [P|. In Over, a new minor training set is sampled higher than 0.95 on six dat:';l setf, and Table 2 summarizes
(with replacement) from the original minor clag®’| = the p.er.forman“ce orl these "easy” data sets.. Results on the
IA]. As for SMOTE we first generate®, a set of syn- remaining ten “hard” data sets are tabulated |_nTabIe 3. Note
thetic minor class examples wittP’| = |P|; then, we that the performance @ve_r on the dat_a sets mthe_ f_orme_r
sample a new major training saf’ with |\7| = 2[P| if group has not been obtained due to its large training time
V| > 2|P|, andA” = A otherwise. On data sets hav- costs. In the .tables the best performan_ce on ea}ch data set
ing nominal attributes we usSMOTE-NQ5]. Chan splits is bolded, while the worst performance is underlined. The
N into |\|/|P| non-overlapping subsets, and the final en- 2V9: "W shows the average AUC score of‘*e?ach method.
semble is obtained by stacking [15] these classifiers. In OurE_SeS|des, in Table 3 the entries marked with " denotes the
implementation, we use Fisher Discriminant Analysis [9] as first runner-up, and thavgz.. row shows the average AUC

the stacker. Note that the base classifierdiodler , Over, score when themcdata setis excluded. .
SMOTENdChan are all AdaBoost ensembles, just as those . Table 2 contains examples of problems on which class-

used inEasy andCascade imbalance learning methods do not help. The observations
In Ada, Asym, Under , Over and SMOTE 40 weak from Table 2 are summarized as follows:

learners are used for each ensemble. Easy and ¢ Although the imbalance level ranges from 1.7 to 24.3

Cascade, 4 subsets are sampled (i.€ is set to 4 in on these 6 data sets, performance of the compared

both algorithms), on each an ensemble containing 10 weak ~ methods are quite similar. Excepagg andUnder,
learners are trained. Thus, the final ensemble generated the AUC scores of the other 6 methods are almost in-

by Easy andCascade also containl0 x 4 = 40 weak distinguishable. Thus, class-imbalance does not nec-
learners. InChan, there arg/N|/|P| subsets, where en- essarily imply degenerated performance.

semble classifiers are trained it P| /| N| iterations when * Bagg is with the worst performance. This is prob-
IN|/|P| < 40, and one iteration otherwise. Thus, since the ably because that the sampling strategy Bagg
imbalance level of all the data sets in Table 1 is lower than makes class-imbalance more serious sometimes, and

40, all these methods use the same number of weak learn-  the profit from varying distribution is overwhelmed by
ers. Thus, the comparison among these methods is fair. In  the negative effect it brings.

all experiments, we use the classification tree in Matlab’s  1ajthough different subsets 0¥ are used, the number of active train-
statistics toolbox as the weak learner. ing examples is alwayz|P|.




Table 2. AUC Scores on “easy” data sets Table 3. AUC Scores on “hard” data sets

[ DataSet | Bagg | Ada | Asym [ Under | [DataSet | Bagg | Ada | Asym [Under [ Over |
car 0.995 | 0.998 0.998 0.989 abalone | 0.825 | 0.811 | 0.812 [ 0.830 | 0.816
letter 0.997 | 1.000 1.000 1.000 balance | 0.440 | 0.616 0.619 0.617 | 0.542
ionosphere| 0.962 | 0.978 | 0.979 0.973 cmc 0.705 | 0.675 | 0.675 | 0.671 | 0.674
phoneme 0.955 | 0.965 0.965 0.953 haberman 0.666*| 0.641 0.639 0.646 | 0.639
sat 0.946 | 0.953 0.953 0.941 housing 0.825*| 0.815 0.817 0.806 | 0.819
wdbc 0.987 | 0.994 0.994 0.993 mf-morph| 0.887 | 0.888 0.888 0.916* | 0.890
avg. 0.974 | 0.981 0.982 0.975 mf-zernike 0.854 | 0.795 0.800 0.879 | 0.779

[ DataSet [ SMOTE[ Chan | Cascase | Easy | pima 0.820 | 0.788 | 0.788 | 0.789 | 0.790
car 0.980 | 0.996 0996 0994 vehicle | 0.859*| 0.855 | 0.855 | 0.847 | 0.856
letter 1.000 | 1.000| 1.000 | 1.000 wpbc | 0.682 | 0.716 | 0721 | 0.694 | 0.720%
ionosphere| 0.978 | 0977 | 0976 | 0.974 avg. 0.756 | 0.760 | 0.761 | 0.769 | 0.752
phoneme | 0.964 | 0.960 | 00962 | 0.958 avg2. 0.762 | 0.770 | 0.771 | 0.780 | 0.761
sat 0.946 | 0.955 0.949 0.947 [Data Set [ SMOTE Chan [Cascase | Easy | |
wdbc 0.994 | 0.993 0.994 0.993 abalone | 0.832 | 0.850 | 0.828 | 0.847*
avg. 0.978 | 0.980 0.979 0.978 balance | 0.617 | 0.648 | 0.637* | 0.633

cme 0.549 | 0.699 | 0.686 | 0.704*

e Under has lower AUC scores than other methods on habe.rman 0.647 1 0.643 | 0.653 | 0.668

3 of the 6 data sets. Our conjecture is that this is due to housing | 0.814 1 0.812 1 0.809 | 0.827

. . S . ) mf-morph| 0.913 | 0.912 0.904 0.917
the information contained in the major class has been mf-zernike 0.862 | 0.902*| 0.890 0.904
ignored. It is worth noting that both our proposed |nima 0.792 | 0786 | 0799 | 0.809*
methods can improve upddnder , and have similar vehicle 0.857 | 0.859*| 0.856 | 0.860
AUC scores afAda. This result supports our claim wphbc 0.709 | 0.709 | 0.712 | 0.707
that Easy andCascade can effectively explore the avg. 0.759 | 0.782*| 0.778 | 0.788
major training set. avg2. 0.782 | 0.791*| 0.788 | 0.797

e Chan is superior tdJnder , but there is no significant
difference betweerChan and Easy & Cascade .
This implies that using all major class examples is not
necessary at all. Especially when the data set is highly
imbalancedChan will consume much more time.

Based on the above observations, we argue that for tasks
on which ordinary methods can achieve a high AUC score
(e.g. > 0.95), class-imbalance learning is generally not
helpful. However, our proposed methods can be used to
save the training time.

the “hard” data sets. This observation is consistent
with the results in [8].

e SMOTHas better results thakda on most data sets.
This observation corroborates the results in [5]. How-
ever,SMOTHRwvas designed for data sets with only con-
tinuous attributes. Since all attributesahcare nom-
inal, SMOTE-NGs used, which attains a significantly
lower score than other methods. By excludamgg the
avg2. row shows thaSMOTE AUC score is higher
than that ofAda but similar to that ofUnder .

e Chan achieves the best performance on two data sets.
It is comparable wittCascade on average but much
worse thanEasy. Moreover,Chan causes negative
effect onpima This reveals again that, using all the
major class examples is generally not necessary. By
using a subset of major class examplessy and
Cascade perform comparable to or even much bet-
ter thanChan.

e ExpectOver, all class-imbalance learning methods
achieve higher average AUC scores tiala on these
“hard” data sets. Althouglinder has a low average
score among the compared methods, it can be used as a
very efficient baseline in highly imbalanced problems.

We are more interested in Table 3 which reports on data
sets where class-imbalance learning really helps. The ob-
servations from Table 3 are summarized as follows:

e AlthoughBagg is helpful on some data sets, it is not
reliable at all. It has the worst performance on 3 data
sets. In particular, it performs extremely poor on data
sets which have very small minor class, suctbak
anceandwpbc

e Asym, although proven to be effective for a fixed cost
ratio [12], is not better thar\da if we consider the
AUC score which is the overall performance in the en-
tire range of false positive rate.

e Over, although reported in some paper, e.g. [10], to be
effective in handling class-imbalance problems, helps
little in improving the AUC score in our experiments. Observations about the proposed methdgasy and
Conversely, it leads to the decrease of performance onCascade , deserve a separate thread of discussions:
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