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Abstract

Under-sampling is a class-imbalance learning method
which uses only a subset of major class examples and thus
is very efficient. The main deficiency is that many major
class examples are ignored. We propose two algorithms
to overcome the deficiency.EasyEnsemble samples sev-
eral subsets from the major class, trains a learner using
each of them, and combines the outputs of those learners.
BalanceCascade is similar toEasyEnsemble except
that it removes correctly classified major class examples of
trained learners from further consideration. Experiments
show that both of the proposed algorithms have better AUC
scores than many existing class-imbalance learning meth-
ods. Moreover, they have approximately the same training
time as that of under-sampling, which trains significantly
faster than other methods.

1 Introduction

Data in real-world tasks are usually imbalanced, i.e.
some classes have much more instances than others. The
level of imbalance (ratio of size of major class to that of
minor class) can be as huge as106 [16]. Learning algo-
rithms that do not consider class-imbalance tend to be over-
whelmed by the major class and ignore the minor one [6].

Sampling is a class of methods that alters the sizes of
training sets. Under-sampling and over-sampling change
the training sets by sampling a smaller major training set
and repeating minor class instances, respectively [8]. The
level of imbalance is reduced in both methods, with the
hope that a more balanced training set can give better re-
sults. Both sampling methods are easy to implement and
have been shown to be helpful in imbalanced learning prob-
lems [14, 17]. Besides the basic under-sampling and over-
sampling methods, there are also methods that sample in
more complex ways. SMOTE [5] is an example, which adds

new synthetic minor class examples by randomly interpolat-
ing pairs of closest neighbors in the minor class.

Among various class-imbalance learning methods,
under-sampling has been popularly used [14,17]. Given the
minor example setP and the major example setN , under-
sampling randomly samples a subsetN ′ from N , where
|N ′| < |N |. Usually we choose|N ′| = |P|, and have
|N ′| ¿ |N | for highly imbalanced problems.

Since under-sampling uses only a subset of the ma-
jor class examples to train the classifier, the training pro-
cess is very efficient. However, potentially useful infor-
mation contained in these ignored examples, i.e. examples
in N ⋂N ′, are neglected, which is the main deficiency of
under-sampling. In this paper, we propose two algorithms,
EasyEnsemble and BalanceCascade , to overcome
the deficiency but keeping the efficiency of under-sampling.
The intuition is to build ensemble of classifiers generated
from multiple under-sampled training sets such that these
ignored data can be wisely explored. Experiments show
that both algorithms have achieved better performance than
many existing class-imbalance learning methods.

2 EasyEnsemble

EasyEnsemble is probably the most straightforward
way to further exploit the examples inN ⋂N ′. In this
method, we independently sample several subsetsN1,N2,
. . . ,NT fromN . For each subsetNi (1 ≤ i ≤ T ), a classi-
fier Hi is trained usingNi andP. All generated classifiers
are then combined for the final decision. Many learning
algorithms can be employed to generate the individual clas-
sifiers. Here AdaBoost [11] is used. The pseudo-code of
EasyEnsemble is shown in Algorithm 1.

The idea behindEasyEnsemble is quite simple. Sim-
ilar to the balanced Random Forest [7],EasyEnsemble
generatesT balanced sub-problems. The output of theith
sub-problem isHi, an ensemble with weak learners{hi,j}.
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Algorithm 1 TheEasyEnsemble algorithm.

1: {Input: A set of minor class examplesP, a set of major
class examplesN , |P| < |N |, andT , the number of
subsets to be sampled fromN .}

2: i ← 0
3: repeat
4: i ← i + 1
5: Randomly sample a subsetNi fromN , |Ni| = |P|.
6: LearnHi usingP andNi. Hi is an AdaBoost en-

semble with weak classifiershi,j and corresponding
weightsαi,j , i.e.

Hi(x) = sgn
(∑si

j=1 αi,jhi,j(x)− θi

)
.

7: until i = T
8: Output: An ensemble:

H(x) = sgn
(∑T

i=1

∑si

j=1 αi,jhi,j(x)−∑T
i=1 θi

)
.

An alternative view ofhi,j is to treat it as a feature that
is extracted by the ensemble learning method and can only
take binary values.Hi, in this viewpoint, is simply a linear
classifier built on these features. Features extracted from
different subsetsNi thus contain information of different
aspects of the original major training setN . Finally, in-
stead of counting votes from theHi’s, we collect all the
featureshi,j (i = 1, 2, . . . , T ; j = 1, 2, . . . , si) and form an
ensemble classifier from them.

3 BalanceCascade

EasyEnsemble is an unsupervised strategy to explore
N since it uses independent random sampling with replace-
ment. Our second algorithm,BalanceCascade , ex-
ploresN in a supervised manner. The idea is as follows.
After H1 is trained, if an examplex∗ ∈ N is classified cor-
rectly as major class byH1, it is reasonable to conjecture
thatx∗ is somewhat redundant inN , given that we already
haveH1. Thus, we can remove part of the correctly classi-
fied major class examples fromN . As inEasyEnsemble ,
we use AdaBoost in this method. The pseudo-code of
BalanceCascade is described in Algorithm 2.

This method is calledBalanceCascade since it is
similar to the cascade classifier in [13].N is shrank after
every nodeHi is trained, and everyHi deals with a bal-
anced sub-problem (|Ni| = |P|). However, the final clas-
sifier is different. A cascade classifier is the conjunction
of all Hi’s, i.e. H(x) predicts positive if and only if ev-
ery Hi(x) (i = 1, 2, . . . , T ) predicts positive. Viola and
Jones [13] used the cascade classifier mainly to achieve fast
testing speed. While inBalanceCascade , sequential de-
pendency between classifiers is mainly exploited for reduc-
ing the redundant information in the major class. This sam-
pling strategy leads to a restricted sample space for the fol-

Algorithm 2 TheBalanceCascade algorithm.

1: {Input: A set of minor class examplesP, a set of major
class examplesN , |P| < |N |, andT , the number of
subsets to be sampled fromN .}

2: i ← 0
3: repeat

4: i ← i + 1, f ← T−1

√
|P|
|N|

5: Randomly sample a subsetNi fromN , |Ni| = |P|.
6: LearnHi usingP andNi. Hi is an AdaBoost en-

semble with weak learnershi,j and corresponding
weightsαi,j , i.e.

Hi(x) = sgn
(∑si

j=1 αi,jhi,j(x)− θi

)
.

7: Adjust θi such thatHi’s false positive rate (the error
rate of misclassifying a major class example to the
minor class) isf .

8: Remove fromN all examples that are correctly clas-
sified byHi.

9: until i = T
10: Output: A single ensemble:

H(x) = sgn
(∑T

i=1

∑si

j=1 αi,jhi,j(x)−∑T
i=1 θi

)
.

lowing under-sampling process, hoping to explore as much
useful information as possible.

BalanceCascade is similar to EasyEnsemble in
structure. The main difference between them is the lines
7 and 8 of Algorithm 2. Line 8 removes the true major
class examples fromN , and line 7 specifies how many ma-
jor class examples can be removed. At the beginning of the
T -th iteration,N has been shrankT − 1 times, and there-
fore its current size is|N | · fT−1 = |P|. Thus, afterHT is
trained andN is shrank again, the size ofN is smaller than
|P|. We can stop the training process at this time.

4 Experiments

4.1 Settings

Sixteen UCI data sets [1] are used. Information about
these data sets are summarized in Table 1, whereSizeis the
number of examples,Targetis used as minor class while the
union of all other classes is used as major class,#min/#maj
is the size of minor/major class, andRatio is the size of
major class divided by that of minor class.

Since the data sets are imbalanced, AUC [2] is used as
the performance measure. For every data set, 5 times 10-
fold stratified cross validation are executed. In order to
reduce the influence of the randomness introduced by the
sampling process on evaluation, within each fold the learn-
ing process is repeated for 10 times. Finally, the averaged
AUC score is recorded.
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Table 1. Experimental Data Sets
Dataset Size Target #min/#maj Ratio
abalone 4177 Ring=7 391/3786 9.7
balance 625 Balance 49/576 11.8
car 1728 acc 384/1344 3.5
cmc 1473 class 2 333/1140 3.4
haberman 306 class 2 81/225 2.8
housing 506 [20, 23] 106/400 3.8
ionosphere 351 bad 126/225 1.8
letter 20000 A 789/19211 24.3
mf-morph 2000 class 10 200/1800 9.0
mf-zernike 2000 class 10 200/1800 9.0
phoneme 5404 class 1 1586/3818 2.4
pima 768 class 1 268/500 1.9
satimage 6435 class 4 626/5809 9.3
vehicle 846 opel 212/634 3.0
wdbc 569 malignant 212/357 1.7
wpbc 198 recur 47/151 3.2

Our proposed algorithms (abbr.Easy andCascade )
are compared with seven existing class-imbalance learn-
ing methods, includingBagging (abbr. Bagg) [3],
AdaBoost (abbr.Ada), AsymBoost (abbr.Asym) [12],
Under-sampling (abbr. Under ), Over-sampling
(abbr. Over ), SMOTE, and Chan & Stolfo’s method (abbr.
Chan) [4]. In Under , a subsetN ′ is sampled fromN ,
|N ′| = |P|. In Over , a new minor training set is sampled
(with replacement) from the original minor class,|P ′| =
|N |. As for SMOTE, we first generateP ′, a set of syn-
thetic minor class examples with|P ′| = |P|; then, we
sample a new major training setN ′ with |N ′| = 2|P| if
|N | > 2|P|, andN ′ = N otherwise. On data sets hav-
ing nominal attributes we useSMOTE-NC[5]. Chan splits
N into |N |/|P| non-overlapping subsets, and the final en-
semble is obtained by stacking [15] these classifiers. In our
implementation, we use Fisher Discriminant Analysis [9] as
the stacker. Note that the base classifiers ofUnder , Over ,
SMOTEandChan are all AdaBoost ensembles, just as those
used inEasy andCascade .

In Ada, Asym, Under , Over and SMOTE, 40 weak
learners are used for each ensemble. ForEasy and
Cascade , 4 subsets are sampled (i.e.T is set to 4 in
both algorithms), on each an ensemble containing 10 weak
learners are trained. Thus, the final ensemble generated
by Easy andCascade also contain10 × 4 = 40 weak
learners. InChan, there are|N |/|P | subsets, where en-
semble classifiers are trained for40|P |/|N | iterations when
|N |/|P | < 40, and one iteration otherwise. Thus, since the
imbalance level of all the data sets in Table 1 is lower than
40, all these methods use the same number of weak learn-
ers. Thus, the comparison among these methods is fair. In
all experiments, we use the classification tree in Matlab’s
statistics toolbox as the weak learner.

Since all methods use the same type and same number
of weak learners, the training time of these methods mainly
depends on the number of training examples.Under uses
the smallest number (2|P|) of examples and therefore is the
fastest.Easy , Cascade andChan use as same number of
weak learners asUnder , and use as same number of exam-
ples asUnder to train every weak learner1. These meth-
ods require additional time cost to sample or split subsets of
N , but this time cost is obviously negligible. Thus,Easy ,
Cascade andChan have approximately the same training
time cost as that ofUnder . Note that when the imbalance
level is higher than 40,Chan will use more weak learners
and therefore its time cost will be bigger than that ofEasy
andCascade . BothAda andAsym use|P| + |N | exam-
ples. Since|N | À |P|, these methods are much slower
thanUnder . SMOTEuses either4|P| or 2|P| + |N | ex-
amples, and therefore it is slower thanUnder , Easy and
Cascade . Among all the compared methods,Over is the
most time-consuming since it uses2|N | examples. On data
sets with large number of examples, e.g.letter, the training
time ofOver is too long to be practical.

4.2 Results

We divide the sixteen data sets into two groups according
to the performance ofAda. The AUC scores ofAda are
higher than 0.95 on six data sets, and Table 2 summarizes
the performance on these “easy” data sets. Results on the
remaining ten “hard” data sets are tabulated in Table 3. Note
that the performance ofOver on the data sets in the former
group has not been obtained due to its large training time
costs. In the tables the best performance on each data set
is bolded, while the worst performance is underlined. The
avg. row shows the average AUC score of each method.
Besides, in Table 3 the entries marked with ‘*’ denotes the
first runner-up, and theavg2. row shows the average AUC
score when thecmcdata set is excluded.

Table 2 contains examples of problems on which class-
imbalance learning methods do not help. The observations
from Table 2 are summarized as follows:

• Although the imbalance level ranges from 1.7 to 24.3
on these 6 data sets, performance of the compared
methods are quite similar. ExceptBagg andUnder ,
the AUC scores of the other 6 methods are almost in-
distinguishable. Thus, class-imbalance does not nec-
essarily imply degenerated performance.

• Bagg is with the worst performance. This is prob-
ably because that the sampling strategy inBagg
makes class-imbalance more serious sometimes, and
the profit from varying distribution is overwhelmed by
the negative effect it brings.

1Although different subsets ofN are used, the number of active train-
ing examples is always2|P|.
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Table 2. AUC Scores on “easy” data sets
Data Set Bagg Ada Asym Under

car 0.995 0.998 0.998 0.989
letter 0.997 1.000 1.000 1.000
ionosphere 0.962 0.978 0.979 0.973
phoneme 0.955 0.965 0.965 0.953
sat 0.946 0.953 0.953 0.941
wdbc 0.987 0.994 0.994 0.993
avg. 0.974 0.981 0.982 0.975

Data Set SMOTE Chan Cascase Easy

car 0.989 0.996 0.996 0.994
letter 1.000 1.000 1.000 1.000
ionosphere 0.978 0.977 0.976 0.974
phoneme 0.964 0.960 0.962 0.958
sat 0.946 0.955 0.949 0.947
wdbc 0.994 0.993 0.994 0.993
avg. 0.978 0.980 0.979 0.978

• Under has lower AUC scores than other methods on
3 of the 6 data sets. Our conjecture is that this is due to
the information contained in the major class has been
ignored. It is worth noting that both our proposed
methods can improve uponUnder , and have similar
AUC scores asAda. This result supports our claim
that Easy andCascade can effectively explore the
major training set.

• Chan is superior toUnder , but there is no significant
difference betweenChan and Easy & Cascade .
This implies that using all major class examples is not
necessary at all. Especially when the data set is highly
imbalanced,Chan will consume much more time.

Based on the above observations, we argue that for tasks
on which ordinary methods can achieve a high AUC score
(e.g. ≥ 0.95), class-imbalance learning is generally not
helpful. However, our proposed methods can be used to
save the training time.

We are more interested in Table 3 which reports on data
sets where class-imbalance learning really helps. The ob-
servations from Table 3 are summarized as follows:

• AlthoughBagg is helpful on some data sets, it is not
reliable at all. It has the worst performance on 3 data
sets. In particular, it performs extremely poor on data
sets which have very small minor class, such asbal-
anceandwpbc.

• Asym, although proven to be effective for a fixed cost
ratio [12], is not better thanAda if we consider the
AUC score which is the overall performance in the en-
tire range of false positive rate.

• Over , although reported in some paper, e.g. [10], to be
effective in handling class-imbalance problems, helps
little in improving the AUC score in our experiments.
Conversely, it leads to the decrease of performance on

Table 3. AUC Scores on “hard” data sets

Data Set Bagg Ada Asym Under Over

abalone 0.825 0.811 0.812 0.830 0.816
balance 0.440 0.616 0.619 0.617 0.542
cmc 0.705 0.675 0.675 0.671 0.674
haberman 0.666* 0.641 0.639 0.646 0.639
housing 0.825* 0.815 0.817 0.806 0.819
mf-morph 0.887 0.888 0.888 0.916* 0.890
mf-zernike 0.854 0.795 0.800 0.879 0.779
pima 0.820 0.788 0.788 0.789 0.790
vehicle 0.859* 0.855 0.855 0.847 0.856
wpbc 0.682 0.716 0.721 0.694 0.720*
avg. 0.756 0.760 0.761 0.769 0.752

avg2. 0.762 0.770 0.771 0.780 0.761

Data Set SMOTE Chan Cascase Easy

abalone 0.832 0.850 0.828 0.847*
balance 0.617 0.648 0.637* 0.633
cmc 0.549 0.699 0.686 0.704*
haberman 0.647 0.643 0.653 0.668
housing 0.814 0.812 0.809 0.827
mf-morph 0.913 0.912 0.904 0.917
mf-zernike 0.862 0.902* 0.890 0.904
pima 0.792 0.786 0.799 0.809*
vehicle 0.857 0.859* 0.856 0.860
wpbc 0.709 0.709 0.712 0.707

avg. 0.759 0.782* 0.778 0.788
avg2. 0.782 0.791* 0.788 0.797

the “hard” data sets. This observation is consistent
with the results in [8].

• SMOTEhas better results thanAda on most data sets.
This observation corroborates the results in [5]. How-
ever,SMOTEwas designed for data sets with only con-
tinuous attributes. Since all attributes ofcmcare nom-
inal, SMOTE-NCis used, which attains a significantly
lower score than other methods. By excludingcmc, the
avg2. row shows thatSMOTE’s AUC score is higher
than that ofAda but similar to that ofUnder .

• Chan achieves the best performance on two data sets.
It is comparable withCascade on average but much
worse thanEasy . Moreover,Chan causes negative
effect onpima. This reveals again that, using all the
major class examples is generally not necessary. By
using a subset of major class examples,Easy and
Cascade perform comparable to or even much bet-
ter thanChan.

• Expect Over , all class-imbalance learning methods
achieve higher average AUC scores thanAda on these
“hard” data sets. AlthoughUnder has a low average
score among the compared methods, it can be used as a
very efficient baseline in highly imbalanced problems.

Observations about the proposed methods,Easy and
Cascade , deserve a separate thread of discussions:
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• Both Easy andCascade attain higher average AUC
scores than almost all the other methods (except
that Chan is comparable toCascade ). Moreover,
both have higher scores thanAda, Asym, Over and
Under on almost all data sets.Easy achieves the
highest scores on 5 out of 10 data sets, and 3 first
runner-ups. In addition, the proposed methods never
cause negative effect, while the other methods will.

• Easy andCascade can not only improve the AUC
scores, but also reduce the training time. They require
approximately the same training time asUnder , and
are faster than other methods. Considering both clas-
sification performance and training time, they are both
superior to all other compared methods.

• Table 3 shows thatCascade is inferior to Easy .
The way Cascade explores the major class exam-
ples might be responsible for this observation. In
Cascade , the major training set ofHi+1 is pro-
duced byHi. Such a supervised, cascade way of sam-
pling could suffer from overfitting, or, the correctly-
predicted major class examples that have been filtered
out may be useful.

5 Conclusion

In this paper, we proposeEasyEnsemble and
BalanceCascade for class-imbalance learning. They
are designed to utilize the major class examples ignored
by under-sampling, while at the same time to keep the fast
training speed of under-sampling. Both methods sample
multiple subsets of the major class, train an ensemble from
each of these subsets, and combine all weak learners in
these ensembles into a final ensemble. Both methods make
better use of the major class than under-sampling, since
multiple subsets contain more information than a single one.
The main difference is thatEasyEnsemble samples in-
dependent subsets, while inBalanceCascade correctly
predicted major class examples are removed from further
considerations. Both methods have approximately the same
training time as that of under-sampling.

Empirical results suggest that, for problems on which or-
dinary methods achieve high AUC scores (e.g.≥ 0.95),
class-imbalance learning is not helpful. However, the pro-
posed methods can be used to save the training time. For
problems where class-imbalance learning methods really
help, bothEasyEnsemble andBalanceCascade have
higher AUC scores than almost all other compared meth-
ods and the former is superior than the latter. However,
sinceBalanceCascade removes correctly classified ma-
jor class examples in each iteration, it would be more effi-
cient on highly imbalanced data sets. In addition, the com-
parison ofChan and our proposed methods reveals that, it
is not necessary to use all major class examples.
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