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Abstract. Semi-supervised learning and ensemble learning are two im-
portant learning paradigms. The former attempts to achieve strong gen-
eralization by exploiting unlabeled data; the latter attempts to achieve
strong generalization by using multiple learners. In this paper we advo-
cate generating stronger learning systems by leveraging unlabeled data
and classifier combination.

1 Introduction

In many real applications it is difficult to get a large amount of labeled training
examples although there may exist abundant unlabeled data, since labeling the
unlabeled instances requires human effort and expertise. Exploiting unlabeled
data to help improve the learning performance has become a very hot topic
during the past decade. There are three major techniques for this purpose [28],
i.e., semi-supervised learning, transductive learning and active learning.

Semi-supervised learning [6, 36] deals with methods for exploiting unlabeled
data in addition to labeled data automatically to improve learning performance,
where no human intervention is assumed. Transductive learning [25] also tries to
exploit unlabeled data automatically, but it assumes that the unlabeled examples
are exactly the test examples. Active learning deals with methods which assume
that the learner has some control over the input space, and the goal is to minimize
the number of queries from human experts on ground-truth labels for building
a strong learner [22]. In this paper we will focus on semi-supervised learning.

From the perspective of generating strong learning systems, it is interesting
to see that semi-supervised learning and ensemble learning are two important
paradigms that were developed almost in parallel and with different philosophies.
Semi-supervised learning tries to achieve strong generalization by exploiting un-
labeled data, while ensemble learning tries to achieve strong generalization by
using multiple learners. From the view of semi-supervised learning, it seems that
using unlabeled data to boost the learning performance can be good enough, and
so there is no need to involve multiple learners; while from the view of ensemble
learning, it seems that using multiple learners can do all the things and therefore
there is no need to consider unlabeled data. This partially explains why the MCS



community has not paid sufficient attention to semi-supervised ensemble meth-
ods [20]. Some successful studies have been reported [3, 7, 14, 15, 24, 32], while
most are semi-supervised boosting methods [3, 7, 15,24].

In this article we advocate combining the advantages of semi-supervised
learning and ensemble learning. Using disagreement-based semi-supervised learn-
ing [34] as an example, we will discuss why it is good to leverage unlabeled
data and classifier combination. After a brief introduction to disagreement-based
methods in Section 2, we will discuss on why classifier combination can be help-
ful to semi-supervised learning in Section 3, discuss on why unlabeled data can
be helpful to ensemble learning in Section 4, and finally conclude in Section 5.

2 Disagreement-Based Semi-Supervised Learning

Research on disagreement-based semi-supervised learning started from Blum and
Mitchell’s seminal work on co-training [5]. They considered the situation where
data have two sufficient and redundant views (i.e., two attribute sets each of
which contains sufficient information for constructing a strong learner and is
conditionally independent to the other attribute set given the class label). The
algorithm trains a learner from each view using the original labeled data. Each
learner selects and labels some high-confident unlabeled examples for its peer.
Then, each learner is refined using the newly labeled examples provided by its
peer. The whole process repeats until no learner changes or a pre-set number of
learning rounds is executed.

Blum and Mitchell [5] analyzed the effectiveness of co-training and disclosed
that if the two views are conditionally independent, the predictive accuracy of an
initial weak learner can be boosted to arbitrarily high using unlabeled data by
employing the co-training algorithm. Dasgupta et al. [8] showed that when the
two views are sufficient and conditionally independent, the generalization error
of co-training is upper-bounded by the disagreement between the two classifiers.
Later, Balcan et al. [2] indicated that if a PAC learner can be obtained on each
view, the conditional independence assumption or even the weak independent
assumption [1] is unnecessary, and a weaker assumption of “expansion” of the
underlying data distribution is sufficient for iterative co-training to succeed.

Zhou et al. [35] showed that when there are two sufficient and redundant
views, a single labeled training example is able to launch a successful co-training.
Indeed, the existence of two sufficient and redundant views is a very luxury
requirement. In most real-world tasks this condition does not hold since there
is generally only a single attribute set. Thus, the applicability of the standard
co-training is limited though Nigam and Ghani [18] showed that if there exist a
lot of redundant attributes, co-training can be enabled through view split.

To deal with single view data, Goldman and Zhou [9] proposed a method
which trains two learners by using different learning algorithms. The method
requires each classifier be able to partition the instance space into equivalence
classes, and uses cross validation to estimate the confidences of the two learners
as well as the equivalence classes. Zhou and Li [32] proposed the tri-training



method, which requires neither two views nor special learning algorithms. This
method uses three learners and avoids estimating the predictive confidence ex-
plicitly. It employs “majority teach minority” strategy in the semi-supervised
learning process, that is, if two learners agree on an unlabeled instance but the
third learner disagrees, the two learners will label this instance for the third
learner. Moreover, classifier combination is exploited to improve generalization.
Later, Li and Zhou [14] proposed the co-forest method by extending tri-training
to include more learners. In co-forest, each learner is improved with unlabeled
instances labeled by the ensemble consists of all the other learners, and the final
prediction is made by the ensemble of all learners. Zhou and Li [31,33] proposed
the first semi-supervised regression algorithm Coreg which employs two kNN
regressors facilitated with different distance metrics. This algorithm does not
require two views either. Later it was extended to a semi-supervised ensemble
method for time series prediction with missing data [17].

Previous theoretical studies [2, 5, 8] worked with two views, and could not
explain why these single-view methods can work. Wang and Zhou [26] presented
a theoretical analysis which discloses that the key for disagreement-based ap-
proaches to succeed is the existence of a large diversity between the learners,
and it is unimportant whether the diversity is achieved by using two views, or
two learning algorithms, or from other channels.

Disagreement-based semi-supervised learning approaches have been applied
to many real-world tasks, such as natural language processing [10,19,21,23], im-
age retrieval [28–30], document retrieval [13], spam detection [16], email answer-
ing [11], mammogram microcalcification detection [14], etc. In particular, a very
effective method which combines disagreement-based semi-supervised learning
with active learning for content-based image retrieval has been developed [29,30],
and its theoretical analysis was presented recently [27].

3 The Helpfulness of Classifier Combination to
Semi-Supervised Learning

Here we briefly introduce some of our theoretical results on the helpfulness of
classifier combination to semi-supervised learning. Details can be found in a
longer version of [26].

Let H denote a finite hypothesis space and D the data distribution generated
by the ground-truth hypothesis h∗ ∈ H. Let d(hi, h∗) = Prx∈D[hi(x) 6= h∗(x)]
denote the difference between two classifiers hi and h∗. Let hi

1 and hi
2 denote

the two classifiers in the i-th round, respectively. We consider the following
disagreement-based semi-supervised learning process:

Process: First, we train two initial learners h0
1 and h0

2 using the labeled data
set L which contains l labeled examples. Then, h0

1 selects u number of unlabeled
instances from the unlabeled data set U to label, and puts these newly labeled
examples into the data set σ2 which contains copies of all examples in L; while
h0

2 selects u number of unlabeled instances from U to label and puts these newly



labeled examples into the data set σ1 which contains copies of all examples in L.
h1

1 and h1
2 are then trained from σ1 and σ2, respectively. After that, h1

1 selects u
number of unlabeled instances from U to label, and updates σ2 with these newly
labeled examples; while h1

2 selects u number of unlabeled instances to from U
label, and updates σ1 with these newly labeled examples. The process is repeated
for a pre-set number of learning rounds.

We can prove that even when the individual learners could not improve
the performance any more, classifier combination is still possible to improve
generalization further by using more unlabeled data.

Lemma 1. Given the initial labeled data set L which is clean, and assuming that
the size of L is sufficient to learn two classifiers h0

1 and h0
2 whose upper bound

of the generalization error is a0 < 0.5 and b0 < 0.5 with high probability (more
than 1 − δ) in the PAC model, respectively, i.e., l ≥ max[ 1

a0
ln |H|

δ , 1
b0

ln |H|
δ ].

Then h0
1 selects u number of unlabeled instances from U to label and puts them

into σ2 which contains all the examples in L, and then h1
2 is trained from σ2 by

minimizing the empirical risk. If lb0 ≤ e M
√

M !−M , then

Pr[d(h1
2, h

∗) ≥ b1] ≤ δ , (1)

where M = ua0 and b1 = max[ lb0+ua0−ud(h0
1,h1

2)
l , 0].

Lemma 1 suggests that the individual classifier h1
2 can be improved using

unlabeled data when d(h0
1, h

1
2) is larger than a0.

Considering a simple classifier combination strategy, that is, when two clas-
sifiers disagree on a test instance, the classifier which has a higher confidence is
relied on. Let hi

com denote the combination of hi
1 and hi

2, Si denote the set of
examples on which hi

1(x) 6= hi
2(x), and γ = Prx∈Si [hi

com(x) 6= h∗(x)].

Lemma 2. If d(h1
1, h

1
2) >

ua0+ub0+
(
l(1−2γ)−u

)
d(h0

1,h0
2)

u+l(1−2γ) and l < u < c∗, then

Pr[h1
com(x) 6= h∗(x)] < Pr[h0

com(x) 6= h∗(x)]. (2)

Lemma 2 suggests that the classifier combination h0
com can be improved

using unlabeled data when d(h1
1, h

1
2) is larger than

ua0+ub0+
(
l(1−2γ)−u

)
d(h0

1,h0
2)

u+l(1−2γ) .
By Lemmas 1 and 2, we have the following theorem.

Theorem 1. When d(h0
1, h

0
2) > a0 > b0 and γ ≥ 1

2 +
u
(
a0+b0−d(h0

1,h0
2)

)
2ld(h0

1,h0
2)

, even
when Pr[h1

j (x) 6= h∗(x)] ≥ Pr[h0
j (x) 6= h∗(x)] (j = 1, 2), Pr[h1

com(x) 6= h∗(x)] is
still less than Pr[h0

com(x) 6= h∗(x)].



Moreover, we can prove Theorem 2, which suggests that the classifier com-
bination is possible to reach a good performance earlier than the individual
classifiers.

Theorem 2. Suppose a0 > b0, when γ <
d(h0

1,h0
2)+b0−a0

2d(h0
1,h0

2)
, Pr[h0

com(x) 6= h∗(x)] <

min[a0, b0].

4 The Helpfulness of Unlabeled Data to Ensemble
Learning

When there are very few labeled training examples, the necessity of exploiting
unlabeled data is obvious, since it is impossible to build a strong ensemble oth-
erwise. So, in this section we will only focus on situation where there are a lot
of labeled training examples.

It is well-known that to construct a good ensemble, the base classifiers should
be accurate and diverse; however, the diversity is difficult to measure and control
[12]. We claim that when there are lots of labeled training examples, unlabeled
instances are still helpful since they can help to increase the diversity among the
base learners. We will briefly introduce a preliminary study below.

Let X = Rd denote the d-dimensional input space and Y = {−1,+1} denote
the binary label space. Given labeled training set L = {(x1, y1), · · · , (xl, yl)}
and unlabeled training set U = {u1, · · · ,un}, where xi ∈ X , uj ∈ X and
yi ∈ Y, let L̃ = {x1, · · · ,xl} denotes the set of unlabeled instances derived
from L. Assume that the classifier ensemble E consists of m linear classifiers
{w1 · · · ,wm}, where wk ∈ Rd (k = 1, · · · ,m) is the weight vector of the k-
th classifier. Let W = [w1, · · · ,wm] be the matrix formed by concatenating
all weight vectors. Then, we can generate an ensemble by minimizing the loss
function

V (L,U ,W ) =
1
2

m∑

k=1

||wk||22 + C1 · Vacc(L,W ) + C2 · Vdiv(D,W ) , (3)

where the first term controls the model complexity, the second term corresponds
to the loss of the ensemble in terms of accuracy on L (balanced by C1), while
the third term corresponds to the loss of the ensemble in terms of diversity
on data set D (balanced by C2). Here, we consider two ways to specify D: (1)
D = L̃, and (2) D = L̃⋃U . The first way leads to the method Lcd which does
not consider unlabeled data, while the second way leads to the method LcdUd
which considers both labeled and unlabeled data.

The second loss term in Eq. 3 can be calculated according to

Vacc(L,W ) =
m∑

k=1

l∑

i=1

loss(wk,xi, yi) , (4)



where loss(wk,xi, yi) measures the loss of the k-th base classifier, i.e., wk, on
the i-th labeled training example, i.e., (xi, yi). Here we calculate it using the l2
norm

loss(wk,xi, yi) =

{
0 if yi〈wk,xi〉 ≥ 1

(1− yi〈wk,xi〉)2 if yi〈wk,xi〉 < 1

where 〈·, ·〉 denotes the dot product between vectors.
We calculate the third term in Eq. 3 by considering the prediction difference

between each pair of base classifiers, i.e.,

Vdiv(D,W ) =
m−1∑
p=1

m∑
q=p+1

d(wp,wq,D) , (5)

where

d(wp,wq,D) =

{
0 if D = ∅

P
x∈D sign(〈wp,x〉)·sign(〈wq,x〉)

|D| if D 6= ∅ .

By putting Eqs. 4 and 5 into Eq. 3, and approximating sign(·) by tanh(·),
the resulting loss function turns to be a continuous and differentiable function
of the model parameters W . Thus our goal becomes to find the optimal model
W ∗ which minimizes

W ∗ = arg min
W

V (L,U ,W ) . (6)

We initialize W by generating each classifier wk from a bootstrap sample
of L, i.e., Lk = {(xk

1 , yk
1 ), · · · , (xk

l , yk
l )}, by solving the SVM-style optimization

problem

min
wk,ξ

1
2
||wk||22 + C

l∑

i=1

ξk
i s.t. yk

i 〈wk,xk
i 〉 ≥ 1− ξk

i , ξk
i ≥ 0 .

where ξ = [ξk
1 , ξk

2 , · · · , ξk
l ]. The above problem falls into the category of quadratic

programming (QP) and can be solved efficiently by a number of methods off-
the-shelf. Then, we solve Eq. 6 by gradient descent.

Figure 1 shows some preliminary results on data sets g241n 1 and vehicle [4].
For each data set, a half data is randomly chosen to form the test set. Among
the remaining data, 5% are used as labeled training examples while 95% are
used as unlabeled instances. The experiments are repeated for ten times with
random data splits. The parameters C1 and C2 are both set to 1. In Figure 1
the horizontal axis in each subfigure shows the size of the ensembles (from 10 to
60 with an interval of 10), and the vertical axis shows the average accuracy. The
results show that LcdUd can outperform Lcd, while the only difference between
LcdUd and Lcd is that the former considers the usefulness of unlabeled data.
1 http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html
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Fig. 1. Comparing the performance of Lcd and LcdUd. N is the number of instances;
d is the dimensionality.

It is worth noting that the above method is far from an excellent one since
it does not distinguish the priorities of the contribution from labeled data and
unlabeled data. Ideally, the accuracy and diversity on labeled data should be
considered at first to form a pool of comparable ensembles, and then from the
pool an ensemble with high diversity on unlabeled data is selected. Powerful
ensemble methods would be developed along this direction.

5 Conclusion

Semi-supervised learning and ensemble learning are two well-developed paradigms
for improving generalization. Although there are some studies of semi-supervised
ensemble methods, the MCS community has not devoted much effort to this line
of research. In this article we argue that

– Classifier combination is helpful to semi-supervised learning. There are at
least two reasons: 1) the performance of classifier combination can be im-
proved further even though the individual learners could not be improved
using unlabeled data; 2) the classifier combination can reach a good perfor-
mance earlier than individual learners.

– Unlabeled data are helpful to ensemble learning. There are at least two
reasons: 1) when there are very few labeled training examples, unlabeled
data have to be exploited for constructing a strong ensemble; 2) unlabeled
data can be used to help increase the diversity of base learners.

Our arguments were made on disagreement-based semi-supervised learning
approaches, however, they are possible to generalize to other kinds of semi-
supervised learning and ensemble learning approaches. We believe that semi-
supervised ensemble methods are very worth studying. Moreover, we think it is
possible to derive effective diversity controls for ensemble learning by considering
the usefulness of unlabeled data.
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