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Abstract

In many practical machine learning and data min-
ing applications, unlabeled training examples are
readily available but labeled ones are fairly expen-
sive to obtain. Therefore, semi-supervised learn-
ing algorithms such asco-training have attracted
much attention. Previous research mainly focuses
on semi-supervised classification. In this paper, a
co-training style semi-supervised regression algo-
rithm, i.e. COREG, is proposed. This algorithm
uses twok-nearest neighbor regressors with differ-
ent distance metrics, each of which labels the unla-
beled data for the other regressor where the label-
ing confidence is estimated through consulting the
influence of the labeling of unlabeled examples on
the labeled ones. Experiments show thatCOREG
can effectively exploit unlabeled data to improve
regression estimates.

1 Introduction
In many practical machine learning and data mining appli-
cations such as web user profile analysis, unlabeled training
examples are readily available but labeled ones are fairly ex-
pensive to obtain because they require human effort. There-
fore, semi-supervised learning methods that exploit unlabeled
examples in addition to labeled ones have attracted much at-
tention.

Many current semi-supervised learning methods use a gen-
erative model for the classifier and employ Expectation-
Maximization (EM) [Dempsteret al., 1977] to model the
label estimation or parameter estimation process. For ex-
ample, mixture of Gaussians[Shahshahani and Landgrebe,
1994], mixture of experts[Miller and Uyar, 1997], and naive
Bayes[Nigamet al., 2000] have been respectively used as the
generative model, while EM is used to combine labeled and
unlabeled data for classification. There are also many other
methods such as using transductive inference for support vec-
tor machines to optimize performance on a specific test set
[Joachims, 1999], constructing a graph on the examples such
that the minimum cut on the graph yields an optimal labeling
of the unlabeled examples according to certain optimization
functions[Blum and Chawla, 2001], etc.

A prominent achievement in this area is the co-training
paradigm proposed by Blum and Mitchell[1998], which
trains two classifiers separately on twosufficient and redun-
dant views, i.e. two attribute sets each of which is sufficient
for learning and conditionally independent to the other given
the class label, and uses the predictions of each classifier on
unlabeled examples to augment the training set of the other.

Dasgupta et al.[2002] have shown that when the require-
ment of sufficient and redundant views is met, the co-trained
classifiers could make few generalization errors by maxi-
mizing their agreement over the unlabeled data. Unfortu-
nately, such a requirement can hardly be met in most sce-
narios. Goldman and Zhou[2000] proposed an algorithm
which does not exploit attribute partition. This algorithm re-
quires using two different supervised learning algorithms that
partition the instance space into a set of equivalence classes,
and employs cross validation technique to determine how to
label the unlabeled examples and how to produce the final
hypothesis. Although the requirement of sufficient and re-
dundant views is quite strict, the co-training paradigm has al-
ready been used in many domains such as statistical parsing
and noun phrase identification[Hwa et al., 2003][Pierce and
Cardie, 2001][Sarkar, 2001][Steedmanet al., 2003].

It is noteworthy that previous research mainly focuses on
classification while regression remains almost untouched. In
this paper, a co-training style semi-supervised regression al-
gorithm namedCOREG, i.e. CO-training REGressors, is
proposed. This algorithm employs twok-nearest neighbor
(kNN) regressors, each of which labels the unlabeled data
for the other during the learning process. In order to choose
appropriate unlabeled examples to label,COREG estimates
the labeling confidence through consulting the influence of
the labeling of unlabeled examples on the labeled examples.
The final prediction is made by averaging the regression es-
timates generated by both regressors. SinceCOREG utilizes
different distance metrics instead of requiring sufficient and
redundant views, its applicability is broad. Moreover, experi-
mental results show that this algorithm can effectively exploit
unlabeled data to improve regression estimates.

The rest of this paper is organized as follows. Section 2
proposes theCOREG algorithm. Section 3 presents an anal-
ysis on the algorithm. Section 4 reports on the experimental
results. Finally, Section 5 concludes and raises several issues
for future work.



2 COREG

Let L = {(x1,y1), · · · , (x|L|,y|L|)} denote the labeled ex-
ample set, wherexi is the i-th instance described byd at-
tributes, yi is its real-valued label, i.e. its expected real-
valued output, and|L| is the number of labeled examples;
let U denote the unlabeled data set, where the instances are
also described by thed attributes, whose real-valued labels
are unknown, and|U | is the number of unlabeled examples.

Two regressors, i.e.h1 andh2, are generated fromL, each
of which is then refined with the help of unlabeled exam-
ples that are labeled by the latest version of the other re-
gressor. Here thekNN regressor[Dasarathy, 1991] is used
as the base learner to instantiateh1 andh2, which labels a
new instance through averaging the real-valued labels of its
k-nearest neighboring examples.

The use ofkNN regressor as the base learner is due to the
following considerations. First, the regressors will be refined
in each of many learning iterations. If neural networks or re-
gression trees are used, then in each iteration the regressors
have to be re-trained with the labeled examples in addition to
the newly labeled ones, the computational load of which will
be quite heavy. SincekNN is a lazy learning method which
does not hold a separate training phase, the refinement of the
kNN regressors can be efficiently realized. Second, in order
to choose appropriate unlabeled examples to label, the label-
ing confidence should be estimated. InCOREGthe estimation
utilizes the neighboring properties of the training examples,
which can be easily coupled with thekNN regressors.

It is noteworthy that the initial regressors should be diverse
because if they are identical, then for either regressor, the
unlabeled examples labeled by the other regressor may be
the same as these labeled by the regressor for itself. Thus,
the algorithm degenerates toself-training[Nigam and Ghani,
2000] with a single learner. In the standard setting of co-
training, the use of sufficient and redundant views enables the
learners be different. Previous research has also shown that
even when there is no natural attribute partitions, if there are
sufficient redundancy among the attributes then a fairly rea-
sonable attribute partition will enable co-training to exhibit
advantages[Nigam and Ghani, 2000]. While in the extended
co-training algorithm which does not require sufficient and
redundant views, the diversity among the learners is achieved
through using different learning algorithms[Goldman and
Zhou, 2000]. SinceCOREG does not assume sufficient and
redundant views and different learning algorithms, the diver-
sity of the regressors should be sought from other channels.

Here the diversity is achieved through utilizing different
distance metrics. In fact, a key ofkNN learner is how to
determine the distances between different instances. The
Minkowsky distance shown in Eq. 1 is usually used for this
purpose. Note that different concrete distance metrics can be
generated through setting different values to the distance or-
der, p. Roughly speaking, the smaller the order, the more
robust the resulting distance metric to data variations; while
the bigger the order, the more sensitive the resulting distance
metric to data variations. Therefore, the vicinities identified
for a given instance may be different using the Minkowsky
distance with different orders. Thus, thekNN regressorsh1

andh2 can be diverse through instantiating them with differ-
entp values. Such a setting can also bring another profit, that
is, since it is usually difficult to decide whichp value is better
for the concerned task, the functions of these regressors may
be somewhat complementary to be combined.

Minkowskyp(xr,xs) =

(
d∑

l=1

|xr,l − xs,l|p
)1/p

(1)

In order to choose appropriate unlabeled examples to la-
bel, the labeling confidence should be estimated such that the
most confidently labeled example can be identified. In classi-
fication this is relatively straightforward because when mak-
ing classifications, many classifiers can also provide an esti-
mated probability (or an approximation) for the classification,
e.g. a Naive Bayes classifier returns the maximum posteriori
hypothesis where the posterior probabilities can be used, a
BP neural network classifier returns thresholded classification
where the real-valued outputs can be used, etc. Therefore, the
labeling confidence can be estimated through consulting the
probabilities of the unlabeled examples being labeled to dif-
ferent classes. For example, suppose the probability of the
instancea being classified to the classesc1 and c2 is 0.90
and 0.10, respectively, while that of the instanceb is 0.60 and
0.40, respectively. Then the instancea is more confident to
be labeled (to classc1).

Unfortunately, in regression there is no such estimated
probability that can be used directly. This is because in con-
trast to classification where the number of class labels to be
predicted is finite, the possible predictions in regression are
infinite. Therefore, a key ofCOREG is the mechanism for
estimating the labeling confidence.

Heuristically, the most confidently labeled example of a
regressor should be with such a property, i.e. the error of
the regressor on the labeled example set should decrease the
most if the most confidently labeled example is utilized. In
other words, the most confidently labeled example should be
the one which makes the regressor mostconsistentwith the
labeled example set. Thus, the mean squared error (MSE)
of the regressor on the labeled example set can be evaluated
first. Then, the MSE of the regressor utilizing the information
provided by(xu, ŷu) can be evaluated on the labeled exam-
ple set, wherexu is an unlabeled instance whilêyu is the
real-valued label generated by the original regressor. Let∆u

denote the result of subtracting the latter MSE from the for-
mer MSE. Note that the number of∆u to be estimated equals
to the number of unlabeled examples. Finally,(xu, ŷu) as-
sociated with the biggest positive∆u can be regarded as the
most confidently labeled example.

Since repeatedly measuring the MSE of thekNN regres-
sor on the whole labeled example set in each iteration will be
time-consuming, considering thatkNN regressor mainly uti-
lizes local information,COREG employs an approximation.
That is, for eachxu, COREGidentifies itsk-nearest neighbor-
ing labeled examples and uses them to compute the MSE. In
detail, letΩ denote the set ofk-nearest neighboring labeled
examples ofxu, then the most confidently labeled example
is identified through maximizing the value of∆xu

in Eq. 2,
whereh denotes the original regressor whileh′ denotes the



Table 1: Pseudo-code describing theCOREGalgorithm

ALGORITHM: COREG

INPUT: labeled example setL, unlabeled example setU ,
number of nearest neighborsk,
maximum number of learning iterationsT ,
distance ordersp1, p2

PROCESS:
L1 ← L; L2 ← L
Create poolU ′ by randomly picking examples fromU
h1 ← kNN(L1, k, p1); h2 ← kNN(L2, k, p2)
Repeatfor T rounds:

for j ∈ {1, 2} do
for eachxu ∈ U ′ do

ŷu ← hj(xu)
Ω ← Neighbors(xu, k, Lj)
h′j ← kNN(Lj ∪ {(xu, ŷu)}, k, pj)
∆xu ←

∑
xi∈Ω

((yi − hj(xi))
2 − (

yi − h′j(xi)
)2)

end of for
if there exists an∆xu

> 0
then x̃j ← arg max

xu∈U ′
∆xu

; ỹj ← hj(x̃j)

πj ← {(x̃j , ỹj)}; U ′ ← U ′ − πj

elseπj ← ∅
end of for
L1 ← L1 ∪ π2; L2 ← L2 ∪ π1

if neither ofL1 andL2 changesthen exit
else

h1 ← kNN(L1, k, p1); h2 ← kNN(L2, k, p2)
ReplenishU ′ by randomly picking examples fromU

end of Repeat

OUTPUT: regressorh∗(x) ← 1
2 (h1(x) + h2(x))

refined regressor which has utilized the information provided
by (xu, ŷu). Note that̂yu = h(xu).

∆xu
=

∑

xi∈Ω

((yi − h(xi))
2 − (yi − h′(xi))

2) (2)

The pseudo code ofCOREG is shown in Table 1, where
the functionkNN(Lj , k, pj) returns akNN regressor on the
labeled example setLj , whose distance order ispi. The learn-
ing process stops when the maximum number of learning it-
erations, i.e.T , is reached, or there is no unlabeled exam-
ple which is capable of reducing the MSE of any of the re-
gressors on the labeled example set. According to Blum and
Mitchell [1998]’s suggestion, a pool of unlabeled examples
smaller thanU is used. Note that in each iteration the unla-
beled example chosen byh1 won’t be chosen byh2, which
is an extra mechanism for encouraging the diversity of the
regressors. Thus, even whenh1 andh2 are similar, the exam-
ples they label for each other will still be different.

3 Analysis
This section attempts to analyze whether the learning process
of COREG can use the unlabeled examples to improve the

regression estimates. In order to simplify the discussion, here
the effect of the poolU ′ is not considered as in[Blum and
Mitchell, 1998]. That is, the unlabeled examples are assumed
as being picked from the unlabeled example setU directly.

In each learning iteration ofCOREG, for each unlabeled ex-
amplexu, its k-nearest neighboring labeled examples are put
into the setΩ. As mentioned before, the newly labeled exam-
ple should make the regressor become more consistent with
the labeled data set. Therefore, a criterion shown in Eq. 3 can
be used to evaluate the goodness ofxu, whereh is the origi-
nal regressor whileh′ is the one refined with(xu, ŷu). If the
value of∆u is positive, then utilizing(xu, ŷu) is beneficial.

∆u =
1
|L|

∑

xi∈L

(yi − h(xi))
2 − 1

|L|
∑

xi∈L

(yi − h′(xi))
2

(3)
In the COREG algorithm, the unlabeled example which

maximizes the value of∆xu
is picked to be labeled. There-

fore, the question is, whether the unlabeled example chosen
according to the maximization of∆xu will result in a positive
∆u value or not.

First, assume that(xu, ŷu) is among thek-nearest neigh-
bors of some examples inΩ, and is not among thek-nearest
neighbors of any other examples inL. In this case, it is obvi-
ous that utilizing(xu, ŷu) will only change the regression es-
timates on the examples inΩ, therefore Eq. 3 becomes Eq. 4.
Comparing Eqs. 2 with 4 it can be found that the maximiza-
tion of ∆xu also results in the maximization of∆u.

∆u =
1
k

∑

xi∈Ω

(yi − h(xi))
2 − 1

k

∑

xi∈Ω

(yi − h′(xi))
2 (4)

Second, assume that(xu, ŷu) is not among thek-nearest
neighbors of any example inΩ. In this case, the value of∆xu

is zero, therefore(xu, ŷu) won’t be chosen inCOREG.
Third, assume that(xu, ŷu) is among thek-nearest neigh-

bors of some examples inΩ as well as some examples
in L − Ω, and assume these examples inL − Ω are
(x

′
1,y

′
1), · · · , (x

′
m,y

′
m). Then Eq. 3 becomes Eq. 5.

∆u =
1
k

∑

xi∈Ω

((yi − h(xi))
2 − (yi − h′(xi))

2)+

1
m

∑

q∈{1,···,m}
(
(
y
′
q − h(x

′
q)

)2

−
(
y
′
q − h′(x

′
q)

)2

) (5)

Maximizing∆xu
will maximize the first sum term of Eq. 5,

but whether it can enable∆u be positive should also refer the
second sum term. Unfortunately, the value of this sum term
is difficult to be measured except that the neighboring rela-
tionships between all the labeled examples and(xu, ŷu) are
evaluated. Therefore, there may exist cases where the unla-
beled example chosen according to the maximization of∆xu

may decrease∆u, which is the costCOREG takes for using
∆xu

that can be more efficiently computed to approximate
∆u. Nevertheless, experiments show that in most cases such
an approximation is effective.

It seems that using only one regressor to label the unlabeled
examples for itself might be feasible, where the unlabeled ex-
amples can be chosen according to the maximization of∆xu

.



While considering that the labeled example set usually con-
tains noise, the use of two regressors can be helpful to reduce
overfitting.

Let Λ denote the subset of noisy examples inL. For the
unlabeled instancexu, either of the regressorsh1 andh2 will
identify a set ofk-nearest neighboring labeled examples for
xu. Assume these sets areΩ1 andΩ2, respectively. Sinceh1

andh2 use different distance orders,Ω1 andΩ2 are usually
different, and thereforeΩ1 ∩ Λ andΩ2 ∩ Λ are also usually
different. Supposexu is labeled byh1 and then(xu, h1(xu))
is put intoL1, whereh1(xu) suffers fromΩ1 ∩ Λ. For an-
other unlabeled instancexv which is very close toxu, its
k-nearest neighbors identified byh1 will be very similar to
Ω1 except that(xu, h1(xu)) has replaced a previous neigh-
bor. Thus,h1(xv) will suffer from Ω1 ∩ Λ more seriously
thanh1(xu) does. While, if the instancexu is labeled byh2

and(xu, h2(xu)) is put intoL1, thenh1(xv) will suffer from
Ω1 ∩ Λ only once, althoughxu is still very close toxv.

4 Experiments
Experiments are performed on ten data sets listed in Table 2
where “# attribute” denotes the number of input attributes.
These data sets have been used in[Zhouet al., 2002] where
the detailed descriptions of the data sets can be found. Note
that the input attributes as well as the real-valued labels have
been normalized to[0.0, 1.0].

Table 2: Experimental data sets

Data set # attribute Size

2-d Mexican Hat 1 5,000
3-d Mexican Hat 2 3,000
Friedman #1 5 5,000
Friedman #2 4 5,000
Friedman #3 4 3,000
Gabor 2 3,000
Multi 5 4,000
Plane 2 1,000
Polynomial 1 3,000
SinC 1 3,000

For each data set, 25% data are kept as the test set, while
the remaining 75% data are partitioned into the labeled and
unlabeled sets where 10% (of the 75%) data are used as la-
beled examples while the remaining 90% (of the 75%) data
are used as unlabeled examples.

In the experiments, the distance orders used by the two
kNN regressors inCOREG are set to 2 and 5, respectively,
thek value is set to 3, the maximum number of iterationsT is
set to 100, and the poolU ′ contains 100 unlabeled examples
randomly picked from the unlabeled set in each iteration.

A self-training style algorithm is tested for comparison,
which is denoted bySELF. This algorithm uses akNN re-
gressor and in each iteration, it chooses the unlabeled exam-
ple which maximizes the value of∆xu

in Eq. 2 to label for
itself. Moreover, a co-training style algorithm, denoted by
ARTRE, is also tested. Since the experimental data sets are
with no sufficient and redundant views, here an artificial re-
dundant view is developed through deriving new attributes

from the original ones. For example, on3-d Mexican Hattwo
new attributes, i.e.x3 andx4, are constructed fromx1 + x2

andx1 − x2, and then akNN regressor is built onx1 andx2

while the other is built onx3 andx4. In each iteration, each
kNN regressor chooses the unlabeled example which maxi-
mizes the value of∆xu

in Eq. 2 to label for the other regres-
sor. The final prediction is made by averaging the regression
estimates of these two refined regressors. Besides, akNN re-
gressor using only the labeled data is tested as a baseline for
the comparison, which is denoted byLABELED.

All the kNN regressors used inSELF, ARTRE, and LA-
BELED employ 2nd-order Minkowski distance, and thek
value is set to 3. The same pool,U ′, as that used byCOREGis
used in each iteration ofSELF andARTRE, and the maximum
number of iterations is also set to 100.

One hundred runs of experiments are carried out on each
data set. In each run, the performance of all the four algo-
rithms, i.e.COREG, SELF, ARTRE, andLABELED, are eval-
uated on randomly partitioned labeled/unlabeled/test splits.
The average MSE at each iteration is recorded. Note that
the learning processes of the algorithms may stop before the
maximum number of iterations is reached, and in that case,
the final MSE is used in computing the average MSE of the
following iterations.

The improvement on average MSE obtained by exploiting
unlabeled examples is tabulated in Table 3, which is com-
puted by subtracting the final MSE from the initial MSE and
then divided by the initial MSE.

Table 3: Improvement on average mean squared error

Data set SELF ARTRE COREG

2d Mexican Hat 9.2% 12.8% 19.6%
3d Mexican Hat 3.9% 3.7% 5.7%
Friedman #1 -1.8% -4.0% 0.5%
Friedman #2 -1.3% -4.3% 2.1%
Friedman #3 -0.9% -3.6% 0.0%
Gabor 4.0% 3.8% 9.0%
Multi -1.9% -4.4% 1.4%
Plane -3.8% -3.5% -1.6%
Polynomial 15.1% 17.4% 22.0%
SinC 13.0% 16.4% 26.0%

Table 3 shows thatSELF andARTRE improve the regres-
sion estimates on only five data sets, whileCOREG improves
on eight data sets. Moreover, Table 3 discloses that the im-
provement ofCOREG is always bigger than that ofSELF and
ARTRE. These observations tell thatCOREG can effectively
exploit unlabeled examples to improve regression estimates.

For further studying the compared algorithms, the average
MSE of different algorithms at different iterations are plotted
in Fig 1, where the average MSE of the twokNN regressors
used inCOREG are also depicted. Note that in each subfig-
ure, every curve contains 101 points corresponding to the 100
learning iterations in addition to the initial condition, where
only 11 of them are explicitly depicted for better presentation.

Fig. 1 shows thatCOREG can exploit unlabeled examples
to improve the regression estimates on most data sets, except
that onFriedman #3there is no improvement while onPlane
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Figure 1: Comparisons on average mean squared error of different algorithms at different iterations

the performance is degenerated. While,SELF andARTREde-
generate the regression estimates on five data sets, i.e.Fried-
man #1to #3,Multi, andPlane. Moreover, the average MSE
of the final prediction made byCOREG is almost always the
best except onFriedman #1whereARTRE is slightly better
and onPlanewhereLABELED is the best while all the semi-
supervised learning algorithms degenerate the performance.
These observations disclose thatCOREG is apparently the
best algorithm in the comparison.

Pairwise two-tailedt-tests with 0.05 significance level re-
veal that the final regression estimates ofCOREG are signif-
icantly better than its initial regression estimates on almost
all the data sets except that onPlanethe latter is better while
on Friedman #3there is no significant difference. Moreover,

the final regression estimates ofCOREGare significantly bet-
ter than these ofARTRE on almost all the data sets except
on Friedman #1where the latter is better. Furthermore, the
final regression estimates ofCOREG are significantly better
than these ofSELF andLABELED on almost all the data sets
except onPlane where LABELED is better and onFried-
man #3where there is no significant difference. These re-
sults of t-tests confirm thatCOREG is the strongest among
the compared algorithms, which can effectively exploit unla-
beled data to improve the regression estimates.

5 Conclusion
This paper proposes a co-training style semi-supervised re-
gression algorithmCOREG. This algorithm employs twok-



nearest neighbor regressors using different distance metrics.
In each learning iteration, each regressor labels the unlabeled
example which can be most confidently labeled for the other
learner, where the labeling confidence is estimated through
considering the consistency of the regressor with the labeled
example set. The final prediction is made by averaging the
predictions of both the refinedkNN regressors. Experiments
show thatCOREG can effectively exploit unlabeled data to
improve the regression estimates.

In contrast to standard co-training setting,COREGdoes not
require sufficient and redundant views, which enables it have
broad applicability. However, this forcesCOREGgenerate di-
verse initial regressors with specific mechanisms. In this pa-
per the diversity is obtained by instantiating the Minkowski
distance with different distance orders. It is obvious that us-
ing completely different distance metrics may be more help-
ful. Moreover, trying to obtain the diversity of the initial
regressors from channels other than using different distance
metrics is an issue to be investigated in future work. Note that
although this paper useskNN regressor as the base learner,
an important idea ofCOREG, i.e. regarding the labeling of
the unlabeled example which makes the regressor most con-
sistent with the labeled example set as with the most confi-
dence, can also be used with other base learners. Therefore,
designing semi-supervised regression algorithms with other
base learners along the way ofCOREG is another interest-
ing issue to be explored in the future. Furthermore, designing
semi-supervised regression algorithms outside the co-training
framework is also well-worth studying.
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