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Abstract

Multi-instance learning and semi-supervised
learning are different branches of machine
learning. The former attempts to learn from
a training set consists of labeled bags each
containing many unlabeled instances; the lat-
ter tries to exploit abundant unlabeled in-
stances when learning with a small number
of labeled examples. In this paper, we estab-
lish a bridge between these two branches by
showing that multi-instance learning can be
viewed as a special case of semi-supervised
learning. Based on this recognition, we pro-
pose the MissSVM algorithm which addresses
multi-instance learning using a special semi-
supervised support vector machine. Experi-
ments show that solving multi-instance prob-
lems from the view of semi-supervised learn-
ing is feasible, and the MissSVM algorithm
is competitive with state-of-the-art multi-
instance learning algorithms.

1. Introduction

Multi-instance learning (Dietterich et al., 1997) and
semi-supervised learning (Chapelle et al., 2006; Zhu,
2006) are different branches of machine learning. In
multi-instance learning, the training set is composed
of labeled bags each comnsists of many unlabeled in-
stances, and the goal is to learn some concept from the
training set for correctly labeling unseen bags. Here
a bag is positively labeled if it contains at least one
positive instance and negatively labeled otherwise. In
semi-supervised learning, there are a small number of
labeled training examples and abundant unlabeled in-
stances, and the goal is to exploit these unlabeled in-

Appearing in Proceedings of the 24" International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

stances to help improve the performance of supervised
learning. Both of these two branches have attracted
much attention during the past few years.

In this paper, we establish a bridge between multi-
instance learning and semi-supervised learning. We
show that multi-instance learning can be viewed as a
special case of semi-supervised learning, that is, learn-
ing with labeled negative examples along with unla-
beled instances enforced with positive constraints. The
intuition is that although the instances’ labels are not
given in multi-instance learning, it is known that a
negative bag does not contain any positive instance.
Thus, we can regard all the instances in negative bags
as labeled negative instances. On the other hand, since
a positive bag may contain positive as well as neg-
ative instances, we can regard its instances as unla-
beled ones enforced with a positive constraint that at
least one of them is positive. Based on this recogni-
tion, we propose the MissSVM (Multi-Instance learn-
ing by Semi-Supervised Support Vector Machine) al-
gorithm, which tackles multi-instance problems using
semi-supervised learning techniques, in particular, a
special semi-supervised SVM. Experiments show that
the MissSVM algorithm is competitive with state-of-
the-art multi-instance learning algorithms.

The rest of this paper is organized as follows. Section
2 briefly reviews related work. Section 3 proposes the
MissSVM algorithm. Section 4 presents the experi-
mental results. Finally, Section 5 concludes.

2. Related Work

2.1. Multi-Instance Learning

Multi-instance learning was originated from Dietterich
et al. (1997)’s research on drug activity prediction,
since that it has been studied by a lot of researchers
and many algorithms have been developed, such as Di-
verse Density (Maron & Lozano-Pérez, 1998) and EM-
DD (Zhang & Goldman, 2002), the k-nearest neighbor
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algorithm Citation-kNN (Wang & Zucker, 2000), deci-
sion tree algorithms RELIC (Ruffo, 2000) and ID3-MI
(Chevaleyre & Zucker, 2001), rule learning algorithm
RIPPER-MI (Chevaleyre & Zucker, 2001), SVM algo-
rithms MI-SVM and mi-SVM (Andrews et al., 2003)
and DD-SVM (Chen & Wang, 2004), ensemble algo-
rithms MI-Ensemble (Zhou & Zhang, 2003) and MI-
Boosting (Xu & Frank, 2004), logistic regression al-
gorithm MI-LR (Ray & Craven, 2005), etc. Many
of those algorithms were developed by adapting a
single-instance supervised learning algorithm to multi-
instance learning through shifting its focus from the
discrimination on the instances to the discrimination
on the bags (Zhou & Zhang, 2003).

Besides multi-instance classification, multi-instance
regression has also been studied (Amar et al., 2001;
Ray & Page, 2001). Weidmann et al. (2003) formu-
lated generalized multi-instance learning through em-
ploying different assumptions of how the instances’
classifications determine their bag’s label. Another
generalized multi-instance learning setting was defined
by Scott et al. (2003). In this paper we focus on stan-
dard multi-instance learning (Dietterich et al., 1997).

Multi-instance learning techniques have already been
applied to diverse applications such as image catego-
rization (Maron & Ratan, 1998; Chen & Wang, 2004;
Chen et al., 2006), computer security (Ruffo, 2000),
Web mining (Zhou et al., 2005b), face detection (Vi-
ola et al., 2006), etc.

2.2. Semi-Supervised Learning

Semi-supervised learning (Chapelle et al., 2006; Zhu,
2006) deals with algorithms for exploiting unlabeled
data to improve supervised learning performance.
Many semi-supervised learning approaches have been
developed. Some approaches use a generative model
for the classifier and employ EM to model the label
estimation or parameter estimation process (Miller &
Uyar, 1997; Nigam et al., 2000); some approaches use
the unlabeled data to regularize the learning process
in various ways, e.g., defining a graph on the data
set and then enforcing the label smoothness over the
graph as a regularization term (Belkin et al., 2001;
Zhou et al., 2005a; Zhu et al., 2003); some approaches
train two learners and then let the learners to label
unlabeled instances for each other (Blum & Mitchell,
1998; Goldman & Zhou, 2000; Zhou & Li, 2005).

Semi-supervised support vector machines have been
studied by many researchers, which attempt to maxi-
mize the margin on both labeled and unlabeled data,
by assigning unlabeled data to appropriate classes such
that the resulting margin is the maximum. Earlier

works include TSVM (Joachims, 1999), S3VM (Ben-
nett & Demiriz, 1999), V3SVM and CV3SVM (Fung &
Mangasarian, 1999), etc. Multi-class semi-supervised
SVM has also been developed (Xu & Schuurmans,
2005). Recently, Chapelle et al. (2007) showed that
the popular semi-supervised SVM objective function is
very well suited for semi-supervised learning, and in-
dicated that more effort should be made on trying to
efficiently find good local minima. Actually, much ef-
fort has already been devoted to this direction. In par-
ticular, Collobert et al. (2006) indicated that in many
cases non-convexity could provide scalability advan-
tages over convexity, and by exploiting CCCP (Smola
et al., 2005), they reported a significant speed up of
semi-supervised support vector machines.

In this paper we develop a special kind of semi-
supervised support vector machine to tackle multi-
instance problems. Note that this is different from
multi-instance semi-supervised learning (Rahmani &
Goldman, 2006) whose goal is to exploit abundant un-
labeled bags to help improve the performance of learn-
ing with a small number of labeled bags.

3. The Proposed Method
3.1. Notations

Let X denote the instance space. Given a data set
{(X1,m), (X2, 92), -5 (X, Ym)}, where X = {4,
Zig,  ,Xin,t C X (i € {1,---,m}) is a set of in-
stances called a bag and y; € {—1,+1} is a class
label, the goal is to predict the label for an unseen
bag. Here x;; € X (j € {1,---,n;}) is an instance
[®ij1, Tijo, - ,mijd]/ where z;;; is the value of x;; at
the kth (k € {1,--- ,d}) attribute, and n; denotes the
number of instances in X;. X; is a positive bag (thus
y; = +1) if there exists g € {1,--- ,n;}, @44 is positive.
Yet the concrete value of the index ¢ is not known.

Without loss of generality, assume that there are p
positive bags and ¢ negative bags, 0 < p,q < m and
p + q = m, and the negative bags are ordered before
the positive bags. That is, the training set is orga-
nized as {X, X5, - ,X(I_,X;r+17~-~ ,X(;_p_l,X;‘lL
where X, and X; denote that X; is a negative
or positive bag, respectively. If we put the in-
stances bag-by-bag into an instance set {xi1,---,
T1ny, L2155 &ml, " Lmon, ¢ and re-index the in-
stances into {@1, -+ ,@r} where T' = " n;, then
it is evident that the first T; = 23:1 n; instances
are from negative bags while the remaining Ty =
Z;iq 4171 instances are from positive bags, and the
bag X,’s instances are {xs,,---,T.,} where s; =

Z;;im +lande; =Y, =8 +n; —1
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3.2. A Reformulation of the Task

Now we show that how multi-instance learning can be
viewed as a special semi-supervised learning task.

According to the definition of multi-instance learning
(Dietterich et al., 1997), a positive bag contains at
least one positive instance while a negative bag does
not contain any positive instance. This implies that
all the instances in negative bags are negative. As
for every positive bag, we can regard it as a subset
of unlabeled instances with a positive constraint, i.e.
at least one instance in this subset is positive. Then,
using the notations defined in Section 3.1, the multi-
instance learning task can be reformulated as:

Definition 1 Given a set of labeled negative ezamples
{(x1,-1), (@2, 1), -+ , (21, —1)} and a set of unla-
beled instances {xr, 41, -+ , 1}, to learn a function
F$: X — {—1,41} subject to: Fori=q+1,---, m,
at least one instance in {xs,, -+ , e, } is positive.

The task stated in Definition 1 is obvious a semi-
supervised learning task. The function F'° is different
from the desired multi-instance learning function F,
but after obtaining F'* it is easy to derive the value
of F for any unseen bag X* = {x.1,Tw2, -, Tsp, }
through the following rule: F(X*) = +1 if there ex-
ists a j € {1,2,--- ,n.} such that F*(x.;) = +1 and
F(X*) = —1 otherwise. Thus, solving the original
multi-instance learning task is equivalent to solving
the semi-supervised learning task in Definition 1.

3.3. MissSVM

Let H be a Reproducing Kernel Hilbert Space (RKHS)
of function f: X — R. Denote the RKHS norm of ‘H
by ||f]|7. The optimization problem for popular semi-
supervised support vector machine is:

Ty, T
min 2718+ A Y B @) +5 > D(f(a)

t=1 t=Tp+1
(1)

where H;(z) = max{0,1 — z} is Hinge Loss. The
loss function D(%) is usually a non-convex hat shape
function which can be defined and solved in different
ways (Zhu, 2006). Here we adopt Bennett and Demiriz
(1999)’s definition:

D(z) = min{H,(z), Hi(—2)} (2)

For the task in Definition 1, if we do not consider the
positive constraints, a function f* will be generated
after the training process of the above semi-supervised
support vector machine, which maximizes the margin

on both labeled and unlabeled data. Then, a bag X
will be labeled as:

sen (g £ @) 3)

Considering the positive constraints, the following
term should be added to the optimization function:

ﬁimﬁng@O (1)

i=q+1

Thus, based on the above considerations, we can write
the optimization function as the constrained minimiza-
tion problem shown in Eq. 5.

1
min -
fEH M, 0,66 2

(_]-)f(wt)"_nt > 17 Mt 2 07 t= 1727"' 7TL;
max f(mt) + Hifq = 13 eifq = 07

t=8i, " ,€;
St f(m) +e—r, 21, g4-1, 20,

t=T,+ 1, T
(_1)f(mt) + é-thL 2 1) fthL 2 07

t=Ty +1,---,T.

113, + A1 +~0'1 + dmin(e, €)1 (5)

where n = [, -+ ,n7, ] are slack variables for the er-
rors on the instances of negative bags, 8 = [61,--- ,6,]’
are slack variables for the errors on the positive bags,
e=le1, - ,en,]) and € = [&1,. .., &, are slack vari-
ables for the errors on the instances of positive bags,
A, v and ¢ are user-defined parameters that trade off
model complexity with the errors, and 1 = [1,1,...,1]
is vectors of 1’s.

To reduce the optimization problem from a possi-
bly infinite-dimensional space to a finite-dimensional
space, representer theorem (Schélkopf & Smola, 2002)
can be used. The representer theorem requires that
Q(Ifll#) : [0,00) — R is a strictly monotonically in-
creasing function. Asin SVM, using Q(||f||n) = || f]Ix
satisfies this requirement. Therefore, f(x) can be
formed as Eq. 6 where all a; € R.

T
F@) =3 k(e @) (6)

With the order mentioned before, a T'x T kernel matrix
K can be defined on all instances in the training set.
Denote the ¢-th column of K by k;, then

flz) =K+ (7)

Using the representer theorem, the optimization prob-
lem in Eq. 5 can be rewritten as Eq. 8.

1
min  —a’Ka + M1 ++0'1 + dmin(e, £)'1 (8)
a,n,0,e,6b 2
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(-D(K'a+b)+n =1, n >0,

t=1,2,--,Tu;
. max (k,tOé + b) + Gi_q 2 1, Gi_q Z 0,
=S8iyt €4
s.t. i=gtl-,m

(k/ta + b) + Et—TL 2 1) Et—TL 2 Oa
t=Tp+1,---,T,;

(D)Ko +b) + &7, 21, &1y, 20,
t=T,41,--- T

Note that the first three terms of the objective func-
tion are convex, and the last one is concave. Except
the second constraint, all constraints are linear. The
second constraint can be regarded as a difference of two
convex functions. Therefore, the constrained concave-
convex procedure (CCCP) which has well-studied con-
vergence properties (Smola et al., 2005) can be used
to solve this optimization problem.

Both maz and min are non-smooth. To use CCCP, we
have to replace their gradients by subgradients. Here
we adopt Fung and Mangasarian (1999)’s definition of
the subgradient of min(e, £)'1:

I, ,
Ty (OTU) . if e <&
d(min(e,£)'1) = > (OIT’;,) +7() if e =6
L (OZ‘U) Zf Er > fr
(9)
where O, = [0,0,...,0] is a Ty-dimensional zero vec-

tor, I, is the r-th column of the Ty X Ty identify matrix
I, and 7 € (0,1). We can simply set 7 = 0.5.

We adopt the subgradient of ,_max k' used by
Cheung and Kwok (2006):

o( max Kia)=Y _ Buky (10)

t=5;,"",€; t=
where
=0, ifkta# max ¥, a,
B T rmsie (1)
> 0, otherwise,
and .
> Bu=1 (12)

t=s;

For convenience, the subgradient can be written with:

0, ifk;a# max ¥k, ,a,
Bit = 1 '

T or=si e (13)
otherwise,

where n, is the number of x; that maximizes k/,c.

At the a-th iteration, max k’;a can be replaced in

=8i, €
the constraint by:
€; €4
(k';a®) + Z Bik (o — at) = Z Lk i

t=s; t=s;

max
t=si,,e;

(14)

Now, we can write the optimization problem for the
a-th iteration of CCCP as Eq. 15.

min ;a'Ka+)\77’1+'y(9’1+§8(min(e“,6“)’1)'(E)

a,n,0,e,6,b 5
(15)
(—1D)(Ka+b)+m, =1, n, >0,
t:172a'” 7TL;
€4
S Bk e+ b+0; g =1, 0y >0,
t=s;
s.t. i=q+1,--,m

(Kia+b)+er7, 21, -1, 20,
t=T,+1,--- T

(-)(Kia+b)+ &1, 21, &1, 20,
t=T1r,+1,---,T.

It is evident that Eq. 15 is a standard QP problem.
Following CCCP, we can do the iteration until « con-
verges to a solution.

4. Experiments

We evaluate the performance of MissSVM on three
real-world tasks, i.e. drug activity prediction, image
categorization, and Web index page recommendation.

4.1. Drug Activity Prediction

The Musk data is a real-world benchmark for multi-
instance learning, which was generated in the re-
search of drug activity prediction (Dietterich et al.,
1997) and has been well studied in this area. Here
a bag represents a molecule and the instances in the
bag represents the alternative low-energy shapes of
that molecule. Each shape is represented by a 166-
dimensional feature vector. For each molecule, if at
least one of its low-energy shapes could tightly bind to
the target area of some larger molecules, the molecule
is qualified to make a certain drug and it is regarded
as a positive bag; otherwise it is a negative bag.

There are two data sets, i.e. Muskl and Musk2, both
publicly available at the UCI machine learning repos-
itory (Blake et al., 1998). Musk! contains 47 posi-
tive bags and 45 negative bags, and the number of in-
stances contained in each bag ranges from 2 to 40 (5.17
in average). Musk2 contains 39 positive bags and 63
negative bags, and the number of instances contained
in each bag ranges from 1 to 1,044 (64.49 in average).

Three parameters, i.e. A, -y, and §, need to be speci-
fied for MissSVM. Besides, the parameter of Guanssian
kernel, 7,4, also needs to be set. Here we simply
set v = A X # Negativelnstances _ )\TL/p and § =

# PostitiveBags
A X # Negativelnstances — )\TL/TU ThUS, only A

#UnlabeledInstances
and v, need to tune. For Muskl, we chose A among
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{8,10,12,15} and v, from 0.5 to 1.0 with a step size
0.05 by cross validation on the training set; for Musk?2,
for simplicity, we fixed A = 10 based on the result on
Musk1 and only tuned «4. The other experiments used
a similar routine to set the parameters.

On Musk! we performed 10-fold cross validation; on
Musk2 we conducted hold-out tests by using 1/3 data
for training while the remaining data for testing, and
repeated the experiments for 30 runs with random
training/test partitions. The results are tabulated in
Table 1. The 95%-confidence intervals are [84.3,90.8]
on Muskl and [72.5,87.5] on Musk2. For comparison,
Table 1 also shows the performance of many multi-
instance learning algorithms reported in literature, in-
cluding MILES (Chen et al., 2006), MI-LR (Ray &
Craven, 2005), MIBoosting (Xu & Frank, 2004), DD-
SVM (Chen & Wang, 2004), mi-SVM and MI-SVM
(Andrews et al., 2003), RIPPER-MI (Chevaleyre &
Zucker, 2001), RELIC (Ruffo, 2000), Citation-kNN
(Wang & Zucker, 2000), Diverse Density (Maron &
Lozano-Pérez, 1998), MULTINST (Auer, 1997) and
Iterated-discrim APR (Dietterich et al., 1997).

Table 1. Predictive accuracy (%) on the Musk data

Algorithm Muskl — Musk?2
MissSVM 87.6 80.0
MILES 86.3 87.7
MI-LR 86.7 87.0
MIBoosting 87.9 84.0
DD-SVM 85.8 91.3
mi-SVM 87.4 83.6
MI-SVM 77.9 84.3
RIPPER-MI 88.0 77.0
RELIC 83.7 87.3
Citation-kNN 92.4 86.3
Diverse Density 88.9 82.5
MULTINST 76.7 84.0

Iterated-discrim APR 92.4 89.2

Table 1 shows that on the Musk data MissSVM is com-
petitive with state-of-the-art multi-instance learning
algorithms. In particular, it is superior to seven among
the twelve compared algorithms on Muskl. On Musk2
its performance is not as good as on MuskI, possibly
because that we have not tuned A on this data and
simply used the value chosen on Muskl. Nevertheless,
Table 1 shows that multi-instance problems can be ad-
dressed from the view of semi-supervised learning.

4.2. Image Categorization

The COREL data set described in (Chen & Wang,
2004; Chen et al., 2006) was used in this experi-
ment, which contains 2,000 JPEG images with sizes
of 384 x 256 or 256 x 384. There are twenty image
categories each containing 100 images. Each image is

regarded as a bag, and the ROIs (Region of Interests)
in that image are regarded as instances in the bag.
Each ROI is described by a nine-dimensional feature
vector. We used the processed data ! such that all the
bags and instances are as same as those used in (Chen
& Wang, 2004; Chen et al., 2006). Table 2 summarizes
the details of this data set.

Table 2. The image categories and the average number of
instances per bag (Inst/bag) for each category

ID Category name Inst/bag
0 African people and villages 4.84
1 Beach 3.54
2 Historical building 3.10
3 Buses 7.59
4 Dinosaurs 2.00
5 Elephant 3.02
6 Flowers 4.46
7 Horses 3.89
8 Mountains and glaciers 3.38
9 Food 7.24
10  Dogs 3.80
11 Lizards 2.80
12 Fashion models 5.19
13 Sunset scenes 3.52
14 Cars 4.93
15 Waterfalls 2.56
16  Antique furniture 2.30
17 Battle ships 4.32
18  Skiing 3.34
19  Desserts 3.65

The experimental routine described in (Chen et al.,
2006) was adopted here. In detail, the original data
set was used as two data sets. The first one (i.e. 1000-
Image) used the first ten categorizes in Table 2 while
the second (i.e. 2000-Image) used all the categorizes.
For each data set, images within each category were
randomly partitioned in half. One was used for train-
ing and the other for testing. Each experiment was
repeated for five times for five random splits, and the
average results were reported.

One-against-one strategy is employed by MissSVM for
this multi-class task. The overall accuracy as well as
95% confidence intervals are reported in Table 3. Be-
sides the results of MissSVM, the table also presents
the results of some existing multi-instance learning
algorithms reported in literature, including MILES
(Chen et al., 2006), DD-SVM (Chen & Wang, 2004),
MI-SVM (Andrews et al., 2003; Chen & Wang, 2004)
and kmeans-SVM (Csurka et al., 2004).

Table 3 shows that on this task MissSVM is competi-
tive with the compared algorithms. The confusion ma-
trix of MissSVM on 1000-Image is shown in Figure 1,

http:/ /www.cs.olemiss.edu/~ychen/ddsvm.html
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Cat. 0 Cat. 1 Cat. 2 Cat.3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 Cat.9
Cat. 0 71.6 4.0 3.2 0.4 0.0 10.0 1.2 0.8 2.4 6.4
Cat. 1 3.2 50.0 1.6 6.8 0.0 2.4 0.8 0.0 35.2 0.0
Cat. 2 5.2 10.0 62.4 5.2 0.0 3.6 0.4 0.0 11.6 1.6
Cat. 3 2.4 1.2 3.6 87.2 0.0 0.0 0.0 0.0 1.6 4.0
Cat. 4 0.0 0.0 0.0 0.8 96.4 1.6 0.0 0.0 0.4 0.8
Cat. 5 5.6 2.4 4.0 0.0 0.0 79.2 0.0 0.4 8.4 0.0
Cat. 6 4.0 0.0 1.2 0.4 0.0 0.0 86.4 0.0 1.6 6.4
Cat. 7 6.8 0.8 0.8 0.0 0.0 7.2 0.8 81.6 1.6 0.4
Cat. 8 0.0 13.6 1.6 4.4 0.0 0.8 0.0 0.0 78.4 1.2
Cat. 9 7.6 3.6 0.0 0.4 0.0 1.6 0.0 0.0 0.0 86.8

Figure 1. The confusion matrix of MissSVM on 1000-Image

Table 3. Overall accuracy (%) on image categorization

Algorithm 1000-Image 2000-Image

MissSVM 78.0: [75.8,80.2] 65.2: [62.0,68.3]
MILES 82.6: [81.4,83.7) 68.7: [67.3,70.1]
DD-SVM 81.5: [78.5,84.5]  67.5: [66.1,68.9]
MI-SVM 747 [74.1,75.3]  54.6: [53.1,56.1]
kmeans-SVM  69.8: [67.9,71.7] 52.3: [51.6,52.9]

where each row lists the average percentages of images
in a specific category classified to each of the 10 cate-
gories. Therefore, the numbers on the diagonal show
the classification accuracy for each category and off-
diagonal entries indicate classification errors. Figure 1
reveals that MissSVM works well on most categorizes.
The largest errors are errors between Category 1 (i.e.
Beach) and Category 8 (i.e. Mountains and glaciers):
35.2% Beach images were misclassified as Mountains
and glaciers while 13.6% Mountains and glaciers im-
ages were misclassified as Beach. This phenomenon
has appeared in previous research (Chen & Wang,
2004; Chen et al., 2006). As Chen and Wang (2004)
stated, these high classification errors are due to the
fact that many images of these two categories contain
semantically related and visually similar regions such
as those corresponding to mountain, river, lake and
ocean. Overall, the results on the image categorization
task shows again that multi-instance problems can be
addressed from the view of semi-supervised learning.

4.3. Web Index Page Recommendation

The Web index page recommendation data sets de-
scribed in (Zhou et al., 2005b) were used in this ex-
periment. A Web index page is a Web page which
contains plentiful information but only provides titles
or brief summaries while leaving the detailed presen-
tation to its linked pages. 113 Web index pages were
collected and labeled by nine volunteers according to
their interests, and therefore there are 9 data sets.
The whole data is of 30.2MB after compression. Each
Web index page is regarded as a bag while its linked
pages are regarded as instances. The biggest bag con-
tains 200 instances, while the smallest one contains

only 4 instances. In average, each bag contains 30.29
(3,423/113) instances. Each instance is described by
the 1st to 15th most frequent terms appearing in the
corresponding linked page. TFIDF are used to repre-
sent the frequent term, and normalization is performed
instance by instance. For each of the nine data sets,
75 bags were randomly selected for training while the
remaining 38 bags were used for testing. We used the
processed data 2 such that all the bags and instances
are as same as those used in (Zhou et al., 2005b). The
number of positive and negative bags in the data sets
is tabulated in Table 4.

Table 4. The Web index page recommendation data sets

Training set Test set
Data set ~pg. Neg. Pos. Neg.

Vi1 17 58 4 34
Ve 18 57 3 35
Vs 14 61 7 31
V4 56 19 33 5
Vs 62 13 27 11
V6 60 15 29 9
V7 39 36 16 22
V8 35 40 20 18
V9 37 38 18 20

The performance of MissSVM measured by precision,
recall and F-measure on these data sets are depicted
in Figure. 2. The figure also includes the performance
of Fretcit-kNN, r-Fretcit-kNN and TFIDF reported in
literature (Zhou et al., 2005b). The results averaged
across all the nine data sets are summarized in Table 5.

Table 5. Results averaged across the nine data sets

Algorithm Precision Recall F-measure
MissSVM 0.627 0.838 0.690
Fretcit-kNN 0.739 0.741 0.728
r-Fretcit-kNN 0.727 0.720 0.704
TFIDF 0.679 0.620 0.591

Table 5 shows that MissSVM is competitive with the
compared algorithms on the Web index page recom-

http://cs.nju.edu.cn/people/zhouzh /zhouzh.files/

publication/annex/milweb-datafile.htm
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(a) Precision

(b) Recall

(¢) F-measure

Figure 2. Precision, recall and F-measure on the nine Web index page recommendation data sets

mendation data sets. In particular, its recall is the
best among the algorithms, and F-measure is only
about 5% lower than Fretcit-kNN and 2% lower than
r-Fretcit-kNN. Figure 2 reveals that on most data sets
the F-measure of MissSVM is close to that of Fretcit-
kNN and r-Fretcit-kNN except on V7 due to a poor
precision. These observations verify again that multi-
instance problems can be addressed from the view of
semi-supervised learning.

5. Conclusion

Multi-instance learning and semi-supervised learning
are two different branches of machine learning. In this
paper, we establish a bridge between them by show-
ing that multi-instance learning can be viewed as a
special case of semi-supervised learning. Based on
this recognition, we develop the MissSVM algorithm
which tackles multi-instance problems using semi-
supervised learning techniques. Experiments show
that the MissSVM algorithm is competitive with many
existing multi-instance learning algorithms.

The MissSVM algorithm can be easily extended to
multi-instance regression (Amar et al., 2001; Ray &
Page, 2001) by exploiting semi-supervised regression
techniques. It is also possible to be extended to gener-
alized multi-instance learning (Weidmann et al., 2003;
Scott et al., 2003). Since MissSVM is inherently a
semi-supervised learning algorithm, using it to tackle
multi-instance semi-supervised learning (Rahmani &
Goldman, 2006) is straightforward.

In addition to the convenience in representing some
real-world objects such as the molecules (Dietterich
et al., 1997), we think multi-instance learning relaxes
the i.i.d. assumption made by traditional supervised
learning. That is, in contrast to assuming that all
the instances are identically and independently dis-
tributed, multi-instance learning only assumes that
the bags are i.i.d. samples yet the instances in the
bags need not to be so. For example, it is reasonable to
assume i.7.d. molecules but not reasonable to assume

that the shapes of the same molecule are identically
and independently distributed. Unfortunately, most
previous studies on multi-instance learning ignore this
characteristic. Our result suggests that by assuming
i.7.d. instances, multi-instance learning might become
a special case of semi-supervised learning. So, it might
be better to assume only i.i.d. bags in future research
of multi-instance learning.
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