
Towards Making Unlabeled Data Never Hurt

Yu-Feng Li LIYF@LAMDA.NJU.EDU.CN
Zhi-Hua Zhou ZHOUZH@LAMDA.NJU.EDU.CN

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

Abstract
It is usually expected that, when labeled data
are limited, the learning performance can be
improved by exploiting unlabeled data. In
many cases, however, the performances of cur-
rent semi-supervised learning approaches may
be even worse than purely using the limited la-
beled data. It is desired to have safe semi-
supervised learning approaches which never de-
generate learning performance by using unla-
beled data. In this paper, we focus on semi-
supervised support vector machines (S3VMs)
and propose S4VMs, i.e., safe S3VMs. Un-
like S3VMs which typically aim at approaching
an optimal low-density separator, S4VMs try to
exploit the candidate low-density separators si-
multaneously to reduce the risk of identifying a
poor separator with unlabeled data. We describe
two implementations of S4VMs, and our com-
prehensive experiments show that the overall per-
formance of S4VMs are highly competitive to
S3VMs, while in contrast to S3VMs which de-
generate performance in many cases, S4VMs are
never significantly inferior to inductive SVMs.

1. Introduction
During the past decade, many effective semi-supervised
learning approaches have been developed (Chapelle et al.,
2006b; Zhu, 2006; Zhou & Li, 2010). It is expected that,
when labeled data are limited, the use of unlabeled data
will help improve the performance. However, it has been
found that the performances of current semi-supervised
learning approaches may be even worse than purely using
labeled data in many cases (Nigam et al., 2000; Cozman
et al., 2003; Grandvalet & Bengio, 2005). It is very desired
to have safe semi-supervised learning approaches which
never degenerate performance by using unlabeled data.
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Among popular semi-supervised learning approaches,
S3VMs (Vapnik, 1998; Bennett & Demiriz, 1999;
Joachims, 1999) are based on the low-density assumption
and try to learn a low-density separator which favors the
decision boundary going across low-density regions in the
feature space (Chapelle & Zien, 2005). These approaches
have already been applied to diverse applications such as
text classification (Joachims, 1999), image retrieval (Wang
et al., 2003), bioinformatics (Kasabov & Pang, 2004), nat-
ural language processing (Goutte et al., 2002), etc. Similar
to other semi-supervise approaches, however, it has been
found that S3VMs may degenerate the performance by us-
ing unlabeled data (Zhang & Oles, 2000; Wang et al., 2003;
Chapelle et al., 2006b; 2008).

To address this problem, in this paper we present the
S4VMs (safe S3VMs). In contrast to common S3VMs
which typically focus on approaching one optimal low-
density separator, S4VMs try to exploit multiple candidate
low-density separators. Our motivation lies in the observa-
tion that, given a few labeled data and abundant unlabeled
data, there usually exist more than one large-margin low-
density separators (see Figure 1), while it is hard to decide
which one is the best based on the limited labeled data.
Though these low-density separators all coincide with the
limited labeled data well, they are often diverse and there-
fore, a wrong selection may cause a large loss and result in
a degenerated performance. Furthermore, the optimal ob-
jective value may deviate from the ground-truth because of
the limited training data. Thus, selecting one optimal low-
density separator according to the objective value may not
be really optimal, and instead, we will try to consider all
the candidate low-density separators.

Specifically, focusing on transductive setting, we construct
S4VMs by optimizing the label assignment for unlabeled
instances in the worse case. Theoretical analysis discloses
that if the ground-truth label assignment can be realized
by a low-density separator, as assumed by current S3VMs,
our S4VMs will never degenerate performance. We present
two implementations of S4VMs; one tries to find diverse
large-margin low-density separators based on global simu-
lated annealing search, while the other is based on a sim-
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Figure 1. There are usually multiple large-margin low-density
separators coincide well with labeled data (cross and triangle)

pler and efficient sampling strategy. Comprehensive ex-
periments show that the overall performance of S4VMs
are highly competitive with S3VMs, while contrasting to
S3VMs which degenerate performances in many cases, our
S4VMs are never significantly worse than inductive SVMs
(i.e., SVMs considering only labeled data).

The rest of this paper is organized as follows. We briefly in-
troduce S3VMs in Section 2, and then present our S4VMs
in Section 3. Experimental results are reported in Section 4,
and finally we conclude the paper in Section 5.

2. S3VMs
Inspired by the success of large margin principle, S3VMs
are extensions of supervised SVMs to semi-supervised
learning by simultaneously learning the optimal hyperplane
and the labels for unlabeled instances. It was disclosed that
S3VMs realize the low-density assumption (Chapelle &
Zien, 2005) by favoring the decision boundary going across
low-density regions.

Formally, considering binary classification, we are given a
set of labeled data {x𝑖, 𝑦𝑖}𝑙𝑖=1 and a set of unlabeled data
{x̂𝑗}𝑢𝑗=1, where x, x̂ ∈ 𝒳 , 𝑦 ∈ {±1}, 𝑙 and 𝑢 are the num-
ber of labeled and unlabeled instances, respectively. The
goal is to find a function 𝑓 : 𝒳 → {±1} and ŷ ∈ {±1}𝑢
such that the following functional is minimized:

min
𝑓,ŷ∈ℬ

∥𝑓∥ℋ
2

+𝐶1

𝑙∑
𝑖=1

ℓ(𝑦𝑖, 𝑓(x𝑖))+𝐶2

𝑢∑
𝑗=1

ℓ(𝑦𝑗 , 𝑓(x̂𝑗)), (1)

where ℬ = {ŷ ∈ {±1}𝑢∣ − 𝛽 ≤
∑𝑢

𝑗=1 𝑦𝑗

𝑢 −
∑𝑙

𝑖=1 𝑦𝑖

𝑙 ≤ 𝛽}
is induced by the balance constraint to avoid trivial solu-
tion (Joachims, 1999; Chapelle et al., 2008), ℋ is the Re-
ducing Kernel Hilbert Space (RKHS) induced by a kernel 𝑘
and ℓ(𝑦, 𝑓(x)) = max{0, 𝑦𝑓(x)− 1} is the hinge loss, 𝐶1

and 𝐶2 are regularization parameters trading off the com-
plexity and the empirical error on label and unlabeled data,
respectively. As can be seen from Eq. 1, S3VMs enforce
the decision boundary to lie in low-density regions, and
otherwise a large loss will occur with respective to the ob-
jective function (Chapelle & Zien, 2005).

Unlike inductive SVMs with convex formulation, the for-
mulation of S3VMs (i.e., Eq. 1) is non-convex and the

optimal solution is intractable in general. Great efforts
have been devoted to avoiding S3VMs getting stuck in
poor local minima. Roughly, there are three categories
of approaches. The first kind of approaches are based
on global combinatorial optimization (e.g., branch-and-
bound search), and achieve promising performances on
small data sets (Bennett & Demiriz, 1999; Chapelle et al.,
2007). The second kind of approaches are based on global
heuristic search, which gradually increases the difficulty
of solving the non-convex part in Eq. 1. Examples in-
clude the TSVM (Joachims, 1999) which gradually in-
creases the value of 𝐶2, the deterministic annealing ap-
proach (Sindhwani et al., 2006) which gradually increases
the temperature of an entropy function, the continuation
method (Chapelle et al., 2006a) which gradually decreases
the smoothing of a surrogate function, etc. The third kind
of approaches are based on convex relaxation, which trans-
forms Eq. 1 into a relaxed convex problem. Examples
include the semi-definite programming (SDP) relaxation
(De Bie & Cristianini, 2004; Xu & Schuurmans, 2005), the
minimax relaxation (Li et al., 2009b;a), etc.

Avoiding inappropriate local minima when approaching the
optimal solution of Eq. 1 can be regarded as a strategy to-
wards safe S3VMs; however, this is quite challenging. To
the best of our knowledge, there was no proposal of safe
S3VMs in literature.

3. S4VMs
As mentioned, given limited labeled data and abundant
unlabeled data, there usually exist multiple large-margin
low-density separators coincide well with the labeled data.
Without further prior information for distinguishing these
separators, it might be risky to select any one of them. So,
we suggest to consider all these candidate separators.

In the following, we first introduce how to construct
S4VMs given a number of diverse large-margin separa-
tors, by optimizing the label assignment for unlabeled in-
stances such that the worst-case performance improvement
over inductive SVM is maximized; then, we present two
S4VM implementations which search for diverse large-
margin separators by a global simulated annealing search
and an efficient sampling strategy, respectively.

3.1. Constructing S4VMs

Given the predictors of multiple low-density separators
{ŷ𝑡}𝑇𝑡=1, suppose that y∗ is the ground-truth label assign-
ment and let y𝑠𝑣𝑚 denote the predictions of the inductive
SVM on unlabeled data. For any label assignment y ∈
{±1}𝑢, denote 𝑒𝑎𝑟𝑛(y,y∗,y𝑠𝑣𝑚) and 𝑙𝑜𝑠𝑒(y,y∗,y𝑠𝑣𝑚)
as the increased and decreased accuracies compared to the
inductive SVM, respectively. Our goal is to learn y such
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that the improved performance over the inductive SVM is
maximized; this can be cast as the optimization problem:

max
y∈{±1}𝑢

𝑒𝑎𝑟𝑛(y,y∗,y𝑠𝑣𝑚)− 𝜆 𝑙𝑜𝑠𝑒(y,y∗,y𝑠𝑣𝑚), (2)

where 𝜆 is a parameter for trading-off how much risk the
user would like to undertake. For simplification of no-
tation, we denote 𝐽(y, ŷ,y𝑠𝑣𝑚) as 𝑒𝑎𝑟𝑛(y, ŷ,y𝑠𝑣𝑚) −
𝜆 𝑙𝑜𝑠𝑒(y, ŷ,y𝑠𝑣𝑚) in the sequel.

Note that the difficulty for solving Eq. 2 lies in the fact that
the ground-truth y∗ is unknown; otherwise it is trivial to get
the solution. Similar to existing S3VMs, here we assume
that the ground-truth boundary y∗ can be realized by a low-
density separator in {ŷ𝑡}𝑇𝑡=1, i.e., y∗ ∈ ℳ = {ŷ𝑡}𝑇𝑡=1. We
consider optimizing the worst-case improvement over the
inductive SVM, that is,

ȳ = argmax
y∈{±1}𝑢

min
ŷ∈ℳ

𝐽(y, ŷ,y𝑠𝑣𝑚). (3)

Theorem 1. If y∗ ∈ {ŷ𝑡}𝑇𝑡=1 and 𝜆 ≥ 1, the accuracy of
ȳ is never worse than that of y𝑠𝑣𝑚.

Proof. ȳ is the optimal solution and ∀ŷ, 𝐽(y𝑠𝑣𝑚, ŷ,y𝑠𝑣𝑚)
is always zero, and thus, we have

min
ŷ∈ℳ

𝐽(ȳ, ŷ,y𝑠𝑣𝑚) ≥ min
ŷ∈ℳ

𝐽(y𝑠𝑣𝑚, ŷ,y𝑠𝑣𝑚) = 0. (4)

Since y∗ ∈ ℳ, we have

𝐽(ȳ,y∗,y𝑠𝑣𝑚) ≥ min
ŷ∈ℳ

𝐽(ȳ, ŷ,y𝑠𝑣𝑚). (5)

According to Eqs. 4 and 5, we have 𝐽(ȳ,y∗,y𝑠𝑣𝑚) ≥
0, i.e., 𝑒𝑎𝑟𝑛(ȳ,y∗,y𝑠𝑣𝑚) ≥ 𝜆 𝑙𝑜𝑠𝑒(ȳ,y∗,y𝑠𝑣𝑚). Re-
call that 𝜆 ≥ 1, we have 𝑒𝑎𝑟𝑛(ȳ,y∗,y𝑠𝑣𝑚) ≥
𝑙𝑜𝑠𝑒(ȳ,y∗,y𝑠𝑣𝑚), and the theorem is proved.

Theorem 1 shows that the S4VM is never worse than the
inductive SVM. It is easy to get the following proposition:

Proposition 1. If y∗ ∈ {ŷ𝑡}𝑇𝑡=1 and 𝜆 ≥ 1, the accuracy
of any y satisfying minŷ∈ℳ 𝐽(y, ŷ,y𝑠𝑣𝑚) ≥ 0 is never
worse than that of y𝑠𝑣𝑚.

To solve Eq. 3, note that the following are linear functions
of y:

𝑒𝑎𝑟𝑛(y,y∗,y𝑠𝑣𝑚) =
∑𝑢

𝑗=1
𝐼(𝑦𝑗 = 𝑦∗𝑗 )𝐼(𝑦

∗
𝑗 ∕= 𝑦𝑠𝑣𝑚𝑗 )

=
∑𝑢

𝑗=1

1 + 𝑦𝑗𝑦
∗
𝑗

2

1− 𝑦𝑠𝑣𝑚𝑗 𝑦∗𝑗
2

,

𝑙𝑜𝑠𝑒(y,y∗,y𝑠𝑣𝑚) =
∑𝑢

𝑗=1
𝐼(𝑦𝑗 ∕= 𝑦∗𝑗 )𝐼(𝑦

∗
𝑗 = 𝑦𝑠𝑣𝑚𝑗 )

=
∑𝑢

𝑗=1

1− 𝑦𝑗𝑦
∗
𝑗

2

1 + 𝑦𝑠𝑣𝑚𝑗 𝑦∗𝑗
2

.

Without lose of generality, let 𝐽(y, ŷ𝑡,y
𝑠𝑣𝑚) = c′𝑡y + 𝑑𝑡.

Eq. 3 can be cast as

max
y∈{±1}𝑢

𝜃 s.t. 𝜃 ≤ c′𝑡y + 𝑑𝑡,∀𝑡 = 1, . . . , 𝑇. (6)

Though Eq. 6 is an integer linear programming, according
to Proposition 1, we do not need to get the optimal solu-
tion for achieving our goal, and thus we employ a simple
heuristic method to solve Eq. 6. Specifically, we first solve
a convex linear programming by relaxing the integer con-
straint of y in Eq. 6 to [−1, 1]𝑢 and then project it back
to integer solution with minimum distance. If the function
value of the resulting integer solution is smaller than that
of y𝑠𝑣𝑚, y𝑠𝑣𝑚 is output as the final solution instead. It is
evident that our final solution satisfies Proposition 1.

Note that prior knowledge on low-density separators can
be easily incorporated into our framework. Specifically,
by introducing dual variables 𝜶 for constraints in Eq. 6,
according to KKT condition, Eq. 6 can be reformulated as

max
y∈{±1}𝑢

min
𝜶′1=1,𝜶≥0

∑𝑇

𝑡=1
𝛼𝑡(c

′
𝑡y + 𝑑𝑡). (7)

Here 𝛼𝑡 can be interpreted as a probability that ŷ𝑡 discloses
the ground-truth solution. Hence, if prior knowledge about
the probabilities 𝜶 is available, one can learn the optimal y
with respect to the target in Eq. 7 using the known 𝜶.

It is worth mentioning that, by considering all candidate
large-margin low-density separators, S4VMs are relevant
to ensemble methods (Zhou, 2009), and the spirit may also
be extended to other semi-supervised learning approaches.

3.2. Two Implementations

Now we consider how to find diverse large-margin low-
density separators. Let ℎ(𝑓, ŷ) denote the functional to be
minimized by the objective function of S3VMs (i.e., Eq. 1):

ℎ(𝑓, ŷ)=
∥𝑓∥ℋ
2

+𝐶1

𝑙∑
𝑖=1

ℓ(𝑦𝑖, 𝑓(x𝑖))+𝐶2

𝑢∑
𝑗=1

ℓ(𝑦𝑗 , 𝑓(x̂𝑗)).

Our goal is to find multiple large-margin low-density sep-
arators {𝑓𝑡}𝑇𝑡=1 and the corresponding label assignments
{ŷ𝑡}𝑇𝑡=1 such that the following functional is minimized:

min
{𝑓𝑡,ŷ𝑡∈ℬ}𝑇

𝑡=1

∑𝑇

𝑡=1
ℎ(𝑓𝑡, ŷ𝑡) +𝑀Ω({ŷ𝑡}𝑇𝑡=1), (8)

where 𝑇 is the number of separators, Ω is a quantity of
penalty about the diversity of separators, and 𝑀 is a large
constant (e.g., 105 in our experiments) enforcing large di-
versity. It is evident that minimizing Eq. 8 favors the sepa-
rators with large-margin as well as large diversity.

In this paper, we consider Ω({ŷ𝑡}𝑇𝑡=1) as sum of pairwise
terms, i.e., Ω({ŷ𝑡}𝑇𝑡=1) =

∑
1≤𝑡∕=𝑡≤𝑇 I(

ŷ′
𝑡ŷ𝑡

𝑢 ≥ 1 − 𝜖)
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where I is the identity function and 𝜖 ∈ [0, 1] is a constant,
but note that other penalty quantities are also applicable.

Without loss of generality, suppose that 𝑓 is a linear model,
i.e., 𝑓(x) = w′𝜙(x) + 𝑏 where 𝜙(x) is a feature mapping
induced by the kernel 𝑘. Thus, Eq. 8 is cast as:

min
{w𝑡,𝑏𝑡,ŷ𝑡∈ℬ}𝑇

𝑡=1

𝑇∑
𝑡=1

(1
2
∥w𝑡∥2 + 𝐶1

𝑙∑
𝑖=1

𝜉𝑖 + 𝐶2

𝑢∑
𝑗=1

𝜉𝑗

)
+𝑀

∑
1≤𝑡∕=𝑡≤𝑇

𝐼(
ŷ′
𝑡ŷ𝑡

𝑢
≥ 1− 𝜖) (9)

s.t. 𝑦𝑖w
′
𝑡𝜙(x𝑖) ≥ 1− 𝜉𝑖, ∀𝑖 = 1, . . . , 𝑙,

𝑦𝑡,𝑗w
′
𝑡𝜙(x̂𝑗) ≥ 1− 𝜉𝑗 , ∀𝑗 = 1, . . . , 𝑢,

∀𝑡 = 1, . . . , 𝑇,

where 𝑦𝑡,𝑗 refers to the 𝑗th entry of ŷ𝑡. Eq. 9 is non-convex
and in the following we will present two solutions. It is ev-
ident that this can also be implemented by other solutions,
especially those based on efficient S3VMs.

3.2.1. GLOBAL SIMULATED ANNEALING SEARCH

Our first implementation is based on global search,
e.g., simulated annealing (SA) search (Kirkpatrick, 1984;
Černỳ, 1985). SA is a probabilistic method for approach-
ing global solutions of objective functions suffering from
multiple local minima. Specifically, at each step, SA re-
places current solution by a random nearby solution with a
probability depending on the value difference between their
corresponding function targets as well as a global parame-
ter, i.e., the temperature 𝑃 , which gradually decreases dur-
ing the process. When 𝑃 is large, current solution almost
changes randomly; while as 𝑃 goes to zero, the changes
are increasingly “downhill”. In theory, according to the
convergence analysis of Markov Process, the prob ability
that SA converges to the global solution approaches to 1 as
SA procedure is extended (Laarhoven & Aarts, 1987).

To alleviate the low convergence rate of pure SA, inspired
by (Sindhwani et al., 2006), a deterministic local search
scheme is used. Specifically, once {ŷ𝑡}𝑇𝑡=1 are fixed,
{w𝑡, 𝑏𝑡}𝑇𝑡=1 are solved via multiple individual SVM sub-
routines; once {w𝑡, 𝑏𝑡}𝑇𝑡=1 are fixed, {ŷ𝑡}𝑇𝑡=1 are updated
based on local binary search, iteratively until convergence.

Algorithm 1 presents the pseudo-code of simulated anneal-
ing approach for Eq. 9, where the local search subroutine
is given in Algorithm 2.

3.2.2. REPRESENTATIVE SAMPLING

To further alleviate the computational complexity, our sec-
ond implementation is based on heuristic sampling search.
Recall that the goal of Eq. 8 can be realized by finding mul-
tiple large-margin low-density separators and then keeping
only representative ones with large diversity; this motivates

Algorithm 1 Solving Eq. 9 by Simulated Annealing Search
Input: {x𝑖, 𝑦𝑖}𝑙𝑖=1, {x̂𝑗}𝑢𝑗=1, 𝑇
Output: {ŷ𝑏𝑒𝑠𝑡

𝑡 }𝑇𝑡=1

1: Initialize 𝑃 ← 1, 𝑒← 1, {ŷ𝑡}𝑇𝑡=1

2: ({ŷ𝑡}𝑇𝑡=1, 𝑜)← Localsearch({ŷ𝑡}𝑇𝑡=1)
3: ŷ𝑏𝑒𝑠𝑡

𝑡 ← ŷ𝑡, ∀𝑡 = 1, . . . , 𝑇
4: while 𝑃 > 𝑚𝑖𝑛𝑃 do
5: {ŷ𝑛𝑒𝑤

𝑡 }𝑇𝑡=1 ← neighbour({ŷ𝑡}𝑇𝑡=1)
6: ({ŷ𝑛𝑒𝑤

𝑡 }𝑇𝑡=1, 𝑜
𝑛𝑒𝑤)← Localsearch({ŷ𝑛𝑒𝑤

𝑡 }𝑇𝑡=1)
7: if 𝑜𝑛𝑒𝑤 < 𝑜 then
8: 𝑜← 𝑜𝑛𝑒𝑤; ŷ𝑏𝑒𝑠𝑡

𝑡 ← ŷ𝑡 ← ŷ𝑛𝑒𝑤
𝑡 , ∀𝑡 = 1, . . . , 𝑇

9: else if random() < exp(−(𝑜𝑛𝑒𝑤 − 𝑜)/𝑃 ) then
10: ŷ𝑡 ← ŷ𝑛𝑒𝑤

𝑡 , ∀𝑡 = 1, . . . , 𝑇
11: else
12: 𝑒← 𝑒+ 1
13: end if
14: if 𝑒 = 𝑒𝑚𝑎𝑥 then
15: 𝑃 ← cooling(𝑃 ); 𝑒← 1
16: end if
17: end while

Algorithm 2 Localsearch
Input: {ŷ𝑡}𝑇𝑡=1; (Denote [𝑚] = {1, . . . ,𝑚})
Output: ({ŷ𝑡}𝑇𝑡=1, 𝑜𝑏𝑗)
1: while not converged do
2: Fix {ŷ𝑡}𝑇𝑡=1, solve {w𝑡, 𝑏𝑡}𝑇𝑡=1 via multiple SVMs
3: while not converged do
4: cyclically random pick 𝑗 ∈ [𝑢], 𝑡 ∈ [𝑇 ]
5: optimize 𝑦𝑡,𝑗 ∈ {±1} according to Eq. 9
6: end while
7: end while
8: Output {ŷ𝑡}𝑇𝑡=1 and corresponding objective value 𝑜𝑏𝑗

us to have a two-stage method, by searching for multiple
large-margin low-density separators at first and then select-
ing the representative separators.

Algorithm 3 shows the pseudo-code of our second imple-
mentation. As can be seen, multiple candidate large-margin
low-density separators are first obtained via local search
similar to that of Algorithm 2. A clustering algorithm is
then applied to identify the representative separators. This
approach is simple, and experiments in Section 4 show that
it is efficient and effective.

4. Experiments
We evaluate S4VMs on a broad range of tasks including
seven SSL benchmark data sets1, i.e., digit1, USPS, BCI,
g241c, g241n, COIL, Text, and sixteen UCI data sets2. Ta-
ble 1 summarizes the statistics of the data sets.

Both linear and RBF kernels are used in our experiments.
As for benchmark data sets, the archival includes two sets
of twelve data splits, one with 10 while the other with 100

1http://www.kyb.tuebingen.mpg.de/ssl-book/
2http://archive.ics.uci.edu/ml/datasets.html
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Algorithm 3 Solving Eq. 9 by Representative Sampling
Input: {x𝑖, 𝑦𝑖}𝑙𝑖=1, {x̂𝑗}𝑢𝑗=1, 𝑇 ;
Output: {ŷ𝑏𝑒𝑠𝑡

𝑡 }𝑇𝑡=1

1: Randomly sampling 𝑁 number of ŷ’s, i.e., 𝒮 = {ŷ𝑛}𝑁𝑛=1

2: for 𝑛 = 1 : 𝑁 do
3: while not converged do
4: Fix ŷ𝑛, solve {w𝑛, 𝑏𝑛} via SVM solver
5: Fix {w𝑛, 𝑏𝑛}, update ŷ𝑛 w.r.t S3VM’s objective func-

tion via sorting (Zhang et al., 2007)
6: end while
7: end for
8: Perform clustering (e.g., 𝑘-means) for 𝒮 where 𝑘 = 𝑇
9: Output ŷ’s with the minimum objective value within each

cluster

Table 1. Experimental data sets.
ID Data # Inst # Feat ID Data # Inst # Feat

1 BCI 400 117 13 vehicle 435 16
2 g241c 1500 241 14 house-votes 435 16
3 g241d 1500 241 15 clean1 476 166
4 COIL 1500 241 16 wdbc 569 14
5 Digit1 1500 241 17 isolet 600 51
6 USPS 1500 241 18 breastw 683 9
7 Text 1500 11960 19 austra 690 42
8 house 232 16 20 australian 690 15
9 heart 270 9 21 diabetes 768 8
10 haberman 306 14 22 german 1000 59
11 liverDisorders 345 6 23 optdigits 1143 42
12 ionosphere 351 33

labeled examples. As for UCI data sets, we randomly se-
lect 10 and 100 examples to be used as labeled examples,
and use the remaining data as unlabeled data. The exper-
iments are repeated for 30 times and the average accuracy
and standard deviations are recorded.

Inductive SVM3 and TSVM4 (Joachims, 1999) are eval-
uated as baselines. Linear programming is conducted by
linprog function in MATLAB. The regularization parame-
ters 𝐶1, 𝐶2 and 𝛽 in balance constraint are fixed as 100,
0.1 and 0.1 for all S3VMs. We call our S4VM which uses
simulated annealing as S4VM𝑎, and the one which uses
sampling as S4VM𝑠. For S4VM𝑎, 𝜖 and 𝑇 are simply fixed
as 0.05 and 3, respectively. For S4VM𝑠, the sampling size
𝑁 and the number of separators 𝑇 are simply fixed as 100
and 10, respectively. 𝜆 is fixed as 3 for S4VMs. For 10
labeled examples, the width of RBF kernel is set as 𝛿, i.e.,
the average distance between instances; for 100 labeled ex-
amples, the width of RBF kernel is selected by 5-fold cross
validation from the set of {0.25𝛿, 0.5𝛿, 𝛿, 2𝛿, 4𝛿}.

4.1. Results of S4VM𝑎

In addition to inductive SVM and TSVM, we also compare
S4VM𝑎 with three variants using multiple low-density sep-

3http://www.csie.ntu.edu.tw/ cjlin/libsvm/
4http://svmlight.joachims.org/

arators. S3VM𝑏𝑒𝑠𝑡
𝑎 presents the best performance among

the multiple candidate separators (note that this method is
impractical), S3VM𝑚𝑖𝑛

𝑎 selects the low-density separator
with minimum objective value, and S3VM𝑐𝑜𝑚

𝑎 combines
the candidate separators using uniform weights. Though
simulated annealing was used to improve the efficiency of
S3VMs (Sindhwani et al., 2006), note that it is still with
high computational load, and therefore Table 2 only reports
the performances on UCI data sets with RBF kernels.

Table 2 shows that the overall performance of S4VM𝑎 is
highly competitive with TSVM. In terms of pairwise ac-
curacy comparison, S4VM𝑎 is better than TSVM on 6 out
of 12 data sets for 10 labeled examples, while this number
rises to 11 out of 12 data sets for 100 labeled examples. In
terms of average accuracy, S4VM𝑎 is slightly worse (bet-
ter) than TSVM for 10 (100) labeled examples. S3VMmin

𝑎

and S3VMcom
𝑎 do not perform as well as S4VM𝑎.

More importantly, unlike TSVM which is significantly
worse than inductive SVM on 4 out of 12 data sets for 10
labeled data, and 7 out of 12 for 100 labeled data, S4VM𝑎

never degenerates the performance significantly. Both
S3VMmin

𝑎 and S3VMcom
𝑎 are capable to reduce the chance

of significantly degenerating performance compared with
TSVM, however, they still degenerate performance signifi-
cantly in many cases.

Though the condition of Theorem 1 is relaxed than tra-
ditional assumption of S3VMs, the theorem does not al-
ways hold owing to many factors, e.g., the ground-truth
is not among the low-density separators. Even in such
cases, however, S4VM may still work. Note that Theorem
1 presents a sufficient rather than necessary condition for
S4VMs, and the relevance to ensemble methods provides
an explanation to S4VMs’ superiority to single separators.

4.2. Results of S4VM𝑠

Similar to S4VM𝑎, three variants, i.e., S3VMbest
𝑠 , S3VMmin

𝑠

and S3VMcom
𝑠 are compared with S4VM𝑠 in Table 3, in

addition to inductive SVM and TSVM.

Table 3 shows that the overall performance of S4VM𝑠 is
highly competitive with TSVM, though the ground-truth is
seldom realized by a low-density separator (see the perfor-
mance of S3VMbest

𝑠 ). In terms of pairwise accuracy com-
parison, S4VM𝑠 outperforms TSVM on 15/13 and 13/18
out of the 23 data sets with linear/RBF kernels for 10 and
100 labeled examples, respectively. In terms of average
accuracy, S4VM𝑠 is slightly worse (better) than TSVM for
10 (100) labeled examples. Except for the case of S3VMmin

𝑠

on 100 label examples, S3VMmin
𝑠 and S3VMcom

𝑠 do not per-
form as well as S4VM𝑠.

More importantly, unlike TSVM which degenerates per-
formance on 12 and 17 cases for 10 and 100 labeled ex-
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Table 2. Accuracy (mean±std.) of S4VM𝑎 and compared methods. ‘SVM’ denotes inductive SVM. For semi-supervised methods
(TSVM, S3VMbest

𝑎 , S3VMcom
𝑎 and S4VM𝑎), if the performance is significantly better/worse than SVM (paired 𝑡-tests at 95% significance

level), the corresponding entries are bolded/underlined. The win/tie/loss counts are summarized in the last row, and the method with the
smallest number of losses against SVM is bolded.

# Labeled Data SVM TSVM S3VMbest
𝑎 S3VMmin

𝑎 S3VMcom
𝑎 S4VM𝑎

10 austra 66.6±7.5 67.8±13.2 69.4±12.2 67.4±12.5 67.2±12.5 68.0±10.4
breastw 95.7±2.8 94.7±0.1 95.9±0.8 95.9±0.8 96.6±0.6 96.5±0.6
diabetes 65.6±5.5 65.3±6.2 65.3±6.0 64.8±6.3 65.2±6.1 65.4±5.8
haberman 65.9±8.1 62.4±6.2 64.3±6.0 63.3±6.5 65.1±7.5 65.8±7.6
heart 71.8±6.8 72.5±7.6 73.1±6.9 71.9±7.5 72.3±7.3 72.2±7.0
house 88.0±2.8 89.8±1.8 89.9±2.1 88.0±1.9 89.1±2.0 88.5±2.4
house-votes 87.0±3.1 85.0±5.8 84.6±8.4 83.8±8.1 84.3±8.5 85.4±6.0
ionosphere 74.7±9.1 77.4±8.6 75.3±9.7 73.7±10.0 74.0±9.1 74.7±9.6
isolet 81.0±14.7 86.7±9.9 82.0±19.8 81.4±19.8 82.4±21.2 83.3±18.4
liverDisorders 55.5±5.9 54.2±4.8 56.4±5.1 55.7±5.1 55.4±5.4 55.6±5.9
vehicle 74.3±8.1 78.7±8.7 76.8±10.9 75.3±10.9 75.2±10.9 75.4±9.8
wdbc 80.7±7.5 84.4±6.3 80.9±9.6 80.2±9.8 81.4±9.3 81.9±8.6

Average Accuracy 75.6 76.6 76.2 75.1 75.7 76.1
SVM vs. Semi-Supervised: W/T/L 4/4/4 1/9/2 2/10/0 0/10/2 0/9/3

# Labeled Data SVM TSVM S3VMbest
𝑎 S3VMmin

𝑎 S3VMcom
𝑎 S4VM𝑎

100 austra 78.7±2.9 78.6±2.8 78.5±2.8 78.4±2.8 78.7±2.9 78.8±2.9
breastw 95.4±1.0 95.8±0.7 95.2±1.0 95.2±1.0 95.3±1.0 95.4±1.0
diabetes 70.3±2.1 70.0±2.1 70.0±2.0 69.8±1.9 70.1±2.0 70.3±2.1
haberman 68.3±2.8 66.3±2.6 68.2±2.6 67.2±3.0 68.0±2.6 68.3±2.8
heart 76.3±3.4 76.0±3.4 76.5±3.0 76.2±3.3 76.0±3.1 76.4±3.5
house 94.9±1.7 92.4±3.3 93.9±2.7 93.4±2.8 94.5±2.0 95.1±1.6
house-votes 92.5±1.7 90.9±2.4 91.9±1.8 91.6±2.0 92.3±1.6 92.5±1.7
ionosphere 91.5±2.1 90.6±2.8 90.8±2.1 90.7±2.2 91.5±2.1 91.5±2.2
isolet 99.2±0.5 96.4±3.4 98.2±1.6 98.2±1.7 98.8±0.7 99.2±0.5
liverDisorders 66.5±2.6 66.1±2.3 66.9±2.5 66.4±2.7 66.6±2.6 66.6±2.6
vehicle 97.7±1.0 96.0±2.1 97.6±1.0 97.4±1.3 97.6±0.8 97.6±1.0
wdbc 93.6±1.7 92.4±2.6 92.8±2.2 92.7±2.3 93.2±1.8 93.5±1.8

Average Accuracy 85.4 84.3 85.1 84.8 85.2 85.4
SVM vs. Semi-Supervised: W/T/L 7/4/1 6/6/0 8/4/0 4/8/0 0/11/1

amples, respectively, S4VM𝑠 never degenerates the per-
formance significantly. Both S3VMmin

𝑠 and S3VMcom
𝑠 are

capable to reduce the chance of degenerating performance
compared with TSVM, however, they still degenerate per-
formance significantly in many cases.

Wilcoxon sign tests at 95% significant level disclose that
S4VM𝑠 is significantly better than inductive SVM for both
10 and 100 labeled examples. The other three semi-
supervised methods, however, do not obtain such a signifi-
cance. These results validate the effectiveness of S4VM𝑠.

4.3. Running Time

Figure 2 plots the running time on 12 UCI data sets with 10
labeled examples. As can be seen, S4VM𝑎 has the highest
time cost, and S4VM𝑠 scales slightly worse than TSVM but
much better than S4VM𝑎. Note that S4VM𝑠 is inherently
parallel due to the consideration of multiple separators, and
it can be speedup by parallel implementation or using effi-
cient S3VM solutions.

4.4. Parameter Influence

S4VM𝑠 has four parameters, i.e., sampling size 𝑁 , cluster
number 𝑇 , risk parameter 𝜆 and the kernel type. Figure 3
studies the influence of 𝑁 , 𝑇 and 𝜆 with linear/RBF kernels

Figure 2. Running time (in seconds) of S4VM𝑎, S4VM𝑠 and
TSVM with 10 labeled examples

on five representative data sets with 10 labeled examples.

It can be seen that, though the number of labeled exam-
ples is small, the performance of S4VM𝑠 is quite insensi-
tive to the setting of the parameters. One possible reason
is that, rather than simply picking one low-density sepa-
rator, S4VMs optimize the label assignments in the worse
case. This property makes S4VM𝑠 even more attractive,
since the performance of current S3VMs are usually sensi-
tive to parameter settings, especially when the number of
labeled examples is too few to afford a reliable model se-
lection. Moreover, paired 𝑡-tests at 95% significant level
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Table 3. Accuracy (mean ± std.) of S4VM𝑠 and compared methods (see title of Table 2 for more information).

10 Lab SVM TSVM S3VMbest
𝑠 S3VMmin

𝑠 S3VMcom
𝑠 S4VM𝑠

( linear / rbf ) ( linear / rbf ) ( linear / rbf ) ( linear / rbf ) ( linear / rbf ) ( linear / rbf )

aust 67.2±8.0 / 66.6±7.5 67.8±12.1 / 67.8±13.2 69.4±10.0 / 73.1±11.8 69.0±10.0 / 68.2±12.6 69.0±10.0 / 67.4±11.4 68.7±9.8 / 68.1±9.8
ausl 77.3±7.1 / 72.9±6.1 81.1±6.1 / 77.0±8.2 82.2±5.2 / 82.3±4.0 79.1±8.2 / 73.3±10.6 74.3±8.9 / 75.1±7.9 77.8±7.5 / 73.3±6.4
brea 94.4±3.5 / 95.7±2.8 94.5±0.4 / 94.7±0.1 96.9±0.3 / 96.8±0.2 96.8±0.4 / 96.8±0.2 96.5±0.7 / 96.7±0.3 96.5±0.6 / 96.8±0.4
clea 56.6±5.0 / 57.1±8.1 56.7±5.7 / 55.8±7.8 63.2±4.7 / 61.9±5.4 55.4±6.3 / 54.7±7.1 54.0±5.1 / 54.9±8.0 56.7±5.1 / 56.9±8.2
diab 65.7±5.4 / 65.6±5.5 65.7±5.4 / 65.3±6.2 66.7±5.2 / 65.8±6.2 66.4±5.3 / 65.2±6.6 65.6±5.6 / 65.2±6.3 66.4±5.2 / 65.5±6.2
germ 63.1±8.0 / 64.8±12.1 62.2±5.5 / 61.6±5.1 66.0±4.5 / 65.9±4.9 61.0±6.7 / 61.6±6.2 60.7±9.0 / 61.1±7.7 63.3±7.9 / 64.8±11.8
habe 64.6±7.0 / 65.9±8.1 62.1±7.9 / 62.4±6.2 65.2±6.1 / 65.7±5.1 64.1±6.6 / 63.4±6.7 63.7±6.5 / 63.9±7.8 65.0±6.5 / 65.9±7.9
hear 72.2±6.7 / 71.8±6.8 71.9±6.9 / 72.5±7.6 72.2±6.8 / 74.4±6.2 71.9±6.9 / 72.8±7.1 71.7±6.8 / 72.9±6.8 72.2±6.7 / 72.7±7.0
hous 89.0±3.0 / 88.0±2.8 90.6±3.3 / 89.8±1.8 93.5±4.0 / 90.1±2.1 90.1±4.6 / 88.4±2.1 88.5±4.3 / 88.5±2.3 89.6±3.1 / 88.5±2.3
houv 88.0±2.1 / 87.0±3.1 85.4±6.4 / 85.0±5.8 88.9±5.6 / 87.0±4.6 87.3±6.4 / 86.1±4.7 86.5±5.2 / 86.2±4.5 87.9±4.4 / 86.8±3.9
iono 72.6±6.8 / 74.7±9.1 72.1±9.4 / 77.4±8.6 78.2±5.8 / 80.8±7.4 74.6±6.8 / 74.3±13.2 74.4±6.0 / 76.1±8.7 73.7±6.7 / 75.2±10.0
isol 89.6±6.8 / 81.0±14.7 86.6±10.0 / 86.7±9.9 90.0±10.3 / 89.1±12.1 88.6±12.6 / 87.3±13.4 87.9±13.5 / 87.2±13.2 91.4±9.0 / 85.2±17.2
live 55.3±5.4 / 55.5±5.9 53.3±5.0 / 54.2±4.8 55.2±6.0 / 55.6±5.8 54.9±6.1 / 55.4±6.0 54.2±5.5 / 55.2±5.8 54.8±5.7 / 55.2±6.0
optd 92.2±4.4 / 85.8±9.8 87.1±8.7 / 87.2±8.7 91.1±7.4 / 90.9±7.9 89.7±9.8 / 88.9±10.6 88.2±9.7 / 87.7±10.1 93.5±5.6 / 87.9±11.3
vehi 74.0±7.9 / 74.3±8.1 76.2±9.2 / 78.7±8.7 76.1±8.8 / 80.2±10.8 74.6±8.6 / 76.8±10.0 73.8±8.4 / 75.9±9.1 74.7±8.5 / 76.2±9.8
wdbc 81.3±7.4 / 80.7±7.5 84.3±6.6 / 84.4±6.3 82.1±7.1 / 84.2±7.5 82.0±7.1 / 83.5±7.5 81.9±7.1 / 83.4±7.4 82.1±7.2 / 82.5±9.1
digi 76.2±7.1 / 57.2±12.1 80.7±3.9 / 84.2±4.4 77.4±4.6 / 82.5±6.2 74.3±6.4 / 79.4±6.7 61.4±8.9 / 75.8±9.4 76.0±7.1 / 63.6±12.6
USPS 78.5±2.9 / 80.0±0.1 72.2±3.7 / 71.6±4.9 81.6±4.4 / 77.7±3.1 72.0±5.1 / 64.6±4.6 77.6±2.9 / 75.9±4.5 78.7±2.7 / 80.1±0.2
COIL 56.5±5.4 / 56.9±4.2 54.9±6.2 / 57.2±3.9 65.6±5.1 / 67.5±5.9 56.8±6.4 / 59.6±6.5 54.7±6.2 / 56.9±7.1 56.8±5.4 / 57.0±4.2
BCI 52.6±2.4 / 51.3±2.0 50.9±2.8 / 51.2±2.1 53.9±2.9 / 53.8±1.8 52.0±2.3 / 51.3±2.5 50.4±3.0 / 50.1±2.9 51.8±2.3 / 51.3±2.2
g241c 54.5±4.2 / 52.3±4.4 78.3±4.5 / 59.5±3.4 60.6±3.2 / 59.0±3.0 56.5±6.8 / 56.4±4.1 49.3±2.7 / 49.8±3.1 54.6±4.5 / 52.8±4.4
g241n 56.4±5.2 / 52.5±5.3 53.3±7.3 / 52.8±5.2 60.3±3.1 / 56.3±2.9 51.4±3.0 / 52.4±5.9 48.4±4.6 / 49.5±5.6 56.3±5.1 / 52.7±5.1
Text 52.2±3.0 / 52.6±4.0 64.8±7.9 / 52.4±6.1 56.9±2.4 / 55.3±1.7 55.6±3.9 / 51.5±4.3 43.0±4.5 / 46.4±6.4 52.1±2.9 / 52.6±4.0
Avg.Acc. 71.3 / 69.7 72.2 / 71.3 74.0 / 74.1 71.1 / 70.6 69.1 / 70.2 71.8 / 70.6
SVM vs. Semi-Supervised: W/T/L 12/19/13 1/15/28 6/30/8 15/22/7 0/32/12

100 Lab SVM TSVM S3VMbest
𝑠 S3VMmin

𝑠 S3VMcom
𝑠 S4VM𝑠

( linear / rbf ) ( linear / rbf ) ( linear / rbf ) ( linear / rbf ) ( linear / rbf ) ( linear / rbf )

aust 83.7±1.8 / 78.7±2.9 83.1±2.1 / 78.6±2.8 83.7±1.6 / 78.9±2.8 83.5±1.6 / 78.7±2.9 82.6±2.5 / 78.6±3.0 83.7±1.6 / 78.8±3.0
ausl 79.5±2.8 / 80.6±2.3 79.0±2.9 / 81.1±2.5 81.5±2.1 / 81.8±1.9 80.9±2.2 / 81.2±2.0 80.7±2.2 / 81.2±2.1 81.1±2.1 / 81.3±2.0
brea 95.0±1.3 / 95.4±1.0 95.7±0.7 / 95.8±0.7 95.2±1.4 / 95.5±1.0 95.1±1.3 / 95.5±1.0 95.0±1.4 / 95.4±1.0 95.2±1.3 / 95.4±1.0
clea 73.3±3.1 / 83.1±2.0 73.6±2.9 / 83.2±2.2 74.1±3.0 / 84.5±1.8 73.6±3.2 / 83.7±2.2 73.6±3.0 / 83.5±2.1 73.5±2.9 / 83.3±2.1
diab 74.6±1.6 / 70.3±2.1 73.7±1.9 / 70.0±2.1 74.4±1.9 / 70.7±2.3 74.1±2.0 / 70.6±2.3 73.0±3.4 / 70.2±2.4 74.3±1.9 / 70.6±2.4
germ 65.3±3.0 / 70.9±1.0 66.1±2.2 / 68.8±2.3 66.2±3.0 / 70.4±1.7 65.8±2.9 / 69.4±1.8 65.5±3.5 / 68.8±2.0 65.8±2.9 / 71.0±1.1
habe 71.7±3.1 / 68.3±2.8 69.1±3.0 / 66.3±2.6 71.6±3.6 / 67.7±2.6 69.2±4.2 / 67.5±2.8 69.3±4.1 / 67.2±2.9 71.9±3.2 / 68.1±2.6
hear 82.2±2.5 / 76.3±3.4 82.2±2.9 / 76.0±3.4 82.6±2.1 / 76.5±3.6 82.4±2.1 / 76.4±3.7 82.1±2.9 / 76.2±3.6 82.4±2.5 / 76.5±3.7
hous 94.0±1.8 / 94.9±1.7 92.1±3.2 / 92.4±3.3 94.5±1.4 / 95.3±1.7 94.2±1.8 / 94.9±1.9 94.0±1.5 / 94.6±1.7 94.2±1.6 / 94.9±1.7
houv 91.1±1.4 / 92.5±1.7 89.9±2.2 / 90.9±2.4 91.2±1.3 / 92.6±1.8 91.1±1.3 / 92.3±1.7 91.0±1.3 / 92.1±1.8 91.2±1.3 / 92.6±1.6
iono 83.9±2.7 / 91.5±2.1 81.8±3.0 / 90.6±2.8 83.6±2.6 / 91.9±2.0 83.4±2.7 / 91.6±2.0 83.0±2.8 / 91.5±2.1 83.4±2.6 / 91.6±2.1
isol 99.0±0.4 / 99.2±0.5 96.3±3.3 / 96.4±3.4 98.9±1.4 / 99.0±1.5 98.9±1.4 / 98.9±1.4 98.9±1.3 / 98.8±1.3 98.9±1.2 / 99.3±0.5
live 64.3±3.6 / 66.5±2.6 64.8±3.1 / 66.1±2.3 63.2±4.2 / 67.0±3.4 62.9±4.2 / 66.9±3.4 62.2±4.7 / 66.2±3.8 63.1±4.2 / 66.8±3.3
optd 99.2±0.3 / 99.5±0.2 96.2±3.3 / 96.2±3.3 99.0±1.7 / 99.1±1.8 99.0±1.7 / 99.1±1.8 98.9±1.8 / 99.1±1.7 99.1±1.2 / 99.6±0.4
vehi 93.6±1.9 / 97.7±1.0 93.2±2.0 / 96.0±2.1 93.7±2.0 / 98.1±0.8 93.7±1.9 / 98.0±0.8 93.6±1.9 / 97.8±1.0 93.7±2.0 / 97.9±0.8
wdbc 95.2±1.4 / 93.6±1.7 93.4±2.6 / 92.4±2.7 94.6±1.7 / 93.6±1.7 94.6±1.7 / 93.5±1.7 94.6±1.7 / 93.4±1.7 94.7±1.7 / 93.6±1.7
digi 90.8±0.7 / 94.2±1.5 92.0±1.6 / 94.5±1.9 93.7±1.4 / 96.2±1.1 91.8±1.6 / 95.2±1.9 91.6±1.5 / 95.2±1.3 91.5±0.8 / 94.9±1.4
USPS 87.2±1.0 / 83.1±1.9 86.7±1.5 / 91.7±2.5 89.1±0.6 / 92.5±2.0 88.0±1.1 / 91.9±2.3 87.6±0.8 / 91.6±2.2 87.7±1.0 / 91.0±2.4
COIL 80.2±2.2 / 87.1±2.0 80.8±2.7 / 87.0±1.5 83.2±2.2 / 88.9±2.4 81.6±2.5 / 87.1±2.6 80.9±2.0 / 87.2±2.5 80.8±2.3 / 87.2±2.1
BCI 70.4±3.4 / 66.2±2.9 70.5±4.1 / 65.4±2.8 70.7±3.5 / 66.2±2.7 70.6±3.4 / 66.1±2.8 70.4±3.4 / 65.7±2.8 70.5±3.4 / 66.1±2.9
g241c 74.5±2.0 / 70.1±8.5 80.0±1.4 / 77.8±1.6 78.5±2.7 / 79.3±2.7 77.8±3.7 / 77.9±4.3 74.4±2.0 / 76.5±3.7 75.3±1.8 / 74.8±4.1
g241n 71.8±2.7 / 59.4±9.4 75.4±4.5 / 65.0±13.8 74.8±2.7 / 74.5±4.3 74.2±3.6 / 74.5±4.3 71.0±3.0 / 53.5±2.5 72.2±2.8 / 60.9±8.4
Text 69.8±2.1 / 54.4±4.9 74.2±1.4 / 58.8±4.9 71.3±1.0 / 57.6±3.8 71.3±1.0 / 53.3±4.5 50.5±5.5 / 49.1±11.0 69.9±2.0 / 54.1±4.1
Avg.Acc. 82.4 / 81.8 82.3 / 82.0 83.2 / 83.6 82.7 / 83.0 81.3 / 81.8 82.5 / 82.5
SVM vs. Semi-Supervised: W/T/L 17/17/10 1/20/23 3/26/15 12/24/8 0/30/14

confirm that S4VM𝑠 does not degenerate performance on
all the cases in Figure 3.

5. Conclusion
Semi-supervised learning tries to exploit unlabeled data to
improve learning performance. Though semi-supervised
learning approaches are promising, there are many cases
where the performance of using unlabeled data is even
worse than purely using the limited labeled data. In this
paper, we focus on semi-supervised support vector ma-

chines (S3VMs) and propose the S4VMs. Unlike S3VMs
which typically try to obtain one low-density separator,
S4VMs attempt to exploit multiple candidate diverse large-
margin low-density separators and optimize the label as-
signment for the worst case. We present two implementa-
tions, one uses a global simulated annealing search for the
low-density separators, while the other uses a simpler and
efficient sampling strategy. Comprehensive experiments
validate the effectiveness of our S4VMs. It is particularly
encouraging since the overall performance of S4VMs is
highly competitive to TSVM, while contrasting to TSVM
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(a) Influence of 𝑇 on S4VM𝑠
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(b) Influence of 𝑁 on S4VM𝑠
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(c) Influence of 𝜆 on S4VM𝑠

Figure 3. Parameter Influence with 10 labeled examples

which often degenerates performance, S4VMs are never
significantly worse than inductive SVMs.
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