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Abstract

Neural network ensemble is a learning paradigm
where several neural networks are jointly used to
solve a problem. In this paper, the relationship
between the generalization ability of the neural
network ensemble and the correlation of the
individual neural networks is analyzed, which
reveals that ensembling a selective subset of
individual networks is superior to ensembling all
the individual networks in some cases. Therefore an
approach named GASEN is proposed, which trains
several individual neural networks and then
employs genetic algorithm to select an optimum
subset of individual networks to constitute an
ensemble. Experimental results show that,
comparing with a popular ensemble approach, i.e.
averaging all, and a theoretically optimum selective
ensemble approach, i.e. enumerating, GASEN has
preferable performance in generating ensembles
with strong generalization ability in relatively small
computational cost.

1 Introduction

Since neural computing has no rigorous theoretical
framework until now, whether a neural network based
application will be successful or not is almost fully
determined by that who is the practitioner. In general, the
more experiences the practitioner has on neural computing,
the more chances the application will have in gaining
success. However, in real-world applications, the users are
often those with little knowledge on neural computing.
Therefore the rewards that neural network techniques may
return do not always appear.

In the beginning of the 1990’s, Hansen and Salamon

[1990] showed that the generalization ability of a neural
network system can be significantly improved through
ensembling neural networks, i.e. training several neural
networks and combining their results in some way. Later,
Sollich and Krogh [1996] defined neural network ensemble
as a collection of a (finite) number of neural networks that
are trained for the same task. Since it behaves remarkably
well and is easy to use, neural network ensemble is regarded
as a promising methodology that can profit not only experts
in neural computing but also ordinary engineers in real-
world applications. And neural network ensemble has
already been used in many real domains such as handwritten
digit recognition [Hansen et al., 1992], scientific image
analysis [Cherkauer, 1996], face recognition [Gutta and
Wechsler, 1996; Huang et al., 2000], OCR [Mao, 1998],
seismic signals classification [Shimshoni and Intrator, 1998],
etc. Many works have been done in investigating why and
how neural network ensemble works. The classical one is
Krogh and Vedelsby [1995] ’s work, in which they derived a
famous equation E = E — 4 that clearly demonstrates
that the generalization ability of the ensemble is determined
by the average generalization ability and the average
ambiguity of the individual neural networks that constitutes
the ensemble.

In this paper, the relationship between the generalization
ability of the neural network ensemble and the correlation of
the individual neural networks is analyzed, which reveals
that in some cases ensembling an appropriate subset of
individual networks is superior to prevailing ensemble
schemes, i.e. ensembling all the individual networks at hand.
Based upon the recognition that the appropriate subset of
individual networks is difficult to be found out directly, a
genetic algorithm based approach named GASEN (Genetic
Algorithm based Selective ENsemble) is proposed, which
trains several individual neural networks and then employs
genetic algorithm to select an optimum set of individual



networks to constitute an ensemble. Experiments show that
GASEN is superior to a popular ensemble approach, i.e.
averaging all that averages the outputs of all the individual
networks at each output unit. Experiments also show that
GASEN is superior to a selective ensemble approach that is
theoretically optimum, i.e. enumerating that estimates the
generalization ability of every possible subset of individual
networks and then selects the best subset to make an
ensemble. Moreover, most ensemble approaches require
their individual networks be independently trained. But at
present there is no method can guarantee the independence
when there are many individual networks. Since GASEN can
increase the ambiguity of the ensemble through selecting the
appropriate subset of individual networks, it does not claim
independent training, which makes it more easily to use than
many other ensemble approaches.

The rest of this paper is organized as follows. In Section
2, the relationship between the generalization ability of the
ensemble and the correlation of the individual neural
networks is analyzed. In Section 3, GASEN is proposed to
find out the optimum subset of individual networks. In
Section 4, experiments on averaging all, enumerating, and
GASEN are reported. In Section 5, related works are
overviewed. Finally in Section 6, conclusions are drawn and
several issues for future works are indicated.

2 Generalization and Correlation

Suppose the learning task is to use an ensemble that
comprises N individual neural networks to approximate a
function £ R™ - R". The predictions of the individual
networks are combined through weighted averaging, where
a weight w; (i = 1, 2, ..., N) is assigned to the individual
network f;, and w, satisfies equation (1) and (2):

0<w, <1 8

N
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Therefore the k-th output component of the ensemble is
computed according to equation (3), where f;, is the value of
the &-th output component of the i-th individual network.

7k = i w, fix )

For convenience of discussion, here we assume that each
individual network has only one output component, i.c. the
function to be approximated is £ R™ — R. But note that
following derivation can be easily generalized to situations
where each individual network has multiple output
components.

Suppose x O R™ is randomly sampled according to a
distribution p(x). The expected output of x is d(x). The
actual output of the i-th individual neural network is f(x).
Then the output of the neural network ensemble is:

fngmma &)

The generalization error E(x) of the i-th individual
network on input x and the generalization error E(x) of the
ensemble on input x are respectively:

E,(x)=(f,(x)-d(x)) )

£(x)=((x) - d(x)f (©)

Then the generalization error E; of the i-th individual
neural network on the distribution p(x) and the
generalization error £ of the ensemble on the distribution
p(x) are respectively:

E = J.dxp(x)E : (x) (M

E= jdxp(x)E(x) (®)

The average generalization error of the individual neural
networks on input x is:

E(x)=iw[Ei(x) ©

Then the average generalization error of the individual
neural networks on the distribution p(x) is:

E= J.dxp(x)E(x) (10)

Now we define the correlation between the i-th and the
J-th individual neural networks as:

¢, =laplx)(, () =a(e)r, () -alx)  (an)
Note that C;; satisfies equation (12) and (13):

C; =E (12)

c,=C, (13)

Considering equation (4) and (6) we get:
N N
E(x)= (z " f,.(x)-d(x)j S w7, (x)-aly)| (149
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Then considering equation (14) and (11) we get:
N N
E=3 % wwC,
i=l =l
Different to Krogh and Vedelsby [1995] ’s result
E = E — 4 , equation (15) utilizes the correlation between
the individual neural networks to represent the

generalization error of the ensemble. Since the computation
of C, only refers to f; and f, equation (15) is easier to use
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than E = E — 4 inreal-world applications.

Suppose that w;, = I/N (i = 1, 2, ..., N), ie. the
predictions of the individual neural networks are combined
via averaging. Then equation (15) becomes:

N N
E=)>C,/N? (16)
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Let’s assume that the k-th individual neural network is
deleted from the ensemble. Then the generalization error of
the new ensemble is:

N
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Considering equation (16) and (17) we get:

2% C,+E, -(2N-1)E
i=1
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It is obvious that £ > E" when equation (19) is satisfied,
which means that the new ensemble that omits f, is more
accurate than the original one that includes f,.

N
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Considering equation (19) and (17) we get the
constraints on f;:

eN-13S ¢, <2(v-1) ZC +(N-1)E, 20
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Now a conclusion is arrived that after the individual
neural networks are trained, in some cases ensembling an
appropriate subset of individual neural networks is superior
to ensembling all the individual networks. The individual
networks that should be omitted satisfy equation (20).

3 GASEN

Note that the individual neural networks to be omitted are
hard to be found out directly by equation (20) due to the
extensive computation required. Moreover, following
observation is noteworthy that in real-world applications the
generalization error of the individual neural networks and
that of the ensemble are all unknown. However, we can
employ cross-validation to get their generalization error on a
validation set, which can be used to approximate the actual
generalization error.

An approach named enumerating can be utilized to find
out the appropriate subset of individual networks, which
estimates the generalization error of all the possible subsets
of {f,, f5, ..., fy} and then selects the best subset to make an

ensemble. When N is a small number, enumerating can
achieves optimum results. However, if N is a big number,
such as N > 30, enumerating is nearly impossible to be
realized due to its excessive computational cost (it will
estimates the generalization error of 2¥ —1 number of
ensembles).

Here we present a practical routine to find out the
appropriate subset of individual neural networks. Assume
we can assign to each individual neural network an
optimum weight that exhibits its importance in the ensemble.
Then we can select the individual networks whose weight is
bigger than a pre-set threshold A to constitute the ensemble
via averaging. Suppose the weight corresponding to the i-th
individual neural network is w; which satisfies both
equation (1) and (2). Then we have a weight vector w = (w,
Wy, ..., Wy). Since the optimum weight should minimize the
generalization error of the ensemble, considering equation

(15), the optimum weight vector w,,, can be expressed as:

N N
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can be solved by lagrange multlpher. W,z Satisfies:
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Equation (22) can be simplified as:
Zwoptk kj : (23)
j#—k
Considering that w,,,, satisfies equation (2), we get:
N
2.Cy
W —_Jst (24)
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Although equation (24) is enough to solve w,,, in theory,
it rarely works well in real-world applications. This is
because in the ensemble of real-world applications there are
often some individual neural networks that are quite similar
in performance, which makes the correlation matrix (Cj)yxy
of the ensemble be an inreversible or ill-conditioned matrix
so that equation (24) cannot be solved.

Since equation (21) can be viewed as an optimization
problem, considering the success that has been obtained by
genetic algorithms in optimization area [Goldberg, 1989],
GASEN is proposed to find out the appropriate subset of the
individual networks. After the individual networks being



trained, GASEN employs genetic algorithm to evolve the
optimum weight vector w,,. Then GASEN selects the
individual networks whose corresponding optimum weight
component is bigger than the pre-set threshold A to
constitute the ensemble. Note that if no individual network
is washed out, i.e. every component of the evolved optimum
weight vector is bigger than A, all the individual networks
are used to constitute the ensemble. We believe that this is
corresponding to the situation that no individual networks
satisfying equation (20). Following observation is
noteworthy that the output of the ensemble is generated via
averaging. In other words, the evolved optimum weight
vector is only used in the selection of the individual
networks. This is because we believe that using the weight
vector both in the selection of the individual networks and
the combination of the individual predictions is easy to
cause overfitting.

Here GASEN is realized by utilizing the standard genetic
algorithm [Goldberg, 1989] and a floating coding scheme
that represents every component of the weight vector in 64
bits. Therefore each individual in the evolving population is
coded in 8N bytes where N is the number of the individual
networks. Note that since GASEN can be viewed as an
abstract approach rather than a concrete algorithm, it can be
easily realized by employing diversified kind of genetic
algorithms and coding schemes.

Let V denotes the validation set. The estimated value of
the correlation between the i-th and the j-th individual
neural networks is:

2 (1,()=al), () - alx)
C; = v (25)

Considering equation (15), the estimated generalization
error of the neural network ensemble corresponding to the
individual w in the evolving population is:

E! =

™=

N
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It is obvious that E,,” expresses the goodness of w. The
smaller E,,” is, the better w is. So we use fiw) = 1/ E;,” as the
fitness function. Note that w may violate equation (2) during
its evolving. Therefore it is necessary to do normalization
on the evolved optimum w so that its components can be
compared with A. Here we use a simple normalization
scheme:

=w. /> w, 27)

4 Experiments

We wuse four regression problems to compare the
performance of three ensemble approaches, i.e. averaging

all, enumerating, and GASEN.

The first problem is Friedman#l proposed by Friedman
[1991]. There are 5 continuous attributes. The data set is
generated according to equation (28) where the noise item &
satisfies normal distribution N(0, 1) and x; (i =1, 2, ..., 5)
satisfies uniform distribution U[0, 1]. In our experiments the
size of the training set and the test set are respectively 200
and 1000.

t =10sin(7z,x,) +20(x, —0.5) +10x, +5x, +&  (28)

The second problem is Boston Housing from UCI
machine learning repository [Blake et al., 1998]. There are
11 continuous attributes and 1 categorical attribute. The data
set comprises 506 examples among which 400 examples
make up the training set and the rest 106 examples make up
the test set in our experiments.

The third problem is Ozone proposed by Breiman and
Friedman [1985]. There are 9 continuous attributes. The
data set comprises 366 examples. Since the intention of the
experiments is not to compare the ability of dealing with
missing values, 1 attribute and 36 examples that has missing
values are omitted as Briedman [1996] did on the data set.
Therefore in our experiments there are 8 continuous
attributes and 330 examples among which 250 examples
make up the training set and the rest 80 examples make up
the test set.

The fourth problem is Servo from UCI machine learning
repository. There are 4 categorical attributes. The data set
comprises 167 examples among which 130 examples make
up the training set and the rest 37 examples make up the test
set in our experiments. Note that some researchers [Quinlan,
1993] believe that this problem is very difficult because it
involves some kind of extreme nonlinearity.

For each problem we use Bagging on the training set to
generate 20 single-hidden-layered BP [Rumelhart et al.,
1986] networks. During the training process, the
generalization error of each network is estimated in each
epoch on a validation set generated via bootstrap sampling
from the training set. If the error does not change in
consecutive 5 epochs, the training of the network is
terminated in order to avoid overfitting. Then we use
averaging all, enumerating, and GASEN to ensemble those
trained BP networks. In our experiments the genetic
algorithm employed by GASEN is implemented by the GAOT
toolbox developed by Houck et al. [1995]. The genetic
operators, including select, crossover, and mutation, and the
system parameters, including crossover probability,
mutation probability, and stopping criterion, are all set to the
default values of GAOT. The pre-set threshold A used by
GASEN is set to 0.05. The validation set V" used by GASEN is
also generated via bootstrap sampling from the training set.
For every problem we perform 20 runs and record the
average mean squared error and the standard deviation on



Table 1

Experimental results on averaging all, enumerating, and GASEN

averaging all enumerating GASEN
Data set .. . .
error deviation error deviation error deviation
Friedman#l 1.33 0.26 0.47 0.12 0.5 0.14
Boston Housing 12.26 0.97 10.6 0.55 10.68 0.8
Ozone 22.29 2.00 19.85 1.72 19.99 1.63
Servo 0.21 0.026 0.21 0.045 0.226 0.058

the test set of the ensembles. The experimental results are
tabulated in Table 1.

Pairwise  one-tailed #-tests indicate that the
generalization error of GASEN is significantly less than that
of averaging all on Friedman#l, Boston Housing, and
Ozone, while there is no significant difference between the
performance of those two approaches on Servo. We believe
that GASEN is superior to averaging all because ensembles
generated by it are more accurate than that generated by
averaging all in most cases. Pairwise one-tailed z-tests also
indicate that there is no significant difference between the
performance of GASEN and enumerating on all those data
sets. Considering that enumerating can hardly work when
there are lots of individual networks due to its extensive
computational cost, we believe that GASEN is superior to
enumerating because it can generate ensembles with
comparable generalization ability in the cost of much
smaller computation.

Following observation is interesting. Through analyzing
the ensembles, we find that GASEN and enumerating
averagely select a subset comprises 5 networks out of 20
individual networks to constitute the ensemble. And the
subset selected by GASEN is the same as that selected by
enumerating in 6 runs out of 20 runs on Friedman#l, 2 runs
out of 20 runs on Boston Housing, 3 runs out of 20 runs on
Ozone, and 7 runs out of 20 runs on Servo. It is obvious that
the frequency of the appearance of same selected results is
much higher than that should exhibit in random selection.
Considering that enumerating is an optimum approach when
the size of ensemble is small, we believe that this
observation verifies the goodness of GASEN from another
aspect. However, the reason for explaining the high
frequency of the appearance of same selected results should
be further explored.

5 Related Works

Neural network ensemble has become a very active area and
there are a large number of research groups working on it.
Besides the achievements cited in the brief review presented
in Section 1, some significant developments in this area can
be found in [Sharkey, 1999]. Moreover, there are some
works very related to this paper.

Yao and Liu [1998] employed genetic algorithm to
evolve a population of neural networks. Instead of choosing

the best neural network in the last generalization as the final
result, they regarded the entire population as a neural
network ensemble and combining all the individuals in the
last generalization in order to make best use of all the
information contained in the population. Although genetic
algorithm is used in both their and our works, there are
many differences among which a conspicuous one is that
they intended to utilize the information contained in the
genetic population rather than performing selection on the
individual networks.

Liu and Yao [1999] proposed an ensemble learning
approach, i.e. negative correlation learning, where all the
individual networks are trained simultaneously through the
correlation penalty terms in their error functions. Rather
than generating unbiased networks whose errors are
uncorrelated, negative correlation learning can generate
negatively correlated networks to encourage specialization
and cooperation among the individual networks. The main
reason that negative correlation learning can improve the
generalization ability of an ensemble is that it increases the
ambiguity item A4 in the famous equation £ = E — 4 .
In GASEN, when individual neural networks are selected
according to the evolved optimum weight vector, the
ambiguity of the ensemble is also increased. This can be
derived from the observation that the generalization ability
of the ensemble generated by GASEN is better than the
ensemble that comprises same number of individual
networks that rank toppest in generalization ability.

6 Conclusion

In this paper, the relationship between the generalization
ability of the neural network ensemble and the correlation of
individual networks is analyzed, which reveals that in some
cases ensembling a selective subset of individual networks
is superior to ensembling all the individual networks. Then a
genetic algorithm based ensemble approach named GASEN
is proposed. Experimental results show that GASEN is a
promising ensemble approach that is superior to both
averaging all and enumerating.

There are many works left to do in the near future.
Firstly, at present GASEN has only been compared with
averaging all and enumerating on several data sets. We plan
to do comparisons with more ensemble approaches on more
data sets. Secondly, the pre-set threshold A is an important



parameter of GASEN, which determines the individual neural
networks that constitute the ensemble. We hope to find out
the relationship between A and the generalization ability of
the ensemble so that we can set A to appropriate values in
real-world applications. Thirdly, we want to explore why
there is such a high frequency that GASEN and enumerating
select the same subset of individual networks to make an
ensemble.
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