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Abstract The bag-of-words model is one of the most popular representation methods for
object categorization. The key idea is to quantize each extracted key point into one of visual
words, and then represent each image by a histogram of the visual words. For this purpose,
a clustering algorithm (e.g., K-means), is generally used for generating the visual words.
Although a number of studies have shown encouraging results of the bag-of-words rep-
resentation for object categorization, theoretical studies on properties of the bag-of-words
model is almost untouched, possibly due to the difficulty introduced by using a heuristic
clustering process. In this paper, we present a statistical framework which generalizes the
bag-of-words representation. In this framework, the visual words are generated by a statisti-
cal process rather than using a clustering algorithm, while the empirical performance is com-
petitive to clustering-based method. A theoretical analysis based on statistical consistency
is presented for the proposed framework. Moreover, based on the framework we developed
two algorithms which do not rely on clustering, while achieving competitive performance in
object categorization when compared to clustering-based bag-of-words representations.

Keywords Object recognition ⋅ Bag of words model ⋅ Rademacher complexity

1 Introduction

Inspired by the success of text categorization (Joachims, 1998; McCallum and Nigam,
1998), a bag-of-words representation becomes one of the most popular methods for repre-
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senting image content and has been successfully applied to object categorization. In a typical
bag-of-words representation, “interesting” local patches are first identified from an image,
either by densely sampling (Nowak et al., 2006; Winn et al., 2005) or by a interest point
detector (Lowe, 2004). These local patches, represented by vectors in a high dimensional
space (e.g., SIFT descriptors (Lowe, 2004)), are often referred to as the key points.

To efficiently handle these key points, the key idea is to quantize each extracted key
point into one of visual words, and then represent each image by a histogram of the visual
words. This vector quantization procedure allows us to represent each image by a histogram
of the visual words, which is often referred to as the bag-of-words representation, and con-
sequently converts the object categorization problem into a text categorization problem. A
clustering procedure (e.g., K-means) is often applied to group key points from all the train-
ing images into a large number of clusters, with the center of each cluster corresponding
to a different visual word. Studies (Csurka et al., 2004; Sivic and Zisserman, 2003) have
shown promising performance of bag-of-words representation in object categorization. Var-
ious methods (Jurie and Triggs, 2005; Lazebnik and Raginsky, 2009; Moosmann et al., 2007;
Nister and Stewenius, 2006; Philbin et al., 2008; Tuytelaars and Schmid, 2007; Winn et al.,
2005) have been proposed for the visual vocabulary construction to improve both the com-
putational efficiency and the classification accuracy of object categorization. However, to
the best of our knowledge, there is no theoretical analysis on the statistical properties of
vector quantization for object categorization.

In this paper, we present a statistical framework which generalizes the bag-of-words
representation and aim to provide a theoretical understanding for vector quantization and its
effect on object categorization from the viewpoint of statistical consistency. In particular,
we view

1. each visual word as a quantization function 𝑓𝑘(𝒙) that is randomly sampled from a class
of functions ℱ by an unknown distribution 𝒫ℱ , and

2. each key point of an image as a random sample from an unknown distribution 𝑞𝑖(𝒙).

The above statistical description of key points and visual words allows us to interpret the
similarity between two images in bag-of-words representation, the key quantity in object
categorization, as an empirical expectation over the distributions 𝑞𝑖(𝒙) and 𝒫ℱ . Based on the
proposed statistical framework, we present two random algorithms for vector quantization,
one based on the empirical distribution and the other based on kernel density estimation.
We show that both random algorithms for vector quantization are statistically consistent in
estimating the similarity between two images. Our empirical study with object recognition
also verifies that the two proposed algorithms (I) yield recognition accuracy that is compara-
ble to the clustering based bag-of-words representation, and (II) are resilient to the number
of visual words when the number of training examples is limited. The success of the two
simple algorithms validates the proposed statistical framework for vector quantization.

The rest of this paper is organized as follows. Section 2 presents the overview of exist-
ing approaches for key point quantization that were used by object recognition. Section 3
presents a statistical framework that generalizes the classical bag-of-words representation,
and two random algorithms for vector quantization based on the proposed framework. We
show that both algorithms are statistically consistent in estimating the similarity between
two images. Empirical study with object recognition reported in Section 4 shows encour-
aging results of the proposed algorithms for vector quantization, which in return validates
the proposed statistical framework for the bag-of-words representation. Section 5 concludes
this work.
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2 Related Work

In object recognition and texture analysis, a number of algorithms have been proposed for
key point quantization. Among them, K-means is probably the most popular one. To reduce
the high computational cost of K-means, hierarchical K-means is proposed in (Nister and
Stewenius, 2006) for more efficient vector quantization. In (Winn et al., 2005), a supervised
learning algorithm is proposed to reduce the visual vocabulary that is initially obtained by
K-means, into a more descriptive and compact one. Farquhar et al.(2005) model the problem
as Gaussian mixture model where each visual words corresponds to a Gaussian component
and use the Maximum A Posterior (MAP) approach to learn the parameter. A method based
on mean-shift is proposed in (Jurie and Triggs, 2005) for vector quantization to resolve
the problem that K-means tends to ‘starve’ medium density regions in feature space and
each key point is allocated to the first visual word similar to it. it. Moosmann et al.(2007)
use extremely randomized clustering forests to efficiently generate a highly discriminative
coding of visual words. To minimize the loss of information in vector quantization, Lazebnik
and Raginsky (2009) try to seek a compressed representation of vectors that preserve the
sufficient statistics of features. In (Perronnin et al., 2006), images are characterized using a
set of category-specific histograms describing whether the content can best be modeled by
the universal vocabulary or the specific vocabulary. Tuytelaars and Schmid (2007) propose
a quantization method that discretizes a feature space by a regular lattice. van Gemert et
al.(2008) use kernel density estimation to avoid the problem of ‘codeword uncertainty’ and
‘codeword plausibility’.

Although many studies have shown encouraging results of the bag-of-words representa-
tion for object categorization, none of them provide statistical consistency analysis, which
reveals the asymptotic behavior of the bag-of-words model for object recognition. Unlike
the existing statistical approaches for key point quantization that are designed to reduce the
training error, the proposed framework generalizes the bag-of-words model by the statis-
tical expectation, making it possible to analyze the statistical consistency of the bag-of-
words model. Finally, we would like to point out that although several randomized ap-
proaches (Moosmann et al., 2007; Nowak et al., 2006; Viitaniemi and Laaksonen, 2008)
have been proposed for key point quantization, none of them provides theoretical analysis
on statistical consistency. In contrast, we present not only the theoretic results for the two
proposed random algorithms for vector quantization, but also the results of the empirical
study with object recognition that support the theoretic claim.

3 A Statistical Framework for Bag-of-Words Representation

In this section, we first present a statistical framework for the bag-of-words representation in
object categorization, followed by two random algorithms that are derived from the proposed
framework. The analysis of statistical consistency is also presented for the two proposed
algorithms.

3.1 A Statistical Framework

We consider the bag-of-words representation for images, with each image being represented
by a collection of local descriptors. We denote by 𝑁 the number of training images, and
by 𝑋𝑖 = (𝒙1

𝑖 , . . . ,𝒙
𝑛𝑖
𝑖 ) the collection of key points used to represent image ℐ𝑖 where 𝒙𝑙

𝑖 ∈
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𝒳 , 𝑙 = 1, . . . , 𝑛𝑖 is a key point in feature space 𝒳 . To facilitate statistical analysis, we
assume that each key point 𝒙𝑙

𝑖 in 𝑋𝑖 is randomly drawn from an unknown distribution 𝑞𝑖(𝒙)

associated with image ℐ𝑖.
The key idea of the bag-of-words representation is to quantize each key point into one of

the visual words that are often derived by clustering. We generalize this idea of quantization
by viewing the mapping to a visual word 𝒗𝑘 ∈ 𝒳 as a quantization function 𝑓𝑘(𝒙) : 𝒳 7→
[0, 1]. Due to the uncertainty in constructing the vocabulary, we assume that the quantization
function 𝑓𝑘(𝒙) is randomly drawn from a class of functions, denoted by ℱ , via a unknown
distribution 𝒫ℱ . To capture the behavior of quantization, we design the function class ℱ as
follows

ℱ = {𝑓(𝒙;𝒗)∣𝑓(𝒙;𝒗) = 𝐼(∥𝒙− 𝒗∥ ≤ 𝜌),𝒗 ∈ 𝒳} (1)

where indicator function 𝐼(𝑧) outputs 1 when 𝑧 is true, or 0 otherwise. In the above defi-
nition, each quantization function 𝑓(𝒙;𝒗) is essentially a ball of radius 𝜌 centered at 𝒗. It
outputs 1 when a point 𝒙 is within the ball, and 0 if 𝒙 is outside the ball. This definition of
quantization function is clearly related to the vector quantization by data clustering.

Based on the above statistical interpretation of key points and quantization functions,
we can now provide a statistical description for the histogram of visual words, which is the
key of bag-of-words representation. Let ℎ̂𝑘𝑖 denotes the normalized number of key points
in image ℐ𝑖 that are mapped to visual word 𝒗𝑘. Given 𝑚 visual words, or 𝑚 quantization
functions {𝑓𝑘(𝒙)}𝑚𝑘=1 that are sampled from ℱ , ℎ̂𝑘𝑖 is computed as

ℎ̂𝑘𝑖 =
1

𝑛𝑖

𝑛𝑖∑
𝑗=1

𝑓𝑘(𝒙
𝑙
𝑖) = �̂�𝑖[𝑓𝑘(𝒙)] (2)

where �̂�𝑖[𝑓𝑘(𝒙)] stands for the empirical expectation of function 𝑓𝑘(𝒙) based on the samples
𝒙1
𝑖 , . . . ,𝒙

𝑛𝑖
𝑖 . We can generalize the above computation by replacing the empirical expecta-

tion �̂�𝑖[𝑓𝑘(𝒙)] with an expectation over the true distribution 𝑞𝑖(𝒙), i.e.,

ℎ𝑘𝑖 = 𝔼𝑖[𝑓𝑘(𝒙)] =

∫
𝑑𝒙𝑞𝑖(𝒙)𝑓𝑘(𝒙). (3)

The bag-of-words representation for image ℐ𝑖 is expressed by vector 𝒉𝑖 = (ℎ1𝑖 , . . . , ℎ
𝑚
𝑖 ).

In the next step, we analyze the pairwise similarity between two images. It is important
to note that the pairwise similarity plays a critical role in any pattern classification problems
including object categorization. According to the learning theory (Schölkopf and Smola,
2002), it is the pairwise similarity, not the vector representation of images, that decides
the classification performance. Using the vector representation 𝒉𝑖 and 𝒉𝑗 , the similarity
between two images ℐ𝑖 and ℐ𝑗 , denoted by 𝑠𝑖𝑗 , is computed as

𝑠𝑖𝑗 =
1

𝑚
𝒉𝑇
𝑖 𝒉𝑗 =

1

𝑚

𝑚∑
𝑘=1

𝔼𝑖[𝑓𝑘(𝒙)]𝔼𝑗 [𝑓𝑘(𝒙)] (4)

Similar to the previous analysis, the summation in the above expression can be viewed
as an empirical expectation over the sampled quantization functions 𝑓𝑘(𝒙), 𝑘 = 1, . . . ,𝑚.
We thus generalize the definition of pairwise similarity in (4) by replacing the empirical
expectation with the true expectation, and obtain the true similarity between two images ℐ𝑖
and ℐ𝑗 as

𝑠𝑖𝑗 = 𝔼𝑓∼𝒫ℱ
[
𝔼𝑖[𝑓(𝒙)]𝔼𝑗 [𝑓(𝒙)]

]
(5)
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According to the definition in (1), each quantization function is parameterized by a cen-
ter 𝒗. Thus, to define 𝒫ℱ , it suffices to define a distribution for the center 𝒗, denoted by
𝑞(𝒗). Thus, (5) can be expressed as

𝑠𝑖𝑗 = 𝔼𝒗
[
𝔼𝑖[𝑓(𝒙)]𝔼𝑗 [𝑓(𝒙)]

]
(6)

3.2 Random Algorithms for Key Point Quantization and their Statistical Consistency

We emphasize that the pairwise similarity in (6) can not be computed directly. This is be-
cause both distributions 𝑞𝑖(𝒙) and 𝑞(𝒗) are unknown, which makes it intractable to compute
𝔼𝑖[⋅] and 𝔼𝒗[⋅]. In real applications, approximations are needed. In this section, we study
how approximations will affect the estimation of pairwise similarity. In particular, given the
pairwise similarity estimated by different kinds of approximated distributions, we aim to
bound its difference to the underlying true similarity. To simplify our analysis, we assume
that each image has at least 𝑛 key points.

By assuming that the key points in all the images are sampled from 𝑞(𝒗), we have an
empirical distribution for 𝑞(𝒗), i.e.,

𝑞(𝒗) =
1∑𝑁

𝑖=1 𝑛𝑖

𝑁∑
𝑖=1

𝑛𝑖∑
𝑙=1

𝛿(𝒗 − 𝒙𝑙
𝑖) (7)

where 𝛿(𝒙) is a Dirac delta function that
∫
𝛿(𝒙)𝑑𝒙 = 1 and 𝛿(𝒙) = 0 for 𝒙 ∕= 0. Direct

estimation of pairwise similarities using the above empirical distribution is computationally
expensive, because the number of key points in all images can be very large. In the bag-of-
words model, 𝑚 visual words are used as prototypes for the key points in all the images. Let
𝒗1, . . . ,𝒗𝑚 be the 𝑚 visual words randomly sampled from the key points in all the images.
The empirical distribution 𝑞(𝒗) is

𝑞(𝒗) =
1

𝑚

𝑚∑
𝑘=1

𝛿(𝒗 − 𝒗𝑘) (8)

In the next step, we aim to approximate the unknown distribution 𝑞𝑖(𝒙) in two different
ways, and show the statistical consistency for each approximation.

3.2.1 Empirically Estimated Density Function for 𝑞𝑖(𝒙)

First we approximate 𝑞𝑖(𝒙) by the empirical distribution 𝑞𝑖(𝒙) defined as follows

𝑞𝑖(𝒙) =
1

𝑛𝑖

𝑛𝑖∑
𝑙=1

𝛿(𝒙− 𝒙𝑙
𝑖) (9)

Given the approximations for distribution 𝑞𝑖(𝒙) and 𝑞(𝒗), we can now compute the approx-
imation of the pairwise similarity 𝑠𝑖𝑗 defined in (6). For (9), the pairwise similarity, denoted
by 𝑠𝑖𝑗 , is computed as

𝑠𝑖𝑗 = �̂�𝒗

[
�̂�𝑖[𝑓(𝒙)]�̂�𝑗 [𝑓(𝒙)]

]
=

1

𝑚

𝑚∑
𝑘=1

(
1

𝑛𝑖

𝑛𝑖∑
𝑙=1

𝐼
(
∥𝒙𝑙

𝑖 − 𝒗𝑘∥ ≤ 𝜌
))(

1

𝑛𝑗

𝑛𝑗∑
𝑙=1

𝐼
(
∥𝒙𝑙

𝑗 − 𝒗𝑘∥ ≤ 𝜌
))

(10)
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To show the statistical consistency of 𝑠𝑖𝑗 , we need to bound ∣𝑠𝑖𝑗 − 𝑠𝑖𝑗 ∣. Since there are
two approximate distribution used in our estimation, we divide our analysis into two steps.
First, we measure ∣𝑠𝑖𝑗 − 𝑠𝑖𝑗 ∣, i.e., the difference in similarity caused by the approximate
distribution for 𝒫ℱ . Next, we measure ∣𝑠𝑖𝑗 − 𝑠𝑖𝑗 ∣, i.e., the difference caused by using the
approximate distribution for 𝑞𝑖(𝒙). The overall difference ∣𝑠𝑖𝑗 − 𝑠𝑖𝑗 ∣ is bounded by the sum
of the two difference.

We first state the McDiarmid inequality (McDiarmid, 1989), which is used throughout
our analysis.

Theorem 1 (McDiarmid Inequality) Given independent random variables 𝑣1, 𝑣2, . . . , 𝑣𝑛, 𝑣′𝑖 ∈
𝑉 , and a function 𝑓 : 𝑉 𝑛 7→ ℝ satisfying

sup
𝑣1,𝑣2,...,𝑣𝑛,𝑣′

𝑖∈𝑉
∣𝑓(𝒗)− 𝑓(𝒗′)∣ ≤ 𝑐𝑖 (11)

where 𝒗 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) and 𝒗′ = (𝑣1, 𝑣2, . . . , 𝑣𝑖−1, 𝑣
′
𝑖, 𝑣𝑖+1, . . . , 𝑣𝑛), then the following

statement holds

Pr
(∣𝑓(𝒗)− 𝔼(𝑓(𝒗))∣ ≥ 𝜖

) ≤ 2 exp

(
− 2𝜖2∑𝑛

𝑖=1 𝑐
2
𝑖

)
(12)

Using the McDiarmid inequality, we have the following theorem which bounds ∣𝑠𝑖𝑗 −
𝑠𝑖𝑗 ∣.

Theorem 2 Assuming 𝑓𝑘(𝒙), 𝑘 = 1, . . . ,𝑚 are randomly drawn from class ℱ according
to an unknown distribution. And further assuming that any function in ℱ is universally
bounded between 0 and 1. With probability 1− 𝛿, the following inequality holds for any two
training images ℐ𝑖 and ℐ𝑗

∣𝑠𝑖𝑗 − 𝑠𝑖𝑗 ∣ ≤
√

1

2𝑚
ln

2

𝛿
(13)

Proof For any 𝑓 ∈ ℱ , we have 0 ≤ 𝔼𝑖[𝑓(𝒙)]𝔼𝑗 [𝑓(𝒙)] ≤ 1. Thus, for any 𝑘, 𝑐𝑘 ≤ 1/𝑚. By
setting

𝛿 = 2 exp
(
−2𝑚𝜖2

)
, or , 𝜖 =

√
1

2𝑚
ln

2

𝛿
, (14)

we have Pr
(∣𝑠𝑖𝑗 − 𝑠𝑖𝑗 ∣ ≤ 𝜖

) ≥ 1− 𝛿.

The above theorem indicates that, if we have the true distribution 𝑞𝑖(𝒙) of each image ℐ𝑖,
with a large number of sampled quantization functions 𝑓𝑘(𝒙), we have a very good chance
to recover the true similarity 𝑠𝑖𝑗 with a small error. The next theorem bounds ∣𝑠𝑖𝑗 − 𝑠𝑖𝑗 ∣.

Theorem 3 Assuming each image has at least 𝑛 randomly sampled key points. Also assum-
ing that 𝑓𝑘(𝒙), 𝑘 = 1, . . . ,𝑚 randomly drawn from an unknown distribution over class ℱ .
With probability 1− 𝛿, the following inequality is satisfied for any two images ℐ𝑖 and ℐ𝑗

∣𝑠𝑖𝑗 − 𝑠𝑖𝑗 ∣ ≤
√

1

2𝑚
ln

2

𝛿
+ 2

√
1

2𝑛
ln

4𝑚2

𝛿
(15)
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Proof We first need to bound the difference between �̂�𝑖[𝑓𝑘(𝒙)] and 𝔼𝑖[𝑓𝑘(𝒙)]. Since 0 ≤
𝑓(𝒙) ≤ 1 for any 𝑓 ∈ ℱ , using McDimard inequality, we have

Pr
(∣∣�̂�𝑖 [𝑓𝑘(𝒙)]− 𝔼𝑖 [𝑓𝑘(𝒙)]

∣∣ ≥ 𝜖
)
≤ exp(−2𝑛𝜖2) (16)

By setting

2 exp(−2𝑛𝜖2) =
𝛿

2𝑚2
, or, 𝜖 =

√
1

2𝑛
ln

(
4𝑚2

𝛿

)
with probability 1−𝛿/2, we have ∣�̂�𝑖[𝑓𝑘(𝒙)]−𝔼𝑖[𝑓𝑘(𝒙)]∣ ≤ 𝜖 and ∣�̂�𝑗 [𝑓𝑘(𝒙)]−𝔼𝑗 [𝑓𝑘(𝒙)]∣ ≤
𝜖 for all 𝑓𝑘(𝒙)

𝑚
𝑘=1 simultaneously. As a result, with probability 1− 𝛿/2, for any two image

ℐ𝑖 and ℐ𝑗 , we have

∣𝑠𝑖𝑗 − 𝑠𝑖𝑗 ∣ ≤ 1

𝑚

𝑚∑
𝑘=1

∣�̂�𝑘
𝑖 �̂�𝑘

𝑗 − 𝔼𝑘
𝑖 𝔼𝑘

𝑗 ∣

≤ 1

𝑚

𝑚∑
𝑘=1

∣(�̂�𝑘
𝑖 − 𝔼𝑘

𝑖 )�̂�𝑘
𝑗 ∣+ ∣𝔼𝑘

𝑖 (�̂�𝑘
𝑗 − 𝔼𝑘

𝑗 )∣

≤ 1

𝑚

𝑚∑
𝑘=1

∣�̂�𝑘
𝑖 − 𝔼𝑘

𝑖 ∣+ ∣�̂�𝑘
𝑗 − 𝔼𝑘

𝑗 ∣

≤ 2𝜖 = 2

√
1

2𝑛
ln

(
4𝑚2

𝛿

)
(17)

where �̂�𝑘
𝑖 stands for �̂�𝑖[𝑓𝑘(𝒙)] for simplicity. According to Theorem 2, with probability

1− 𝛿/2, we have

∣𝑠𝑖𝑗 − 𝑠𝑖𝑗 ∣ ≤
√

1

2𝑚
ln

2

𝛿
(18)

Combining (17) and (18), we have the result in the theorem. With probability 1 − 𝛿, the
following inequality is satisfied

∣𝑠𝑖𝑗 − 𝑠𝑖𝑗 ∣ ≤
√

1

2𝑚
ln

2

𝛿
+ 2

√
1

2𝑛
ln

4𝑚2

𝛿
(19)

Remark Theorem 3 reveals an interesting relationship between the estimation error ∣𝑠𝑖𝑗 −
𝑠𝑖𝑗 ∣ and the number of quantization functions (or the number of visual words). The upper
bound in Theorem 3 consists of two terms: the first term decreases at a rate of 𝑂(1/

√
𝑚)

while the second term increases at a rate of 𝑂(ln𝑚). When the number of visual words 𝑚

is small, the first term dominates the upper bound, and therefore increasing 𝑚 will reduce
the difference ∣𝑠𝑖𝑗 − 𝑠𝑖𝑗 ∣. As 𝑚 becomes significantly larger than 𝑛, the second term will
dominate the upper bound, and therefore increasing 𝑚 will lead to a larger ∣𝑠𝑖𝑗 − 𝑠𝑖𝑗 ∣. This
result appears to be consistent with the observations on the size of the visual vocabulary:
a large vocabulary tends to performance well in object categorization; but, too many visual
words could deteriorate the classification accuracy.

Finally, we emphasize that although the idea of vector quantization by randomly sam-
pled centers was already discussed in (Jurie and Triggs, 2005; Viitaniemi and Laaksonen,
2008), to the best of our knowledge, this is the first work that presents its statistical consis-
tency analysis.
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3.2.2 Kernel Density Function Estimation for 𝑞𝑖(𝒙)

In this section, we approximate 𝑞𝑖(𝒙) by a kernel density estimation. To this end, we assume
that the density function 𝑞𝑖(𝒙) belongs to a family of smooth functions ℱ𝐷 that is defined
as follows

ℱ𝐷 =
{
𝑞(𝒙) : 𝒳 7→ ℝ+

∣∣∣〈𝑞(𝒙), 𝑞(𝒙)〉ℋ𝜅
≤ 𝐵2,

∫
𝑞(𝒙)𝑑𝒙 = 1

}
(20)

where 𝜅(𝒙,𝒙′) : 𝒳 ×𝒳 7→ ℝ+ is a local kernel function with
∫
𝜅(𝒙,𝒙′)𝑑𝒙′ = 1. 𝐵 controls

the functional norm of 𝑞(𝒙) in the reproducing kernel Hilbert space ℋ𝜅. An example of
𝜅(𝒙,𝒙′) is RBF function, i.e. 𝜅(𝒙,𝒙′) ∝ exp(−𝜆𝑑(𝒙,𝒙′)2), where 𝑑(𝒙,𝒙′) = ∥𝒙 − 𝒙′∥2.
Then, the distribution 𝑞𝑖(𝒙) is approximated by a kernel density estimation 𝑞𝑖(𝒙) defined as
follows

𝑞𝑖(𝒙) =

𝑛𝑖∑
𝑙=1

𝛼𝑙
𝑖𝜅(𝒙,𝒙

𝑙
𝑖), (21)

where 𝛼𝑙
𝑖(1 ≤ 𝑙 ≤ 𝑛𝑖) are the combination weight that satisfy (i) 𝛼𝑙

𝑖 ≥ 0, (ii)
∑𝑛𝑖

𝑙=1 𝛼
𝑙
𝑖 = 1,

and (iii) 𝛼𝑖𝐾𝑖𝛼𝑖 ≤ 𝐵2, where 𝐾𝑖 = [𝜅(𝒙𝑙
𝑖,𝒙

𝑙′
𝑖 )]𝑛𝑖×𝑛𝑖 .

Using the kernel density function, we approximate the pairwise similarity for (21) as
follows

𝑠𝑖𝑗 = �̂�𝒗

[
�̃�𝑖[𝑓(𝒙)]�̃�𝑗 [𝑓(𝒙)]

]
=

1

𝑚

𝑚∑
𝑘=1

(
𝑛𝑖∑
𝑙=1

𝛼𝑙
𝑖𝜃
(
𝒙𝑙
𝑖,𝒗𝑘

))( 𝑛𝑗∑
𝑙=1

𝛼𝑙
𝑗𝜃
(
𝒙𝑙
𝑗 ,𝒗𝑘

))
(22)

where function 𝜃(𝒙,𝒗) is defined as

𝜃(𝒙,𝒗) =

∫
𝑑𝒛𝐼

(
𝑑(𝒛,𝒗) ≤ 𝜌

)
𝜅(𝒙,𝒛) (23)

To bound the difference between 𝑠𝑖𝑗 and 𝑠𝑖𝑗 , we follow the analysis (Shawe-Taylor and
Dolia, 2007) by viewing 𝔼𝑖[𝑓(𝒙)]𝔼𝑗 [𝑓(𝒙)] as a mapping, denoted by 𝑔 : ℱ 7→ ℝ+, i.e.,

𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗) = 𝔼𝑖[𝑓(𝒙)]𝔼𝑗 [𝑓(𝒙)] (24)

The domain for function 𝑔, denoted by 𝒢, is defined as

𝒢 =
{
𝑔 : ℱ 7→ ℝ+

∣∣ ∃𝑞𝑖, 𝑞𝑗 ∈ ℱ𝐷 s.t. 𝑔(𝑓) = 𝔼𝑖[𝑓(𝒙)]𝔼𝑗 [𝑓(𝒙)]
}

(25)

To bound the complexity of a class of functions, we introduce the concept of Randemacher
complexity (Bartlett and Wang, 2002):

Defination 1 (Randemacher Complexity) Suppose 𝑥1, . . . , 𝑥𝑛 are sampled from a set 𝒳
with 𝑖.𝑖.𝑑. Let ℱ be a class of functions mapping from 𝒳 to ℝ. The Randemacher complexity
of ℱ is defined as

𝑅𝑛(ℱ) = 𝔼𝑥1,...,𝑥𝑛,𝜎

(
sup
𝑓∈ℱ

2

𝑛

𝑛∑
𝑖=1

𝜎𝑖𝑓(𝑥𝑖)

)
(26)

where 𝜎𝑖 is independent uniform ±1-valued random variables.

Assuming at least 𝑛 key points are randomly sampled from each image, we have the follow-
ing lemmas that bounds the complexity of domain 𝒢:
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Lemma 1 The Rademacher complexity of function class 𝒢, denoted by 𝑅𝑚(𝒢), is bounded
as

𝑅𝑚(𝒢) ≤ 2𝐵𝐶𝜅
𝔼𝑓

[∫
𝑑𝒙∣𝑓(𝒙)∣]√
𝑚

(27)

where 𝐶𝜅 = max𝒙,𝒛
√

𝜅(𝒙, 𝒛)

Proof Denote 𝐹 = {𝑓1, . . . , 𝑓𝑚}, according to the definition, we have

𝑅𝑚(𝒢) = 𝔼𝜎,𝐹

[
sup
𝑔∈𝒢

2

𝑚

𝑚∑
𝑘=1

𝜎𝑘𝑔(𝑓𝑘)

]

= 𝔼𝐹

[
𝔼𝜎

[
sup
𝑔∈𝒢

2

𝑚

𝑚∑
𝑘=1

𝜎𝑘𝑔(𝑓𝑘)

∣∣∣∣𝐹]
]

= 𝔼𝐹

[
𝔼𝜎

[
sup

𝑞𝑖,𝑞𝑗∈ℱ𝐷

2

𝑚

𝑚∑
𝑘=1

𝜎𝑘𝔼𝑖[𝑓𝑘]𝔼𝑗 [𝑓𝑘]

∣∣∣∣𝐹]
]

≤ 𝔼𝐹

[
𝔼𝜎

[
sup

∥𝝎𝑖∥≤𝐵

2

𝑚

𝑚∑
𝑘=1

𝜎𝑘𝔼𝑖[𝑓𝑘]

∣∣∣∣𝐹]
]

=
2

𝑚
𝔼𝐹

[
𝔼𝜎

[
sup

∥𝝎𝑖∥≤𝐵

〈
𝝎𝑖,

𝑚∑
𝑘=1

𝜎𝑘𝛷𝑘

〉∣∣∣∣𝐹]
]

where 𝛷𝑘 =
(⟨𝜙1(⋅), 𝑓𝑘(⋅)⟩, ⟨𝜙2(⋅), 𝑓𝑘(⋅)⟩, . . .

)
and 𝜙𝑘(𝑥) is an eigen function

of 𝜅(𝑥, 𝑥′)

≤ 2𝐵

𝑚
𝔼𝐹

[
𝔼𝜎

[∥∥∥∥ 𝑚∑
𝑘=1

𝜎𝑘𝛷𝑘

∥∥∥∥∣∣∣∣𝐹]
]

=
2𝐵

𝑚
𝔼𝐹

⎡⎣𝔼𝜎

[(∑
𝑘,𝑡

𝜎𝑘𝜎𝑡
〈
𝛷𝑘, 𝛷𝑡

〉) 1
2
∣∣∣∣𝐹]

⎤⎦
≤ 2𝐵

𝑚
𝔼𝐹

⎡⎣(∑
𝑘,𝑡

𝔼𝜎

[
𝜎𝑘𝜎𝑡

〈
𝛷𝑘, 𝛷𝑡(𝒙)

〉∣∣∣𝐹]) 1
2

⎤⎦
=

2𝐵

𝑚
𝔼𝐹

[(∑
𝑘

𝔼𝜎

[
𝜎2
𝑘

〈
𝛷𝑘, 𝛷𝑘

〉∣∣∣𝐹]) 1
2

]

=
2𝐵

𝑚
𝔼𝐹

[(∑
𝑘

〈
𝛷𝑘, 𝛷𝑘

〉) 1
2

]

=
2𝐵

𝑚
𝔼𝐹

[(∑
𝑘

∫
𝑑𝒛𝑑𝒙𝑓𝑘(𝒙)𝑓𝑘(𝒛)𝜅(𝒙, 𝒛)

) 1
2

]

≤ 2𝐵𝐶𝜅
𝔼𝑓

[∫
𝑑𝒙∣𝑓(𝒙)∣]√
𝑚

(28)

where the first inequality is because 𝔼𝑗 [𝑓𝑘] ≤ 1, the second inequality is from Cauchy’s
inequality, the third and fourth inequalities are from Jensen’s inequality. The last equality
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follows

⟨𝛷𝑘, 𝛷𝑘⟩ =
∑
𝑖

〈
𝜙𝑖(⋅), 𝑓𝑘(⋅)

〉2
=

∫
𝑑𝑧𝑑𝑥𝑓𝑘(𝒙)𝑓𝑘(𝒛)𝜅(𝒙, 𝒛) (29)

From (Bartlett and Wang, 2002), we have the following lemmas:

Lemma 2 (Theorem 12 in (Bartlett and Wang, 2002)) For 1 ≤ 𝑞 < ∞, let ℒ = {∣𝑓 − ℎ∣𝑞 :

𝑓 ∈ ℱ}, where ℎ and ∥𝑓 − ℎ∥∞ is uniformly bounded. We have

𝑅𝑛(ℒ) ≤ 2𝑞∥𝑓 − ℎ∥∞
(
𝑅𝑛(ℱ) +

∥ℎ∥∞√
𝑛

)
(30)

Lemma 3 (Theorem 8 in (Bartlett and Wang, 2002)) With probability 1 − 𝛿 the following
inequality holds

𝔼𝜙(𝑌, 𝑓(𝑋)) ≤ �̂�𝑛𝜙(𝑌, 𝑓(𝑋)) +𝑅𝑛(𝜙 ∘ ℱ) +

√
8 ln(2/𝛿)

𝑛
(31)

where 𝜙(𝑥, 𝑦) is the loss function, 𝑛 is the number of samples and 𝜙 ∘ ℱ = {(𝑥, 𝑦) 7→
𝜙(𝑦, 𝑓(𝑥))− 𝜙(𝑦, 0) : 𝑓 ∈ ℱ}.

Based on the above lemmas, we have the following theorem

Theorem 4 Assume that the density function 𝑞𝑖(𝒙), 𝑞𝑗(𝒙) ∈ ℱ𝐷 . Let 𝑞𝑖(𝒙), 𝑞𝑗(𝒙) ∈ ℱ𝐷 be
an estimated density function from 𝑛 sampled key points. We have, with probability 1 − 𝛿,
the following inequality holds

𝔼𝑓 [∣𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)∣] ≤ �̂�𝑓 [∣𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)∣]

+2

(
2𝐵𝐶𝜅

𝔼𝑓

[∫
𝑑𝒙∣𝑓(𝒙)∣]√
𝑚

+
1√
𝑚

)
+

√
ln(8/𝛿)

2𝑚
+ 2

√
ln(8𝑚2/𝛿)

2𝑛
(32)

Proof From Lemma 3, with probability 1− 𝛿/2, we have

𝔼𝑓 [∣𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)∣]

≤ �̂�𝑓 [∣𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)∣] +𝑅𝑚(∣𝒢 − 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)∣) +
√

8 ln(4/𝛿)

𝑚
(33)

Since 0 ≤ 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗) ≤ 1, using the results in Lemma 1 and 2, we have

𝑅𝑚
(∣𝒢 − 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)∣

) ≤ 2

(
𝑅𝑚(𝒢) + 1√

𝑚

)
≤ 2

(
2𝐵𝐶𝜅

𝔼𝑓

[∫
𝑑𝒙∣𝑓(𝒙)∣]√
𝑚

+
1√
𝑚

)
(34)

Hence, we have, with probability 1− 𝛿/2 the following inequality holds

𝔼𝑓 [∣𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)∣] ≤ �̂�𝑓 [∣𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)∣]

+2

(
2𝐵𝐶𝜅

𝔼𝑓

[∫
𝑑𝒙∣𝑓(𝒙)∣]√
𝑚

+
1√
𝑚

)
+

√
8 ln(4/𝛿)

𝑚
(35)
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Next, we aim to bound �̂�𝑓 [∣𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)∣]. Note that

�̂�𝑓 [∣𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)∣] = 1

𝑚

𝑚∑
𝑘=1

∣𝑔(𝑓𝑘; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓𝑘; 𝑞𝑖, 𝑞𝑗)∣

≤ 1

𝑚

𝑚∑
𝑘=1

(
∣𝑔(𝑓𝑘; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓𝑘; 𝑞𝑖, 𝑞𝑗)∣+ ∣𝑔(𝑓𝑘; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓𝑘; 𝑞𝑖, 𝑞𝑗)∣

)
(36)

Using the same logistics in the proof of Theorem 3, we have, with probability 1− 𝛿/2

1

𝑚

𝑚∑
𝑘=1

∣𝑔(𝑓𝑘; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓𝑘; 𝑞𝑖, 𝑞𝑗)∣ ≤
√

ln(8/𝛿)

2𝑚
+ 2

√
ln(8𝑚2/𝛿)

2𝑛
(37)

From the above results, we have, with probability 1− 𝛿/2, the following inequality holds

1

𝑚

𝑚∑
𝑘=1

∣𝑔(𝑓𝑘; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓𝑘; 𝑞𝑖, 𝑞𝑗)∣

≤ 1

𝑚

𝑚∑
𝑘=1

∣𝑔(𝑓𝑘; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓𝑘; 𝑞𝑖, 𝑞𝑗)∣+
√

ln(8/𝛿)

2𝑚
+ 2

√
ln(8𝑚2/𝛿)

2𝑛
(38)

Combining the above results together, we have, with probability 1 − 𝛿, the following in-
equality holds

𝔼𝑓 [∣𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)∣]

≤ �̂�𝑓 [∣𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)∣] + 2

(
2𝐵𝐶𝜅

𝔼𝑓

[∫
𝑑𝒙∣𝑓(𝒙)∣]√
𝑚

+
1√
𝑚

)

+

√
ln(8/𝛿)

2𝑚
+ 2

√
ln(8𝑚2/𝛿)

2𝑛
(39)

In our empirical study, we will use RBF kernel function for 𝜅(𝒙,𝒙′) with 𝛼𝑙
𝑖 = 1/𝑛𝑖.

The corollary below shows the bound for this choice of kernel density estimation.

Corollary 5 When the kernel function 𝜅(𝒙,𝒙′) =
(
1/(2𝜋𝜎2)

)𝑑/2
exp

(−∥𝒙− 𝒙′∥22/(2𝜎2)
)

and 𝛼𝑙
𝑖 = 1/𝑛𝑖, the bound in Theorem 4 becomes

𝔼𝑓 [∣𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)− 𝑔(𝑓 ; 𝑞𝑖, 𝑞𝑗)∣] ≤
(
1/(2𝜋𝜎2)

)𝑑/2 (
1− exp

(
−𝜌2/(2𝜎2)

))
+2

2𝔼𝑓

[∫
𝑑𝒙∣𝑓(𝒙)∣] /√𝑛𝑖 + 1√

𝑚
+

√
ln(8/𝛿)

2𝑚
+ 2

√
ln(8𝑚2/𝛿)

2𝑛
(40)

Remark Theorem 4 bounds the true expectation of the difference between the similarity
estimated by kernel density function and the true similarity. Similar to Theorem 3, this bound
also consists of a term decreasing at a rate of 𝑂(1/

√
𝑚) and a term increasing at a rate of

𝑂(ln𝑚). What’s more, we can see in order to minimize the true expectation of the difference
between the similarity estimated by kernel density function and the true similarity, we need
to minimize the empirical expectation of the difference between the similarity estimated by
kernel density function and the similarity estimated by empirical density function. If 𝜅(𝒙,𝒗)
decreases exponentially as 𝑑(𝒙,𝒗) decreases, such as Gaussian kernel, we have 𝜃(𝒙,𝒗) close
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to 1 when 𝑑(𝒙,𝒗) ≤ 𝜌 while 𝜃(𝒙,𝒗) close to 0 when 𝑑(𝒙,𝒗) > 𝜌. In such circumstance,
setting 𝛼𝑙

𝑖 = 1/𝑛𝑖 for all 1 ≤ 𝑙 ≤ 𝑛𝑖 is a good choice for the approximation and is also very
efficient since we do not need to learn 𝛼.

Note that although the idea of kernel density estimation was already proposed in some
studies (e.g.,(van Gemert et al., 2008)), to the best of our knowledge, this is the first work
that reveals the statistical consistency of kernel density estimation for the bag-of-words rep-
resentation.

4 Empirical Study

In this empirical study, we aim to verify the proposed framework and the related analysis.
To this end, based on the discussion in Section 3.2, we present two random algorithms for
vector quantization that are shown in Algorithm 1. We refer to the algorithm based on em-
pirical distribution as “Quantization via Empirical Estimation”, or QEE for short, and to
the algorithm based on kernel density estimation as “Quantization via Kernel Estimation”,
or QKE for short. Note that since both vector quantization algorithms do not rely on the
clustering algorithms to identify visual words, they are in general computationally more ef-
ficient. In addition, both algorithms have error bounds decreases at the rate of 𝑂(1/

√
𝑚)

when the number of key points 𝑛 is large, indicating that they are robust to the number of
visual words 𝑚. We emphasize that although similar random algorithms for vector quanti-
zation have been discussed in (Farquhar et al., 2005; Philbin et al., 2008; van Gemert et al.,
2008; Nowak et al., 2006; Viitaniemi and Laaksonen, 2008), the purpose of this empirical
study is to verify that

– simple random algorithms deliver similar performance of object recognition as the clus-
tering based algorithm, and

– the random algorithms are robust to the number of visual words, as predicted by the
statistical consistency analysis.
Finally in the implementation of QKE, to efficiently calculate 𝜃-function, we approxi-

mate it as (Abramowitz and Stegun, 1972)

𝜃 ≈ 2(𝑑− 𝜌)2 − 1

4
√
𝜋(𝑑− 𝜌)3 exp(𝑑− 𝜌)2

− 2(𝑑+ 𝜌)2 − 1

4
√
𝜋(𝑑+ 𝜌)3 exp(𝑑+ 𝜌)2

(41)

where 𝑑 = 𝑑/𝜎, 𝜌 = 𝜌/𝜎 and 𝜎 is the width of the Gaussian kernel.
Two data sets are used in our study: PASCAL VOC Challenge 2006 data set (Ever-

ingham et al., 2006) and Graz02 data set (Opelt et al., 2006). PASCAL06 contains 5, 304

images from ten classes. We randomly select 100 images for training and 500 for testing.
The Graz02 data set contains 365 bike images, 420 car images, 311 people images and 380

background images. We randomly select 100 images from each class for training, and use
the remaining for testing. By using a relatively small number of examples for training, we
are able to examine the sensitivity of a vector quantization algorithm to the number of vi-
sual words. On average 1, 000 key points are extracted from each image, and each key point
is represented by the SIFT local descriptor (Vedaldi and Fulkerson, 2008). For PASCAL06
data set, the binary classification performance for each object class is measured by the area
under the ROC curve (AUC). For Graz02 data set, the binary classification performance for
each object class is measured by the accuracy. Results averaged over ten random trials are
reported.

We compare three vector quantization methods: K-means, QEE and QKE. Note that we
do not include more advanced algorithms for vector quantization in our study because the
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Algorithm 1 The QEE/QKE algorithm for generating bag-of-words representation
1: Input:

𝑋 = {𝑋1, . . . , 𝑋𝑁}: a collection of 𝑁 training images
𝑚: the number of sampled cluster centers
𝜌: threshold used by quantization functions

2: Output:
𝐻 = {𝒉1, . . . ,𝒉𝑁}: bag-of-words representation for training images

3: Process:
4: Sample 𝑚 centers {𝒗𝑘}𝑚𝑘=1 from the key points in 𝑋
5: for 𝑖 = 1 to 𝑁 do
6: for 𝑘 = 1 to 𝑚 do
7: ℎ𝑘

𝑖 =
∑𝑛𝑖

𝑙=1 𝐼
(
𝑑(𝒙𝑙

𝑖,𝒗𝑘) ≤ 𝜌
)
/𝑛𝑖 (for QEE)

8: ℎ𝑘
𝑖 =

∑𝑛𝑖
𝑙=1 𝜃(𝒙

𝑙
𝑖,𝒗𝑘)/𝑛𝑖 with 𝜅(𝒙,𝒙′) =

(
1/(2𝜋𝜎2)

)𝑑/2
exp

(−𝑑(𝒙,𝒙′)2/(2𝜎2)
)

(for
QKE)

9: end for
10: Set 𝒉𝑖 = (ℎ1

𝑖 , . . . , ℎ
𝑚
𝑖 )

11: end for
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Fig. 1 Comparison of different quantization methods with varied number of visual words on PASCAL06.

objective of this study is to validate the proposed statistical framework for bag-of-words
representation and the analysis on statistical consistency. Threshold 𝜌 used by quantization
functions 𝑓(𝒙) is set as 𝜌 = 0.5 × 𝑑, where 𝑑 is the average distance between all the key
points and the randomly selected centers. A RBF kernel is used in QKE with the kernel
width 𝜎 is set as 0.75𝑑 according to our experience. Binary linear SVM is used for each
classification problem. To examine the sensitivity to the number of visual words, for both
data sets, we varied the number of visual words from 10 to 10, 000, as shown in Figure 1
and 2.
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Fig. 2 Comparison of different quantization methods with varying number of visual words on Graz02.

First, we observe that the proposed algorithms for vector quantization yield comparable
if not better performance than the K-means clustering algorithm. This confirms the proposed
statistical framework for key point quantization is effective. Second, we observe that the
clustering based approach for vector quantization tends to perform worse, sometimes very
significantly, when the number of visual words is large. We attribute this instability to the
fact that K-means requires each interest point belongs to exactly one visual word. If the
number of clusters is not appropriate, for example, too large compared to the number of
instances, two relevant key points may be separated into different clusters although they are
both very near to the boundary. It will lead to a poor estimation of pairwise similarity. The
problem of “hard assignment” was also observed in (Philbin et al., 2008; van Gemert et al.,
2008). In contrast, for the proposed algorithms, we observe a rather stable improvement as
the number of visual words increases, consistent with our analysis in statistical consistency.

5 Conclusion

The bag-of-words model is one of the most popular representation methods for object cate-
gorization. The key idea is to quantize each extracted key point into one of visual words, and
then represent each image by a histogram of the visual words. For this purpose, a cluster-
ing algorithm (e.g., K-means), is generally used for generating the visual words. Although
a number of studies have shown encouraging results of the bag-of-words representation for
object categorization, theoretical studies on properties of the bag-of-words model is almost
untouched, possibly due to the difficulty introduced by using a heuristic clustering pro-
cess. In this paper, we present a statistical framework which generalizes the bag-of-words
representation. In this framework, the visual words are generated by a statistical process
rather than using a clustering algorithm, while the empirical performance is competitive to
clustering-based method. A theoretical analysis based on statistical consistency is presented
for the proposed framework. Moreover, based on the framework we developed two algo-
rithms which do not rely on clustering, while achieving competitive performance in object
categorization when compared to clustering-based bag-of-words representations.

Bag-of-words representation is a popular approach to object categorization. Despite its
success, few studies are devoted to the theoretic analysis of the bag-of-words representation.
In this work, we present a statistical framework for key point quantization that generalizes
the bag-of-words model by statistical expectation. We present two random algorithms for
vector quantization where the visual words are generated by a statistical process rather than
using a clustering algorithm. A theoretical analysis of their statistical consistency is pre-
sented. We also verify the efficacy and the robustness of the proposed framework by apply-
ing it to object recognition. In the future, we plan to examine the dependence of the proposed
algorithms on the threshold 𝜌, and extend QKE to weighted kernel density estimation.
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