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Abstract

In many practical machine learning and data min-
ing applications, unlabeled training examples are
readily available but labeled ones are fairly expen-
sive to obtain. Therefore, semi-supervised learn-
ing algorithms such aso-training have attracted
much attention. Previous research mainly focuses
on semi-supervised classification. In this paper, a
co-training style semi-supervised regression algo-
rithm, i.e. COREG, is proposed. This algorithm
uses twak-nearest neighbor regressors with differ-
ent distance metrics, each of which labels the unla-
beled data for the other regressor where the label-
ing confidence is estimated through consulting the
influence of the labeling of unlabeled examples on
the labeled ones. Experiments show tRa&iREG
can effectively exploit unlabeled data to improve
regression estimates.

Introduction

A prominent achievement in this area is the co-training
paradigm proposed by Blum and Mitchd99d, which
trains two classifiers separately on twuofficient and redun-
dant viewsi.e. two attribute sets each of which is sufficient
for learning and conditionally independent to the other given
the class label, and uses the predictions of each classifier on
unlabeled examples to augment the training set of the other.

Dasgupta et al[2004 have shown that when the require-
ment of sufficient and redundant views is met, the co-trained
classifiers could make few generalization errors by maxi-
mizing their agreement over the unlabeled data. Unfortu-
nately, such a requirement can hardly be met in most sce-
narios. Goldman and Zhol200qQ proposed an algorithm
which does not exploit attribute partition. This algorithm re-
quires using two different supervised learning algorithms that
partition the instance space into a set of equivalence classes,
and employs cross validation technique to determine how to
label the unlabeled examples and how to produce the final
hypothesis. Although the requirement of sufficient and re-
dundant views is quite strict, the co-training paradigm has al-
ready been used in many domains such as statistical parsing
and noun phrase identificati¢hiwa et al., 2003[ Pierce and

In many practical machine learning and data mining appli-Cardie, 200][ Sarkar, 200} Steedmaret al, 2003.

cations such as web user profile analysis, unlabeled training It is noteworthy that previous research mainly focuses on
examples are readily available but labeled ones are fairly ex¢lassification while regression remains almost untouched. In
pensive to obtain because they require human effort. Therdhis paper, a co-training style semi-supervised regression al-
fore, semi-supervised learning methods that exploit unlabelegorithm namedCoREgG, i.e. Co-training REGressors, is
examples in addition to labeled ones have attracted much aproposed. This algorithm employs twenearest neighbor
tention. (ENN) regressors, each of which labels the unlabeled data
Many current semi-supervised learning methods use a getior the other during the learning process. In order to choose
erative model for the classifier and employ Expectation-2ppropriate unlabeled examples to labBOREG estimates
Maximization (EM) [Dempsteret al, 1977 to model the the labeling confidence through consulting the influence of
label estimation or parameter estimation process. For exhe labeling of unlabeled examples on the labeled examples.
ample, mixture of GaussiariShahshahani and Landgrebe, The final prediction is made by averaging the regression es-
1994, mixture of expertgMiller and Uyar, 1997, and naive  timates generated by both regressors. SIDO&EG utilizes
Bayed Nigamet al,, 200Q have been respectively used as thedifferent distance metrics instead of requiring sufficient and
generative model, while EM is used to combine labeled andedundant views, its applicability is broad. Moreover, experi-
unlabeled data for classification. There are also many othgnental results show that this algorithm can effectively exploit
methods such as using transductive inference for support vegnlabeled data to improve regression estimates.
tor machines to optimize performance on a specific test set The rest of this paper is organized as follows. Section 2
[Joachims, 1999 constructing a graph on the examples suchproposes th€€oREG algorithm. Section 3 presents an anal-
that the minimum cut on the graph yields an optimal labelingysis on the algorithm. Section 4 reports on the experimental
of the unlabeled examples according to certain optimizatiomesults. Finally, Section 5 concludes and raises several issues
functions[Blum and Chawla, 20Q] etc. for future work.



2 COREG andh, can be diverse through instantiating them with differ-
entp values. Such a setting can also bring another profit, that

Let L = {(x1,y1),---, (%), y|2)} denote the labeled ex- g since itis usually difficult to decide whighvalue is better

ample set, wherex; is thei-th instance described by at-  for the concerned task, the functions of these regressors may

valued output, andZ| is the number of labeled examples;

let U denote the unlabeled data set, where the instances are d 1/p
also described by thé attributes, whose real-valued labels Minkowsky,(x,,X,) = Z %1 — Xg]” (1)
are unknown, an¢l/| is the number of unlabeled examples. = ’

Two regressors, i.é1, andh,, are generated from, each In order to choose appropriate unlabeled examples to la-
of which is then refined with the help of unlabeled exam-pg| the |abeling confidence should be estimated such that the
ples that are labeled by the latest version of the other re-

. most confidently labeled example can be identified. In classi-
gressor. Here theNN regressofDasarathy, 1991lis used  fication this is relatively straightforward because when mak-
as the base learner to instantidate and ko, which labels a

: h h ing th lvalued labels of | ing classifications, many classifiers can also provide an esti-
new instance through averaging the real-valued labels of itj,51ed probability (or an approximation) for the classification,
k-nearest neighboring examples.

) e.g. a Naive Bayes classifier returns the maximum posteriori
The use of:NN regressor as the base learner is due to thgyypothesis where the posterior probabilities can be used, a
following considerations. First, the regressors will be refinedgp neural network classifier returns thresholded classification
in each of many learning iterations. If neural networks or re(yhere the real-valued outputs can be used, etc. Therefore, the
gression trees are used, then in each iteration the regressqigeling confidence can be estimated through consulting the
have to be re-trained with the labeled examples in addition tropabilities of the unlabeled examples being labeled to dif-
the newly labeled ones, the computational load of which willferent classes. For example, suppose the probability of the
be quite heavy. SinckNN is a lazy learning method which jnstanceq being classified to the classes and ¢, is 0.90
does not hold a separate training phase, the refinement of thg,q 0.10, respectively, while that of the instahég 0.60 and

kNN regressors can be efficiently realized. Second, in ordef 40, respectively. Then the instancés more confident to
to choose appropriate unlabeled examples to label, the labeke |abeled (to class,).

ing confidence should be estimated JoREGthe estimation  ynfortunately, in regression there is no such estimated
utilizes the neighboring properties of the training examplespropability that can be used directly. This is because in con-
which can be easily coupled with ti&IN regressors. trast to classification where the number of class labels to be

Itis noteworthy that the initial regressors should be diversepredicted is finite, the possible predictions in regression are
because if they are identical, then for either regressor, thixfinite. Therefore, a key 0€COREG is the mechanism for
unlabeled examples labeled by the other regressor may hsstimating the labeling confidence.
the same as these labeled by the regressor for itself. Thus, Heuristically, the most confidently labeled example of a
the algorithm degeneratesself-training[Nigam and Ghani, regressor should be with such a property, i.e. the error of
200d with a single learner. In the standard setting of co-the regressor on the labeled example set should decrease the
training, the use of sufficient and redundant views enables thgost if the most confidently labeled example is utilized. In
learners be different. Previous research has also shown thather words, the most confidently labeled example should be
even when there is no natural attribute partitions, if there aréhe one which makes the regressor momtsistenwith the
sufficient redundancy among the attributes then a fairly reatabeled example set. Thus, the mean squared error (MSE)
sonable attribute partition will enable co-training to exhibit of the regressor on the labeled example set can be evaluated
advantagefNigam and Ghani, 20Q0While in the extended  first. Then, the MSE of the regressor utilizing the information
co-training algorithm which does not require sufficient andprovided by(x,,¥..) can be evaluated on the labeled exam-
redundant views, the diversity among the learners is achievegle set, wherex,, is an unlabeled instance whifg, is the
through using different learning algorithni§oldman and  real-valued label generated by the original regressor/ALgt
Zhou, 2000. SinceCoREG does not assume sufficient and denote the result of subtracting the latter MSE from the for-
redundant views and different learning algorithms, the divermer MSE. Note that the number Af, to be estimated equals
sity of the regressors should be sought from other channelsto the number of unlabeled examples. Finally,,¥,) as-

Here the diversity is achieved through utilizing different sociated with the biggest positiv®, can be regarded as the
distance metrics. In fact, a key &NN learner is how to most confidently labeled example.
determine the distances between different instances. The Since repeatedly measuring the MSE of #éN regres-
Minkowsky distance shown in Eq. 1 is usually used for thissor on the whole labeled example set in each iteration will be
purpose. Note that different concrete distance metrics can i@me-consuming, considering thalNN regressor mainly uti-
generated through setting different values to the distance otizes local information,COREG employs an approximation.
der, p. Roughly speaking, the smaller the order, the moreThat is, for eackk,,, COREGidentifies itsk-nearest neighbor-
robust the resulting distance metric to data variations; whiléng labeled examples and uses them to compute the MSE. In
the bigger the order, the more sensitive the resulting distanceetail, let() denote the set of-nearest neighboring labeled
metric to data variations. Therefore, the vicinities identifiedexamples ofk,,, then the most confidently labeled example
for a given instance may be different using the Minkowskyis identified through maximizing the value &, in Eq. 2,
distance with different orders. Thus, thBIN regressorg; whereh denotes the original regressor whilé denotes the



Table 1: Pseudo-code describing tBerReG algorithm

ALGORITHM: COREG

INPUT: labeled example sdfi, unlabeled example sét,
number of nearest neighbats
maximum number of learning iteratiofi
distance orderg;, p2

PrROCESS
L1 L, Ly« L
Create poolU’ by randomly picking examples froii
hy «— kIZVZV(Ll7 k’,pl); hy «— kNN(L27 k,pg)
Repeatfor T' rounds:
for j € {1,2} do
for eachx, € U’ do
Vu < hj (Xu)
Q2 — Neighbors(xy, k, L)
By — ENN(L; U {(xu, 5u)}, b, ) 2
Ax, — ZQ((Y@‘ — hi(x:))” = (yi — Bj(x:))")
xX; €
end of for
if there exists ar\, > 0
thenx; « argmax A, ; ¥; < h;(Z;)
X, €U’
T {(x;,y;) U U —m;
elserr; — 0
end of for
Ly — LiUmg;, Ly +— LoUm
if neither ofL; and L, changeghen exit
else
hy «— kNN(Ll, k,pl); hy «— kNN(LQ, k’,pg)

Replenishl/’ by randomly picking examples frofi

end of Repeat
OUTPUT: regressorh*(x) < 3 (h1(x) + ha(x))

regression estimates. In order to simplify the discussion, here
the effect of the pool’ is not considered as ifBlum and
Mitchell, 1999. That s, the unlabeled examples are assumed
as being picked from the unlabeled examplelsetkirectly.

In each learning iteration @OREG, for each unlabeled ex-
amplex,, its k-nearest neighboring labeled examples are put
into the set). As mentioned before, the newly labeled exam-
ple should make the regressor become more consistent with
the labeled data set. Therefore, a criterion shown in Eq. 3 can
be used to evaluate the goodnesxf whereh is the origi-
nal regressor whilé’ is the one refined witlix,,, y,,). If the
value ofA,, is positive, then utilizingx,,, y..) is beneficial.

1 2 1 / 2
Ay, = m Z (yi — h(x;))” — m Z (yi — h'(x:))

x,€L x,€L
3

In the COREG algorithm, the unlabeled example which
maximizes the value al\, is picked to be labeled. There-
fore, the question is, whether the unlabeled example chosen
according to the maximization @€, will result in a positive
A, value or not.

First, assume thatx,,y.) is among thé:-nearest neigh-
bors of some examples i, and is not among thke-nearest
neighbors of any other examplesiin In this case, it is obvi-
ous that utilizing(x.,, ¥..) will only change the regression es-
timates on the examples §p, therefore Eq. 3 becomes Eq. 4.
Comparing Egs. 2 with 4 it can be found that the maximiza-
tion of Ay, also results in the maximization &f,,.

2

Bu= 3 Y b)) =3 Y i W) (@)

x; €Q x; €Q
Second, assume thét,,y.) is not among thé-nearest
neighbors of any example in. In this case, the value &,
is zero, thereforéx,, y,,) won't be chosen ifCoOREG
Third, assume thdtx,,, y.,) is among the:-nearest neigh-

refined regressor which has utilized the information provided?ors of some examples if as well as some examples

by (x.,¥.). Note thaty,, = h(x,,).

D, = 3 ((vi = h(x:))” = (vi = W (x:))") (2

X, €0

The pseudo code dEOREG is shown in Table 1, where
the functionk NN (L;, k, p;) returns akNN regressor on the
labeled example sét;, whose distance orderjs. The learn-
ing process stops when the maximum number of learning it-

in L — Q, and assume these examples in— ) are

/ ’

(x1,¥1),- > (X,,,¥.). Then Eq. 3 becomes Eq. 5.
1

Au= 2 3 (i = hx)” = (i = W (xa)))+

x; €Q
LY () () @
q€{17...)m}

Maximizing A, will maximize the first sum term of Eq. 5,

erations, i.e.T, is reached, or there is no unlabeled exam-
ple which is capable of reducing the MSE of any of the re-
gressors on the labeled example set. According to Blum an
Mitchell [199]’s suggestion, a pool of unlabeled examples

Eg}ggeéigamléscﬁiggh lt\jl;tsvf)hn?tt Lli%%hsgﬁrgszon whﬁcl;]ma' evaluated. Therefore, there may exist cases where the unla-
P 2 beled example chosen according to the maximizatiof of

is an extra mechanism for encouraging the diversity of the

. _may decreasé\,,, which is the cosCoREG takes for using
regressors. Thus, even whbnar}th_ are S|m|lar, the exam Ay, that can be more efficiently computed to approximate
ples they label for each other will still be different. u

A, . Nevertheless, experiments show that in most cases such
. an approximation is effective.

3 Analysis It seems that using only one regressor to label the unlabeled
This section attempts to analyze whether the learning procesxamples for itself might be feasible, where the unlabeled ex-
of COREG can use the unlabeled examples to improve theamples can be chosen according to the maximizatiah,gf.

but whether it can enabl&,, be positive should also refer the
econd sum term. Unfortunately, the value of this sum term

IS difficult to be measured except that the neighboring rela-

tionships between all the labeled examples &xg y.,) are



While considering that the labeled example set usually confrom the original ones. For example, 8rd Mexican Hatwo
tains noise, the use of two regressors can be helpful to reduceew attributes, i.ex3 andx,, are constructed from; + z2

overfitting. andz; — xo, and then &NN regressor is built or; andz,
Let A denote the subset of noisy exampleslin For the  while the other is built on:3 andz4. In each iteration, each
unlabeled instance,,, either of the regressotg andh. will kNN regressor chooses the unlabeled example which maxi-

identify a set ofk-nearest neighboring labeled examples formizes the value of\,, in Eq. 2 to label for the other regres-
x,. Assume these sets dg and(),, respectively. Sincé; sor. The final prediction is made by averaging the regression
and hy use different distance orderQ; and(), are usually estimates of these two refined regressors. BesiddsNare-
different, and therefor€; N A andQ, N A are also usually gressor using only the labeled data is tested as a baseline for
different. Supposeg,, is labeled byh; and thenx,,, h1(x,)) the comparison, which is denoted byBELED.

is put into Ly, whereh (x,,) suffers fromQ; N A. For an- All the kNN regressors used iS8ELF, ARTRE, andLA-

other unlabeled instance, which is very close tax,, its  BELED employ 2nd-order Minkowski distance, and tke
k-nearest neighbors identified By will be very similar to  value is setto 3. The same pobl), as that used bOREGis

) except that(x,,, h1(x,)) has replaced a previous neigh- used in each iteration GELF andARTRE, and the maximum

bor. Thus,h,(x,) will suffer from ©; N A more seriously number of iterations is also set to 100.

thanh; (x,,) does. While, if the instance,, is labeled byhs One hundred runs of experiments are carried out on each
and(xy, ho(x,)) is putintoL,, thenh, (x,) will suffer from  data set. In each run, the performance of all the four algo-
Q, N A only once, althougl,, is still very close tax,. rithms, i.e. COREG, SELF, ARTRE, andLABELED, are eval-
uated on randomly partitioned labeled/unlabeled/test splits.
4 Experiments The average MSE at each iteration is recorded. Note that

Experiments are performed on ten data sets listed in Table $1€ leaming processes of the algorithms may stop before the

where “# attribute” denotes the number of input attributes.@ximum number of iterations is reached, and in that case,
These data sets have been usefZimou et al, 2009 where the final MSE is used in computing the average MSE of the

the detailed descriptions of the data sets can be found. Nof@lowing iterations. _ .
that the input attributes as well as the real-valued labels have 1he improvement on average MSE obtained by exploiting
been normalized t#.0, 1.0]. unlabeled examples is tabulated in Table 3, which is com-

puted by subtracting the final MSE from the initial MSE and

Table 2: Experimental data sets then divided by the initial MSE.
Data set # attribute  Size

2-d Mexican Hat 5,000

Table 3: Improvement on average mean squared error

3-d Mexican Hat % 3000 Data set SELF ARTRE COREG
Friedman #1 5 5 000 2d Mexican Hat  9.2% 12.8%  19.6%
Friedman #2 4 5,000 3d Mexican Hat  3.9% 3.7% 5.7%
Friedman #3 4 3,000 Friedman #1 -1.8% -4.0% 0.5%
Gabor 2 3,000 Friedman #2 -1.3% -4.3% 2.1%
Multi 5 4,000 Friedman #3 -09% -3.6% 0.0%
Plane 2 1,000 Gabor 4.0% 3.8% 9.0%
Polynomial 1 3,000 Multi -1.9% -4.4% 1.4%
SinC 1 3,000 Plane -3.8% -3.5% -1.6%
Polynomial 151% 17.4% 22.0%
SinC 13.0% 16.4% 26.0%

For each data set, 25% data are kept as the test set, while
the remaining 75% data are partitioned into the labeled and
unlabeled sets where 10% (of the 75%) data are used as la- Table 3 shows thaBeLF and ARTRE improve the regres-
beled examples while the remaining 90% (of the 75%) datsion estimates on only five data sets, witleREGimproves
are used as unlabeled examples. on eight data sets. Moreover, Table 3 discloses that the im-

In the experiments, the distance orders used by the twprovement ofCOREGis always bigger than that &ELF and
kNN regressors irfCOREG are set to 2 and 5, respectively, ARTRE. These observations tell th@OREG can effectively
thek value is set to 3, the maximum number of iteratidhis ~ exploit unlabeled examples to improve regression estimates.
set to 100, and the podl’ contains 100 unlabeled examples  For further studying the compared algorithms, the average
randomly picked from the unlabeled set in each iteration.  MSE of different algorithms at different iterations are plotted

A self-training style algorithm is tested for comparison, in Fig 1, where the average MSE of the tWhIN regressors
which is denoted bySELF. This algorithm uses &NN re-  used inCOREG are also depicted. Note that in each subfig-
gressor and in each iteration, it chooses the unlabeled examye, every curve contains 101 points corresponding to the 100
ple which maximizes the value df,, in Eq. 2 to label for learning iterations in addition to the initial condition, where
itself. Moreover, a co-training style algorithm, denoted byonly 11 of them are explicitly depicted for better presentation.
ARTRE, is also tested. Since the experimental data sets are Fig. 1 shows thaCOREG can exploit unlabeled examples
with no sufficient and redundant views, here an artificial re-to improve the regression estimates on most data sets, except
dundant view is developed through deriving new attributeghat onFriedman #3there is no improvement while dplane
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Figure 1: Comparisons on average mean squared error of different algorithms at different iterations

the performance is degenerated. Wh8e|F andARTREde-  the final regression estimates@bREGare significantly bet-
generate the regression estimates on five data setBried-  ter than these oARTRE on almost all the data sets except
man #1to #3,Multi, andPlane Moreover, the average MSE on Friedman #1where the latter is better. Furthermore, the
of the final prediction made b€OREG is almost always the final regression estimates GOREG are significantly better
best except ofrriedman #1lwhere ARTRE is slightly better  than these oSeELF andLABELED on almost all the data sets
and onPlanewhereL ABELED is the best while all the semi- except onPlane where LABELED is better and orFried-
supervised learning algorithms degenerate the performancman #3where there is no significant difference. These re-
These observations disclose tHabREG is apparently the sults of¢t-tests confirm thaCOREG is the strongest among
best algorithm in the comparison. the compared algorithms, which can effectively exploit unla-

Pairwise two-tailed-tests with 0.05 significance level re- beled data to improve the regression estimates.

veal that the final regression estimateSGafREG are signif- .
icantly better than its initial regression estimates on aImos?’ Conclusion

all the data sets except that Btanethe latter is better while This paper proposes a co-training style semi-supervised re-
on Friedman #3there is no significant difference. Moreover, gression algorithnCoOREG. This algorithm employs twé-
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