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Abstract

In this paper, we present a new analysis
on co-training, a representative paradigm of
disagreement-based semi-supervised learning
methods. In our analysis the co-training pro-
cess is viewed as a combinative label propaga-
tion over two views; this provides a possibility
to bring the graph-based and disagreement-
based semi-supervised methods into a unified
framework. With the analysis we get some
insight that has not been disclosed by pre-
vious theoretical studies. In particular, we
provide the sufficient and necessary condi-
tion for co-training to succeed. We also dis-
cuss the relationship to previous theoretical
results and give some other interesting impli-
cations of our results, such as combination of
weight matrices and view split.

1. Introduction

Semi-supervised learning (Chapelle et al., 2006; Zhu,
2007) deals with methods for automatically exploit-
ing unlabeled data in addition to labeled data to
improve learning performance. During the past
decade, many semi-supervised learning algorithms
have been developed, e.g., S3VMs, graph-based meth-
ods and disagreement-based methods. Co-training
(Blum & Mitchell, 1998) is a representative paradigm
of disagreement-based methods (Zhou & Li, in press).
In its initial form, co-training trains two classifiers sep-
arately on two sufficient and redundant views and lets
the two classifiers label some unlabeled instances for
each other. It has been found useful in many applica-
tions such as statistical parsing and noun phrase iden-
tification (Hwa et al., 2003; Steedman et al., 2003).

All machine learning methods work with specific

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

assumptions, so do semi-supervised learning meth-
ods. S3VMs and graph-based methods generally
work with the cluster assumption or the manifold
assumption. The cluster assumption concerns on
classification, while the manifold assumption can
also be applied to tasks other than classification.
Without these assumptions concerning the relation-
ship between the labels and unlabeled data distribu-
tion, semi-supervised learning has limited usefulness
(Ben-David et al., 2008).

Like other semi-supervised methods, co-training also
needs some assumptions to guarantee its success.
When co-training was proposed, Blum & Mitchell
(1998) proved that if the two sufficient and redun-
dant views are conditionally independent to the other
given the class label, co-training can be successful.
Yu et al. (2008) proposed a graphical model for co-
training based on the conditional independence as-
sumption as well. Abney (2002) showed that weak
dependence can also guarantee successful co-training.
After that, a weaker assumption called ǫ-expansion
was proved sufficient for iterative co-training to suc-
ceed (Balcan et al., 2005). The above studies give
theoretical support to co-training working with two
views. For tasks with only a single view, some effec-
tive variants have been developed (Goldman & Zhou,
2000; Zhou & Li, 2005). Wang & Zhou (2007) proved
that if the two classifiers are with large diversity, co-
training style algorithms can succeed. This gives theo-
retical support to the success of single-view co-training
variants, and also contributes to a further understand-
ing of co-training with two-views.

To the best of our knowledge, all previous analyses
studied the sufficient condition for the success of co-
training, yet the sufficient and necessary condition is
untouched. In this paper, we provide a new analysis of
co-training, where the learner in each view is viewed
as label propagation and thus the co-training process
can be viewed as the combinative label propagation
over the two views. Based on this new analysis, we
get some insights that have not been discovered by
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previous theoretical studies. In particular, we provide
the sufficient and necessary condition for co-training
to succeed. We also discuss the relationship to previ-
ous theoretical results and give some other interesting
implications of our results. Finally we verify our the-
oretical findings empirically.

The rest of this paper is organized as follows. Af-
ter introducing some preliminaries we provide our new
analysis of co-training in Section 3 and discuss the rela-
tionship between our results and previous theoretical
results in Section 4. Then we verify our theoretical
results in Section 5 and study the implication of our
theoretical results on view split in Section 6. Finally
we conclude the paper in Section 7.

2. Preliminaries

Suppose we have example space X = X1 ×X2, where
X1 and X2 correspond to the two different views of the
example space, respectively. Let D denote the distri-
bution over X, C1 and C2 denote the concept classes
over X1 and X2, respectively. Let Y = {−1, 1} de-
note the label space and c = (c1, c2), where c1 ∈ C1

and c2 ∈ C2, denote the underlying target concept.
In co-training, we assume that the labels on exam-
ples are consistent with the target concepts c1 and
c2, i.e., there is no such example x = (x1, x2) that
c1(x1) 6= c2(x2) in X. Suppose that the data set is
L ∪ U , where L = {〈(x1

1, x
2
1), y1〉, · · · , 〈(x

1
l , x

2
l ), yl〉} ⊂

X × Y is the labeled data set and U = {(x1
l+1

, x2
l+1

),
· · · , (x1

l+u, x2
l+u)} ⊂ X is the unlabeled data set.

3. Graph View of Co-training

Co-training (Blum & Mitchell, 1998) trains two learn-
ers respectively from two different views and lets the
learners label the most confident unlabeled instances
to enlarge the training set of the other learner. Such a
process can be repeated until some stopping condition
is met. In this section, we will show how co-training
can be viewed as a combinative label propagation over
the two views and then give the sufficient and neces-
sary condition for co-training to succeed.

Generally, assigning a label to an unlabeled instance xv
t

(v = 1, 2) based on a labeled example xv
s can be viewed

as estimating the conditional probability P
(

y(xv
t ) =

y(xv
s)|xv

t , xv
s

)

. For controlling the confidence of the es-
timation of the learner, we can set a threshold ηv > 0
(generally ηv = 1/2). If P

(

y(xv
t ) = y(xv

s)|x
v
t , xv

s

)

<

ηv, we set P
(

y(xv
t ) = y(xv

s)|x
v
t , xv

s

)

= 0. Note that

P
(

y(xv
t ) = y(xv

s)|x
v
t , xv

s

)

= 0 does not mean that
xv

s and xv
t must have different labels. In this way,

we can assign label to xv
t according to P

(

y(xv
t ) =

Table 1. Re-description of co-training

Input: Labeled examples L, unlabeled instances U

and probabilistic transition matrix P v (v = 1, 2).

Process: Perform label propagation from labeled

examples L to unlabeled instances U on graph P v

and get the labeled examples set Sv

0 .

iterate k = 0, 1, 2, · · ·

if S1
k ⊕ S2

k = ∅

break;

end if

Perform label propagation from labeled examples

S3−v

k
∩ (U −Sv

k) to unlabeled instances U −Sv

k on

graph P v and get the labeled examples set T v

k ;

Sv

k+1 = Sv

k ∪ T v

k .

end iterate

Output: fv

U corresponding to Sv

k

y(xv
s)|xv

t , xv
s

)

and the label of xv
s . For two labeled

examples xv
w and xv

q , if they have the same label,

we set P
(

y(xv
w) = y(xv

q)|xv
w, xv

q

)

= 1 and otherwise

P
(

y(xv
w) = y(xv

q)|xv
w, xv

q

)

= 0. Let each entry P v
ij of

the matrix P v correspond to P
(

y(xv
i ) = y(xv

j )|xv
i , xv

j

)

(1 ≤ i, j ≤ n = l + u) and fv =

[

fv
L

fv
U

]

=

[

YL

0

]

.

Without loss of generality, P v can be normalized to a
probabilistic transition matrix according to Eq. 1.

P v
ij ← P v

ij/
∑n

m=1
P v

im (1)

In this way, the labels can be propagated from labeled
examples to unlabeled instances according to the pro-
cess (Zhu, 2005): 1) Propagate fv = P vfv; 2) Clamp
the labeled data fv

L = YL; 3) Repeat from step 1 un-
til fv converges. The labels of unlabeled instances in
U can be assigned according to sign(fv

U ). For some
unlabeled instance xv

t if fv
t = 0, it means that label

propagation on graph P v has no idea on xv
t . Thus, in

each view the learner can be viewed as label propaga-
tion from labeled examples to unlabeled instances on
graph P v and we focus on label propagation in this pa-
per. The error err(fv

U ), the accuracy acc(fv
U ) and the

uncertainty ⊥(fv
U ) of this graph-based method can be

counted on U as acc(fv
U ) = Pxv

t ∈U [fv
U (xv

t ) ·cv(xv
t ) > 0],

err(fv
U ) = Pxv

t ∈U [fv
U (xv

t ) · cv(xv
t ) < 0], and ⊥(fv

U ) =
Pxv

t ∈U [fv
U (xv

t ) = 0].

In one view, the labels can be propagated from initial
labeled examples to some unlabeled instances in U and
these newly labeled examples can be added into the
other view. Then the other view can propagate the
labels of initial labeled examples and these newly la-
beled examples to the remaining unlabeled instances
in U . This process can be repeated until the stop-
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ping condition is met. Thus, the co-training algorithm
can be re-described as the combinative label propa-
gation process over the two views in Table 1, where
S1

k ⊕ S2
k = (S1

k − S2
k) ∪ (S2

k − S1
k).

3.1. Co-training with Perfect Graphs

Label propagation needs a graph which is represented
by the matrix P . In this paper, we focus on the
co-training process with two graphs P 1 and P 2 con-
structed from the two views. How to construct a graph
is an important issue studied in graph-based methods
(Jebara et al., 2009; Maier et al., 2009) and is beyond
the scope of this paper.

First, we assume that P v (v = 1, 2) is perfect graph
in this section, i.e., if P

(

y(xv
t ) = y(xv

s)|x
v
t , xv

s

)

> 0,
xv

s and xv
t must have the same label. It means that

the learner is either “confident of labeling” or “having
no idea”. Before showing the sufficient and necessary
condition for co-training with perfect graphs to suc-
ceed, we need Lemma 1 to indicate the relationship
between label propagation and connectivity.

Lemma 1 Suppose that P is perfect graph. Unla-
beled instance xt0 can be labeled by label propagation on
graph P if and only if it can be connected with some
labeled example xtr

in graph P through a path R in
the form of VR = {t0, t1, · · · , tr}, where Ptρtρ+1

> 0
(ρ = 0, · · · , r − 1).

Proof. It is well known (Zhu, 2005) that the label
propagation process has the following closed form so-
lution for each connected component in graph P .

fUθ
= (I − PUθUθ

)−1PUθLθ
YLθ

. (2)

Here Uθ∪Lθ is a connected component πθ in graph P ,
where Uθ ⊆ U and Lθ ⊆ L.

If an unlabeled instance xt cannot be connected with
any labeled example, with respect to Eq. 2, we know
that ft = 0. If xt0 can be connected with some
labeled example xtr

through a path R in the form of
VR = {t0, t1, · · · , tr}, considering that P is a perfect

graph we get |ft0 | ≥
∏r−1

ρ=0
Ptρtρ+1

|ytr
|. Thus, xt0 can

be labeled with label sign(ft0) by label propagation. �

From Lemma 1 we know that when every unlabeled
instance can be connected with some labeled example
through a path in perfect graph P , label propagation
on graph P is successful. Now we give Theorem 1.

Theorem 1 Suppose P v (v = 1, 2) is perfect graph.
fv

U (xv
t ) · cv(xv

t ) > 0 for all unlabeled instance xt ∈ U

(t = l + 1, · · · , l + u) if and only if S1
k ⊕ S2

k is not ∅ in
Table 1 until Sv

k = L ∪ U .

Proof. Here we give a proof by contradiction. Sup-
pose that for any unlabeled instance xt ∈ U (t =
l+1, · · · , l+u), fv

U (xv
t )·cv(xv

t ) > 0. From Lemma 1 and
the process in Table 1 we know that for any unlabeled
instance xt0 ∈ U , xt0 can be connected with some la-
beled example xtr

∈ L through a path R in the form of
VR = {t0, t1, · · · , tr}, where P 1

tρtρ+1
> 0 or P 2

tρtρ+1
> 0

(ρ = 0, · · · , r − 1). If S1
k ⊕ S2

k = ∅ while Sv
k 6= L ∪ U ,

there must exist some unlabeled instances in U − Sv
k .

Considering that Sv
k are obtained by label propagation

on graph P v, so from Lemma 1 we know that for any
unlabeled instance xh ∈ U − Sv

k , there is no path be-
tween xh and any labeled example xd ∈ Sv

k in graph
P v, i.e., P v

hd = 0. It is in contradiction with that any
unlabeled instance in U can be connected with some
labeled example in L through a path R. Therefore,
if fv

U (xv
t ) · cv(xv

t ) > 0 for all unlabeled instance xt,
S1

k ⊕ S2
k is not ∅ until Sv

k = L ∪ U .

Suppose the graph P v contains λv connected compo-
nents. If one example in some connected component
is labeled, from Lemma 1 we know that all unla-
beled instances in this connected component can be
labeled by label propagation. If S1

k ⊕ S2
k is not ∅

until Sv
k = L ∪ U , in the k-th iteration of Table 1,

the unlabeled instances in at least one connected
component of either P 1 or P 2 will be labeled by label
propagation. Thus, after at most λ1 + λ2 iterations
all unlabeled instances in U can be assigned with
labels by the process in Table 1. Considering that
P v in each view is perfect graph, we get that for any
unlabeled instance xt ∈ U , fv

U (xv
t ) · cv(xv

t ) > 0. �

Theorem 1 provides the sufficient and necessary con-
dition for co-training with perfect graphs to succeed.
With this theorem, for tasks with two views, if two
perfect graphs can be constructed from the two views,
we can decide whether co-training will be successful.

3.2. Co-training with Non-perfect Graphs

In many real applications, it is generally hard to con-
struct a perfect graph. We will discuss the case when
the perfect graph assumption is waived in this section.

In label propagation on non-perfect graph, an unla-
beled instance may be connected with labeled exam-
ples belonging to different classes. As discussed in the
proof of Lemma 1, the label propagation for each con-
nected component πθ in graph P has the closed form of
fUθ

= (I−PUθUθ
)−1PUθLθ

YLθ
. Let A = (I−PUθUθ

)−1,
we can get Eq. 3 from Eq. 2.
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ft =
∑

s∈Lθ

∑

j∈Uθ

AtjPjsYs (t ∈ Uθ) (3)

From Eq. 3 we know that in each connected component
the contribution of the labeled example xs (s ∈ Lθ) to
the unlabeled instance xt (t ∈ Uθ) is

∑

j∈Uθ
AtjPjs.

Now we define the positive contribution and negative
contribution for an unlabeled instance.

Definition 1 Let Lθ denote the labeled examples and
Uθ denote the unlabeled instances belonging to the con-
nected component πθ in graph P . For an unlabeled
instance xt (t ∈ Uθ), the positive contribution to xt is

∑

Ys=yt

∑

j∈Uθ

AtjPjs|Ys| (4)

and the negative contribution to xt is

∑

Ys 6=yt

∑

j∈Uθ

AtjPjs|Ys|. (5)

If the positive contribution is larger than the negative
contribution, the unlabeled instance xt will be labeled
correctly by label propagation.1 Now we give Theo-
rem 2 for co-training with non-perfect graphs.

Theorem 2 Suppose P v (v = 1, 2) is non-perfect
graph. fv

U (xv
t ) · cv(xv

t ) > 0 for all unlabeled instance
xt ∈ U (t = l + 1, · · · , l + u) if and only if both (1)
and (2) hold in Table 1: (1) S1

k ⊕ S2
k is not ∅ until

Sv
k = L ∪ U ; (2) For any unlabeled instance in the

connected component πv
θk

, where πv
θk
⊆ (U − Sv

k) and

πv
θk
∩ S3−v

k 6= ∅, its positive contribution is larger than
its negative contribution.

Proof. Here we give a proof by contradiction. Sup-
pose for any unlabeled instance xt ∈ U , fv

U (xv
t ) ·

cv(xv
t ) > 0. If S1

k ⊕ S2
k is equal to ∅ while Sv

k 6=
L ∪ U , for any unlabeled instance x = (x1, x2) in
U − Sv

k , fv
U (xv) = 0. It is in contradiction with

fv
U (xv) ·cv(xv) > 0. If for some unlabeled instance x in

the connected component πv
θk

, where πv
θk
⊆ (U − Sv

k)

and πv
θk
∩ S3−v

k 6= ∅, its positive contribution is no
larger than negative contribution, fv

U (xv) · cv(xv) ≤ 0.
It is also in contradiction with fv

U (xv) · cv(xv) > 0.

If conditions (1) and (2) hold, with Definition 1 it is
easy to get that for any unlabeled instance xt ∈ U ,
fv

U (xv
t ) · cv(xv

t ) > 0. �

Theorem 2 provides the sufficient and necessary condi-
tion for co-training with non-perfect graphs to succeed.

1We neglect the probability mass on the instances for
which the non-zero positive contribution is equal to the
non-zero negative contribution in this paper.

Note that in both Theorem 1 and Theorem 2, S1
k ⊕S2

k

is not ∅ until Sv
k = L ∪ U (v = 1, 2) is a necessary

condition. In the following part of this section we will
further study what this necessary condition means and
how to verify it before co-training.

First, we introduce the combinative graph P c in Eq. 6
which aggregates graphs P 1 and P 2.

P c
ij = max[P 1

ij , P
2
ij ] (6)

Then we give Theorem 3 which indicates that each
unlabeled instance can be connected with some labeled
example in graph P c is the necessary condition.

Theorem 3 S1
k⊕S2

k is not ∅ in Table 1 until Sv
k = L∪

U (v = 1, 2) if and only if each unlabeled instance xt0 ∈
U can be connected with some labeled example xtr

∈ L
in graph P c through a path Rc in the form of VRc =
{t0, t1, · · · , tr}, where P c

tρtρ+1
> 0 (ρ = 0, · · · , r − 1).

Proof. If we neglect the probability mass on the
instances for which the non-zero positive contribution
is equal to the non-zero negative contribution in this
paper, similarly as the proof of Lemma 1 we get that:
Unlabeled instance can be labeled by label propagation
on graph P if and only if it can be connected with some
labeled example in graph P through a path.

If S1
k ⊕ S2

k is not ∅ until Sv
k = L ∪ U , any unlabeled

instance xt ∈ U can be labeled by the process in Table
1. So xt must belong to one of S1

0 , S2
0 , T 1

k or T 2
k for

some k ≥ 0. Considering Eq. 6, the above discussion
and the fact that S1

0 , S2
0 , T 1

k and T 2
k have been ob-

tained in previous iteration by label propagation and
will be used as labeled examples in next iteration, we
can get that xt0 can be connected with some labeled
example xtr

∈ L in graph P c through a path Rc.

If each unlabeled instance xt0 ∈ U can be connected
with some labeled example xtr

∈ L through a path Rc,
with respect to Eq. 6, we can get that either P 1

tρtρ+1
or

P 2
tρtρ+1

is larger than 0 for ρ = 0, · · · , r − 1. Because
xtr

is a labeled example, with above discussion and
the process in Table 1 we know that xtr−1

, · · · , xt0 can
be labeled by label propagation on either P 1 or P 2.
Therefore, finally Sv

k = L ∪ U . �

3.3. Co-training with ǫ-Good Graphs

It is somehow overly optimistic to expect to learn the
target concept perfectly using co-training with non-
perfect graphs. While learning the approximately cor-
rect concept using co-training with approximately per-
fect graphs is more reasonable. In perfect graph, all
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edges between the examples are reliable; while in non-
perfect graph, it is hard to know which and how many
edges are reliable. Restricting the reliability and al-
lowing an ǫ-fraction exception is more feasible in real
applications. In this section, we focus on the approx-
imately perfect graph and provide sufficient condition
for co-training the approximately correct concept.

Let πv
1 , · · · , πv

λv
(v = 1, 2) denote the λv connected

components in graph P v, the definitions of purity and
ǫ-good graph are given as follows.

Definition 2 Let pur(πv
θ ) denote the purity of the

connected component πv
θ in graph P v, then

pur(πv
θ ) = max

[

|{xv : xv ∈ πv
θ ∧ cv(xv) = 1}|/|πv

θ |,

|{xv : xv ∈ πv
θ ∧ cv(xv) = −1}|/|πv

θ |
]

(7)

If pur(πv
θ ) ≥ 1− ǫ for all 1 ≤ θ ≤ λv, we say that P v

is an ǫ-good graph.

The purity of the connected components reflects the
reliability of the graph. The higher the purity, the
more reliable the graph. With the purity, we can define
the label of πv

θ as cv(πv
θ ).

cv(πv
θ ) =







1 if |{xv : xv ∈ πv
θ ∧ cv(xv) = 1}| ≥

|{xv : xv ∈ πv
θ ∧ cv(xv) = −1}|

−1 otherwise

With ǫ-good graph, predicting the labels of all πv
θ cor-

rectly is sufficient to get a learner whose error rate is
less than ǫ. From Definition 1 we know that the con-
tribution is related to the number of labeled examples
in the connected component. In a connected compo-
nent, if the labeled examples with label y (y ∈ {−1, 1})
is much more than the labeled examples with label
−y, the unlabeled instances belong to this connected
component may be labeled with y. Based on this,
we assume graph P v satisfies the following condition:
in the connected component πv

θk
of graph P v where

πv
θk
⊆ (U − Sv

k) and πv
θk
∩ S3−v

k 6= ∅, let fv
k de-

note the learner corresponding to Sv
k , if |{xt : xt ∈

πv
θk
∩ S3−v

k ∧ f3−v
k (xt) · y > 0}|/|πv

θk
| > |{xt : xt ∈

πv
θk
∩S3−v

k ∧f3−v
k (xt) ·y < 0}|/|πv

θk
|+γ, the unlabeled

instances belonging to πv
θk

can be labeled with y by
label propagation on graph P v. Here γ ∈ [0, 1) can
be thought of as a form of margin which controls the
confidence in label propagation. With this assump-
tion, we get Theorem 4 which provides a margin-like
sufficient condition for co-training the approximately
correct concept with ǫ-good graphs.

Theorem 4 Suppose P v (v = 1, 2) is ǫ-good graph.
acc(fv

U ) ≥ 1 − ǫ if both (1) and (2) hold in Table 1:

(1) S1
k ⊕ S2

k is not ∅ until Sv
k = L ∪ U ; (2) In the

connected component πv
θk

, where πv
θk
⊆ (U − Sv

k) and

πv
θk
∩ S3−v

k 6= ∅, |{xt : xt ∈ πv
θk
∩ S3−v

k ∧ f3−v
k (xt) ·

cv(πv
θk

) > 0}|/|πv
θk
| > |{xt : xt ∈ πv

θk
∩S3−v

k ∧f3−v
k (xt)·

cv(πv
θk

) < 0}|/|πv
θk
|+ γ.

4. Relationship to Previous Results

There are several theoretical analyses on co-training
indicating that co-training can succeed if some condi-
tion holds, i.e., conditional independence, weak depen-
dence, α-expansion and large diversity. In this section
we will discuss the relationship between our results and
the previous results at first, then we will discuss some
other interesting implications of our results.

4.1. Conditional Independence

Blum & Mitchell (1998) proved that when the two suf-
ficient views are conditionally independent given the
class label, co-training can be successful. The con-
ditional independence means that for the connected
components π1

θi
of P 1 and π2

θj
of P 2, P (π1

θi
∩ π2

θj
) =

P (π1
θi

)P (π2
θj

). Since Sv
k (v = 1, 2) is the union of some

connected components of P v, we have P (S1
k ∩ S2

k) =
P (S1

k)P (S2
k). It means that P (S1

k ⊕ S2
k) = P (S1

k)(1−
P (S2

k))+P (S2
k)(1−P (S1

k)), which implies that condi-
tion (1) in Theorem 4 holds. In addition, Eqs. 8 and
9 can be obtained for ǫ-good graphs.

P
(

πv
θk
∩ S3−v

k ∧ f3−v
k (xt) · c

v(πv
θk

) > 0
)

≥ P (πv
θk

)P (S3−v
k )(1− ǫ) (8)

P
(

πv
θk
∩ S3−v

k ∧ f3−v
k (xt) · c

v(πv
θk

) < 0
)

< P (πv
θk

)P (S3−v
k )ǫ (9)

Thus, we get that condition (2) in Theorem 4 holds
with γ = P (S3−v

k )(1 − 2ǫ). However, in real appli-
cations the conditional independence assumption is
overly strong to satisfy for the two views.

4.2. Weak Dependence

Abney (2002) found that weak dependence can lead
to successful co-training. The weak dependence means
that for the connected components π1

θi
of P 1 and π2

θj

of P 2, P (π1
θi
∩ π2

θj
) ≤ τP (π1

θi
)P (π2

θj
) for some τ > 0.

It implies that the number of examples in S1
k ⊕ S2

k is
not very small. So condition (1) in Theorem 4 holds.
For ǫ-good graphs, without loss of generality, assume
that P (πv

θk
∩ S3−v

k ) = τ1P (πv
θk

)P (S3−v
k ) and that

P
(

πv
θk
∩ S3−v

k ∧ f3−v
k (xt) · c

v(πv
θk

) < 0
)

≤ τ2P (πv
θk

)P (S3−v
k )ǫ (10)
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for some τ1 > 0 and τ2 > 0, we can have

P
(

πv
θk
∩ S3−v

k ∧ f3−v
k (xt) · c

v(πv
θk

) > 0
)

≥ P
(

πv
θk
∩ S3−v

k

)

− τ2P (πv
θk

)P (S3−v
k )ǫ

= P (πv
θk

)P (S3−v
k )(τ1 − τ2ǫ). (11)

Thus, we get that condition (2) in Theorem 4 holds
with γ = P (S3−v

k )(τ1 − 2τ2ǫ).

4.3. α-Expansion

Balcan et al. (2005) proposed α-expansion and proved
that it can guarantee the success of co-training. They
assumed that the learner in each view is never “confi-
dent but wrong”, which corresponds to the case with
perfect graphs in Theorem 1. The α-expansion means
that S1

k and S2
k satisfy the condition that Pr(S1

k ⊕

S2
k) ≥ α min[Pr(S1

k ∩ S2
k), P r(S1

k ∩ S2
k)]. When α-

expansion is met, it is easy to know that the condition
in Theorem 1 holds. Note that S1

k ⊕ S2
k 6= ∅ is weaker

than α-expansion, since Pr(S1
k ⊕S2

k) does not need to
have a lower bound with respect to some positive α.

4.4. Large Diversity

Wang & Zhou (2007) showed that when the diversity
between the two learners is larger than their errors,
the performance of the learner can be improved by co-
training style algorithms. Since the learners have both
error and uncertainty with non-perfect graphs in Table
1, it is very complicated to define the diversity between
them. Therefore, we only discuss co-training with per-
fect graphs here. For perfect graphs, the learners in
Table 1 are “confident of labeling”, so the error is 0.
Thus, that the diversity between the two learners is
larger than their errors means Pr(S1

k⊕S2
k) > 0, which

implies that the condition in Theorem 1 holds.

4.5. Other Implications

From above discussions it can be found if any of the
previous condition holds, our condition also holds; this
means that our results are more general and tighter.
Our results also have other interesting implications.

Firstly, there were some works which combine the
weight matrices or the Laplacians for each graph
and then classify unlabeled instances according to the
combination (Sindhwani et al., 2005; Argyriou et al.,
2006; Zhang et al., 2006; Zhou & Burges, 2007), yet
the underlying principle is not clear. To some ex-
tent, Theorem 3 can provide some theoretical support
to these methods, i.e., these methods are developed
to satisfy the necessary condition for co-training with
graphs to succeed as much as possible.

Secondly, in tasks where there does not exist two
views, several single-view variants of co-training have
been developed (Goldman & Zhou, 2000; Zhou & Li,
2005); to apply the standard two-view co-training di-
rectly, view split is a possible solution. This has been
explored in Nigam & Ghani (2000) and Brefeld et al.
(2005). Their studies show that when there are a lot
of features and the features have much redundancy, a
random split of the features is able to generate two
views that enable co-training to outperform several
other single-view learning algorithms. However, it is
evident that a random split would not be effective in
most cases and how to judge a method for view split
is also an open problem. From Theorem 3 we know
that each unlabeled instance can be connected with
some labeled example in the combinative graph P c

is the necessary condition for co-training to succeed.
Actually, it implies a possible view split method, i.e.,
to select the view split which makes more unlabeled
instances become connected with labeled examples in
graph P c. In Section 6, we will report on some pre-
liminary experimental results on this method.

5. Verification of Theoretical Results

We use the artificial data set (Muslea et al., 2002) and
the course data set (Blum & Mitchell, 1998) in the
experiments. The artificial data set has two artifi-
cial views which are created by randomly pairing two
examples from the same class and contains 800 exam-
ples. For controlling the connectivity between the two
views, the number of clusters per class can be set as a
parameter. Here we use 2 clusters and 4 clusters, re-
spectively. The course data set has two natural views:
pages view (i.e., the text appearing on the page) and
links view (i.e., the anchor text attached to hyper-links
pointing to the page) and contains 1,051 examples. We
use 1 -NN in each view to approximate the matrix P v

(v = 1, 2), i.e., if example xv
s is the nearest neighbor

of xv
t , P v

st = P v
ts = 1 and otherwise P v

st = P v
ts = 0.

The combinative graph P c is constructed according
to Eq. 6. P 1, P 2 and P c are normalized according
to Eq. 1. We randomly select some data to be used
as the labeled data set L and use the remaining data
to generate the unlabeled data set U . The error rate
is calculated over U . To study the performance with
different amount of labeled examples, we run experi-
ments with different sizes of L, from 10% to 50% with
interval 5%. The experiments are repeated for 20 runs
and the average results are shown in Figure 1.
From Figure 1(a), 1(c) and 1(e) we can see that on
both data sets the performance of co-training is much
better than the learner in each view. This can be suc-
cessfully explained by our graph view explanation. As
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(b) artificial with 2 clusters
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(c) artificial with 4 clusters
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Figure 1. Results on the artificial data set and the course

data set. The x-axis shows the amount of labeled examples
(in the ratio of L); the y-axis in (a), (c) and (e) shows the
error rate of co-training and learners using a single view;
the y-axis in (b), (d) and (f) shows the amount (in ratio)
of unlabeled data that are not connected with any labeled
example in the graphs P 1, P 2 and P c.

Figure 1(b), 1(d) and 1(f) show, the amount of un-
labeled instances that are not connected with any la-
beled example in the graph P c is much smaller than
that in the graphs P 1 and P 2. So, co-training can label
not only the unlabeled instances that can be labeled
by a single view, but also the unlabeled instances that
cannot be labeled by either a single view.

6. View Split for Single-view Data

As mentioned in the end of Section 4, our theoretical
results imply a method which enables co-training to
work on single-view data, i.e., to select the view split
which makes more unlabeled instances become con-
nected with labeled examples in graph P c, and then
generate two views for co-training to work on.

We use the course data set with only the pages view
here. Thus, the experimental data is with a single
view. We split the features of the pages view into two
parts randomly ten times and use 1 -NN to approxi-
mate the matrices. The combinative graph P c is con-
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Figure 2. Result on the view split method. (a) The x-axis
shows the amount of labeled examples (in the ratio of L),
and the y-axis shows the error rate; (b) the x-axis shows
the index of the ascendingly ordered eigenvalues, and the
y-axis shows the absolute value of the eigenvalues.

structed according to Eq. 6. Let P denote the graph
on the pages view, P and P c are normalized accord-
ing to Eq. 1. L and U are generated in the way as
similar as that described in Section 5. Among the ten
view splits, we select the one which leads to the largest
amount of unlabeled instances connected with labeled
examples in the graph P c. The results are shown in
Figure 2(a), where we also present the performances
of using the original pages view and co-training with
random view split. From Figure 2(a) we can see that
the performance of co-training with selected view split
is always better than using the single view and is al-
ways superior to co-training with random view split
except in very few cases where they are comparable.
To study the result further, we calculate the eigenval-
ues of the Laplacian matrices related to the graphs
P , P c

r and P c
s (P c

r corresponds to the combinative
graph with random view split and P c

s corresponds to
the combinative graph with selected view split) and
sort the absolute value of these eigenvalues in ascend-
ing order, respectively. The first 60 ones are plotted
in Figure 2(b). By setting ∆ = 10−10, we get that the
Laplacian matrix related to the graphs P and P c

r have
27 and 13 eigenvalues whose absolute value is smaller
than ∆, respectively. While the Laplacian matrix re-
lated to the graph P c

s has only 9 eigenvalues whose ab-
solute value is smaller than ∆. This implies that, the
graph P has 27 connected components and the graph
P c

r has 13 connected components, while the graph P c
s

has only 9 connected components, with an apparent
improvement. In other words, through the selected
view split, more unlabeled instances become connected
with labeled examples in the graph P c

s . This validates
the usefulness of the simple view split method derived
from our theoretical results.

7. Conclusion

In this paper, we provide a new analysis of co-training,
based on which we get the sufficient and necessary con-
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dition for co-training to succeed. Although previously
there were many theoretical studies on co-training, to
the best of our knowledge, this is the first result on
the sufficient and necessary condition for co-training.
We also discuss the relationship between our results
and previous theoretical results. Moreover, our results
have some other interesting implications, such as com-
bination of weight matrices and view split.

Our results can be extended to multi-view cases. Sim-
ilar sufficient and necessary condition for multi-view
learning can be obtained. Note that such an extension
only cares the multiple matrices rather than where
these matrices come from, and therefore it is also
suited for applications where there is only one view
in the data set but multiple conditional probability
matrices can be obtained in different concept spaces.

It is noteworthy that in previous semi-supervised
learning studies, the disagreement-based and graph-
based methods were developed separately, in two par-
allel threads. While our analysis provides a possibility
to bring them into a unified framework, which will be
explored further in the future.
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