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Current neural networks are mostly built on the MP model, which usu-
ally formulates the neuron as executing an activation function on the
real-valued weighted aggregation of signals received from other neu-
rons. This letter proposes the flexible transmitter (FT) model, a novel bio-
plausible neuron model with flexible synaptic plasticity. The FT model
employs a pair of parameters to model the neurotransmitters between
neurons and puts up a neuron-exclusive variable to record the regulated
neurotrophin density. Thus, the FT model can be formulated as a two-
variable, two-valued function, taking the commonly used MP neuron
model as its particular case. This modeling manner makes the FT model
biologically more realistic and capable of handling complicated data,
even spatiotemporal data. To exhibit its power and potential, we present
the flexible transmitter network (FTNet), which is built on the most com-
mon fully connected feedforward architecture taking the FT model as the
basic building block. FTNet allows gradient calculation and can be im-
plemented by an improved backpropagation algorithm in the complex-
valued domain. Experiments on a broad range of tasks show that FTNet
has power and potential in processing spatiotemporal data. This study
provides an alternative basic building block in neural networks and ex-
hibits the feasibility of developing artificial neural networks with neu-
ronal plasticity.

1 Introduction

The fundamental computational unit of neural networks is the neuron, cor-
responding to the cell in biological nervous systems. Though neural net-
works have been studied for more than half a century and various neural
network algorithms and network architectures have been developed, the
modeling of neurons is relatively less considered.

The most famous and commonly used formulation of neuron is the MP
model (McCulloch & Pitts, 1943), as illustrated in Figure 1. This model for-
mulates the neuron as executing an activation function on the weighted
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Figure 1: The MP model.

aggregation of signals received from other neurons compared with a thresh-
old, that is,

y = f

(
n∑

i=1

wixi − θ

)
.

In this figure, xi’s are the input signals, wi’s are the connection weights, θ

is a neurological threshold, and f denotes the activation function, such as
the sigmoid function often used in shallow neural networks and the ReLU
function traditionally used in deep ones.

The MP model is very successful, though the formulated cell behavior
is quite simple. Actual nervous cells are much more complicated, so ex-
ploring other bio-plausible formulations with neuronal plasticity is a funda-
mental and significant problem. There have been many efforts on modeling
the spiking behavior of cells, leading to spiking neuron models (Gerstner
& Kistler, 2002; Moon, Wu, Zhu, & Lu, 2021) and pulsed neural networks
(Wang, Ma, Cheng, & Yang, 2010). In this work, we consider another inter-
esting aspect and propose a novel type of neuron model.

1.1 Synaptic Plasticity. Neuroscience studies (Lodish et al., 2008; De-
banne, Campanac, Bialowas, Carlier, & Alcaraz, 2011) disclose that the
communication between neurons relies on the synapse. Signal flows in
one direction, from the presynaptic neuron to the postsynaptic neuron via
the synapse. The synapse usually forms between the endings (or terminals)
of the axon and dendrite, which link to the presynaptic and postsynaptic
neurons, respectively. The endings of the axon and dendrite are named
presynapse and postsynapse, respectively. In common synaptic structures,
there is a gap (the synaptic cleft) of about 20 μm between the presynapse and
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Flexible Transmitter Network 2953

postsynapse. The synapse is a combination of the presynapse, synaptic cleft,
and postsynapse, as shown in the left half of Figure 2b.

Synapse ensures the one-way communication behavior between two
neurons. In detail, when an external signal through the axon arrives at
the presynapse, it will be collected by the synaptic vesicles and converted
into a chemical substance called a neurotransmitter (Mattson, 1988). With
the chemical movement, synaptic vesicles fuse with the presynaptic mem-
brane and open channel-like protein molecules, releasing neurotransmitters
into the synaptic cleft. Neurotransmitters diffuse across the synaptic cleft
and then bind to the transmitter receptors on the postsynapse. The binding
chemical action alters the shape and concentration of the transmitter recep-
tors, leading to the opening or closing of ion channels in the cell membrane.
Thus, some ions, such as Ca2+, can pass through the postsynaptic mem-
brane. Some researchers (Schinder & Poo, 2000; Zhong et al., 2009; Park &
Poo, 2013) point out that thanks to these binding chemical actions, the target
tissue on postsynapse will secrete a class of activated proteins, called neu-
rotrophins. The neurotrophin works in the presence of some given stimulus
and creates local effects in the postsynapse, especially the dendritic spine.
And the neurotrophin density has been linked to growth in dendritic spine
volume and synaptic plasticity, such as the addition of AMPA receptors to
the postsynaptic membrane and phosphorylation of ion channels for en-
hanced permeability. When the transmitter receptors receive inhibition sig-
nals, the neurotrophin density reduces and the postsynapse shrinks, and
then the shrinking postsynapse inhibits subsequent signal acceptance. If the
transmitter receptors receive excitation signals, the neurotrophin density
increases and the postsynapse swells up, contributing to subsequent sig-
nal acceptance (Bi & Poo, 1998; Zhou, Homma, & Poo, 2004). In summary,
regulated by the neurotrophins, the dendritic spine volume will grow or
shrink. Simultaneously, the generated stimuli will be persistent, strength-
ening or weakening based on recent patterns of neurotrophins, a procedure
referred to as long-term potentiation or depression (Cooke & Bliss, 2006;
Gong et al., 2011). Finally, the generated stimuli are transmitted to the post-
synaptic neuron via the dendrite. The one-way communication procedure
is shown in Figure 2b.

Based on the neurological knowledge about synaptic plasticity, we re-
view the modeling methods of the classical MP and spiking neuron mod-
els. The MP model takes the whole synapse as a connection parameter (the
wi in Figure 1). The signals through this synapse are weighted by wi. Thus,
the MP model is formulated as a real-valued function. The spiking neu-
ron model establishes upon the postsynaptic potential (PSP) assumption
that the postsynapse would integrate the membrane potential modified
by the neurotransmitters and be activated only if the integrated potential
exceeds a threshold. Considering the PSP as the concerned variable, the
potential-integrated process is usually simulated by some first-order dif-
ferential equations (VanRullen, Guyonneau, & Thorpe, 2005). The standard
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Flexible Transmitter Network 2955

and popular spiking neuron models contain the integrated-and-fire model
(Stein, 1965) and the Hodgkin-and-Huxley model (Hodgkin & Huxley,
1952).

1.2 Flexible Transmitters. In the one-way neurotransmitter commu-
nication procedure, the signal transmitted from a neuron to another has
undergone several roles: the external signal until being collected by the
synaptic vesicles, the neurotransmitters that diffuse across the whole
synapse, and the generated stimuli. And three transformations are carried
out. The first is converting the external signal to the neurotransmitters.
Synaptic vesicles compound with the external signals, and the vesicle con-
centration affects the number of neurotransmitters. Second is releasing Ca2+

ions through the postsynaptic membrane. The receptor strength controls the
number of ions passing through the membrane. The neurotrophin density
alters the biological activity of the post-synaptic membrane. Third, a com-
plex chemical action secretes the neurotrophins and generates the stimuli.
Notice that synaptic vesicles, receptors, and neurotrophins are three vital
elements of the whole communication process. Both the synaptic vesicles
and receptors are weighted transmitters, which regulate the magnitude of
signals. The neurotrophin density is a circuit variable. On the one hand,
the neurotrophin is generated as the neuron model’s output; on the other
hand, its density affects the passing of the subsequent ions, working as an
input.

Here, we call the combination of the synaptic vesicle concentration and
receptor strength the flexible transmitter (FT), as shown in Figure 2c. It em-
ploys a pair of learnable parameters (w, v) to represent them. In addition
to the conventional variables, input signal x and output stimulus s, we put
up a variable rt to denote the neurotrophin density at the t time. rt is not
only the output of our model at time t but also the input at the next time,
t + 1. The compound of w and x records the number of neurotransmitters
released in the synaptic cleft by the presynapse. The compound of v and rt

indicates the information that can affect the postsynapse at time t. Finally,
we utilize an apposite function f to represent the complex chemical action
on the postsynapse. Thereby, a novel neuron model establishes; it consists
of two inputs (the external signal x and the neurotrophin density rt−1 at the
last time), two outputs (the generated stimuli s and the neurotrophin den-
sity rt at the current time), and a pair of learnable parameters (w, v). The FT
model has the formation of a two-variable, two-valued function. It’s entirely
different from the conventional neuron models. In section 2, we introduce
the FT model in detail.

Regarding the FT model as the basic building block, various network
architectures can be tried; the simplest may be the fully connected feedfor-
ward architecture popularly applied with the MP model. In section 3, we
present the flexible transmitter network (FTNet), a fully connected network
constructed by replacing the real-valued MP model with the FT model.
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2956 S.-Q. Zhang and Z.-H. Zhou

Correspondingly, a practicable and effective backpropagation algorithm for
training FTNet is developed. Experiments are conducted on a broad range
of spatiotemporal data sets in section 4. The results show that FTNet can
get excellent performance with the same setting as the contenders. Section 5
presents our discussion and section 6 our conclusion.

2 Flexible Transmitter Model

The interesting discovery of neuroscience in Figure 2b suggests that the re-
sponse of neuron A to the external signal from neuron B depends on not
only a pair of flexible transmitters in the synapse but also the neurotrophin
density of the postsynapse.

Inspired by this recognition, we propose the FT model, as illustrated in
Figure 2c. In contrast to the MP model, where the interaction between two
neurons is formulated by a single connection weight, in the FT model, the
interaction comprises two parts: wxt , where xt is the external signal sent to
the concerned neuron via the corresponding vesicle concentration w, and
vrt−1, where rt−1 is the neurotrophin density at the (t − 1)th time stamp re-
lated to the receptor strength v . In brief, the FT model employs a pair of
transmitter parameters (w, v) rather than a real-valued weight wi in the MP
model. The output of the FT neuron at the tth time stamp consists of two
parts: st and rt , which indicate the generated bio-electric/chemical stimulus
and neurotrophin density, respectively. After time t, the stimulus signal st

is transmitted to the next neuron, while rt renews the neurotrophin density
and participates in the inputs of time (t + 1).

In summary, the proposed FT model employs a pair of parameters (w, v)
to indicate the transmitters and puts up an exclusive variable rt to represent
the regulated neurotrophin density. Therefore, the FT model intrinsically
has a formation of a two-variable, two-valued function f concerning a pair
of parameters (w, v):

(st, rt ) = f (wxt, vrt−1). (2.1)

We call this model the flexible transmitter.
The FT model has many benefits. First, paired parameters precisely clar-

ify the roles of the transmitters and provide greater flexibility for synap-
tic plasticity. From a formulaic perspective, the MP model is a special case
of the FT model when ignoring the transmitter parameter v and the neu-
rotrophin density rt−1 or forcing these values to 0. Second, the FT model em-
ploys an exclusive variable rt to indicate the neurotrophin density. During
the learning process, the neurotrophin density variable frequently achieves
self-renewal, thus deriving a local recurrent system. Therefore, the FT
model may have the potential to handle more complicated data, even time
series signals.
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Flexible Transmitter Network 2957

3 Flexible Transmitter Network

3.1 An Implementation of the FT Model. According to equation 2.1,
the FT model is dominated by a two-variable, two-valued function f and
a pair of parameters (w, v). Both the input and output of the FT model
comprise two parts, and their relationship can be complicated since both
outputs, st and rt , share common parameters (w, v) and inputs (xt, rt−1). Ex-
isting neuron models often depend on one-valued (or real-valued) func-
tions, so the related technologies are hard to apply to this concern directly.
An interesting solution is to resort to a complex-valued formation that rep-
resents the input and output of the concerned neurons, respectively, leading
to the FT neuron model:

st + rti = f (wxt + vrt−1i). (3.1)

We call equation 3.1 the complex-valued reaction of the FT model. Accord-
ing to complex analysis, the real and imaginary parts of the output of a
complex-valued function are geminous twins; both st and rt share the com-
mon complex-valued function f and parameters (w, v). Thus, if we mas-
tered the value or formulation of st , we could easily derive rt . Further, once
some teacher signals supervise the stimulus st , the neurotrophin density rt

can still be corrected even if leaving rt unsupervised.
Notice that the complex-valued reaction is just one approach for imple-

menting the proposed FT model. It may not be the most appropriate one,
and there are likely better approaches to be explored in the future.

3.2 A Simple Architecture of FTNet. The FT neuron is a fundamen-
tal unit of neural networks. To evaluate its potential, we consider using the
simplest fully connected feedforward neural network by replacing the stan-
dard MP model with the FT model as its basic building block; thus, we get
the FTNet. Based on equation 3.1, we can provide a general vectorized rep-
resentation for a layer of FT neurons:

st + rti = f (Wxt + Vrt−1i). (3.2)

Notice that given m-dimensional external input signals xt and n-
dimensional output stimuli st , the transmitter concentration matrices W ∈
R

n×m, V ∈ R
n×n and the neurotrophin density vectors rt, rt−1 ∈ R

n. Reusing
the layer-vectorized representation in equation 3.2 layer by layer, we can
obtain a multilayer, fully connected feedforward architecture of FTNet.

There remain two unsolved problems: (1) What does the complex-valued
function f look like? and (2) How can it be trained? To address these prob-
lems, we unfold the complex-valued function f in equation 3.1 as f = σ ◦ τ

with a conversion function τ : C → C and an activation function σ : C → C.
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2958 S.-Q. Zhang and Z.-H. Zhou

The conversion function τ formulates the complex aggregation. To perform
gradient calculation in FTNet, the conversion function must be differen-
tiable, and thus, we restrict the set of possible conversion functions. Nev-
ertheless, there are still various holomorphic functions that can be tried.
Ideally, we can get inspiration from bioscience to design the conversion
function; here, we have not incorporated bio-knowledge and use the most
straightforward linear holomorphic function,

τ (Wxt + Vrt−1) = (Wxt + Vrt−1i) · (a + bi)

= (aWxt − bVrt−1) + (bWxt + aVrt−1)i, (3.3)

where a and b are constants in R. Then equation 3.2 becomes

st + rti = σ ((aWxt − bVrt−1) + (bWxt + aVrt−1)i) . (3.4)

Next, we introduce some activation functions that could be used in FTNet.
An intuitive idea is to decompose the activation function σ into two real-
valued nonlinear functions, σ = σreal + σimagi, where σreal and σimag are real-
valued activation functions, such as the sigmoid and tanh functions. FTNet
also allows complex-valued activations, such as the modReLU (Arjovsky,
Shah, & Bengio, 2016) and zReLU (Trabelsi et al., 2017).

Finally, a complete FTNet is established by employing the holomorphic
conversion and complex-valued activation functions. For an L-layer FTNet,
its feedforward procedure runs as follows:

⎧⎪⎨
⎪⎩

s0
t = xt,

sl
t + rl

ti = σ (αl
t + βil

t ),

yt = sL
t ,

with

{
αl

t = aWlsl−1
t − bVlrt−1,

βl
t = bWlsl−1

t + aVlrt−1.
(3.5)

Throughout this letter, we use the notations FT0 to denote a one-layer FT-
Net, that is, without any hidden layer, and FT1 to indicate the FTNet with
only one hidden layer. The cascade structures of FT0 and FT1 are abbrevi-
ated as size(m, 0, n) and size(m, l, n), respectively, where l is the number of
hidden neurons.

3.3 Complex Backpropagation. We present the complex backpropaga-
tion (CBP) algorithm for training the FTNet. CBP is an extension of the stan-
dard backpropagation algorithm in the complex-valued domain. The core
idea of CBP is to take the neurotrophin density as an implicit variable so that
the desired gradients become a partial derivative function of rt concerning
the connection parameters W and V. Here, we list the main steps and re-
sults of our proposed CBP algorithm. Let E(W,V ) denote the loss function
for FTNet in time interval [0, T],
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Flexible Transmitter Network 2959

E(W,V ) = 1
2

∫ T

t=0
Et dt = 1

2

∫ T

t=0

nL∑
i=1

(ŷt (i) − yt (i))
2 dt,

where ŷt is the supervised signal. The backpropagation gradients of trans-
mitter concentration matrices through time can be calculated by

(∇Wl E,∇Vl E) =
∫ T

t=0
(∇Wl Et,∇Vl Et ) dt,

where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇Wl Et = δsl
t

∂ sl
t

∂ αl
t

∂ αl
t

∂ Wl
,

∇Vl Et = δsl
t

∂ sl
t

∂ αl
t

∂ αl
t

∂ Vl
.

(3.6)

Equation 3.6 consists of three terms. The first term can be unfolded as

δsl
t = a (Wl+1)�

(
δsl+1

t � σ ′(αl+1
t + βt+1

t i)
)
,

which denotes the backpropagation error correction in the lth layer at time
t, where � is the point-wise operation. The second term ∂ sl

t/∂ αl
t is a diag-

onal matrix, where its diagonal elements are the point-wise derivatives of
activation σ . (3) ∂ αl

t/∂ Wl and ∂ αl
t/∂ Vl are tensors that belong to R

T×nl×nl−1 .
So equation 3.6 becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇Wl Et =
(

δsl
t (1)

∂ sl
t (1)

∂ αl
t (1)

∂ αl
t (1)

∂ Wl
, . . . , δsl

t (nl )
∂ sl

t (nl )
∂ αl

t (nl )
∂ αl

t (nl )
∂ Wl

)
,

∇Vl Et =
(

δsl
t (1)

∂ sl
t (1)

∂ αl
t (1)

∂ αl
t (1)

∂ Vl
, . . . , δsl

t (nl )
∂ sl

t (nl )
∂ αl

t (nl )
∂ αl

t (nl )
∂ Vl

)
.

(
∂ αl

t/∂ Wl, ∂ αl
t/∂ Vl

)
is the core of our CBP algorithm, including two back-

propagation pipelines concerning Wl and Vl . Regarding the neurotrophin
density as an implicit variable, these tensors can be calculated as
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2960 S.-Q. Zhang and Z.-H. Zhou

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ αl
t (i)

∂ Wl ( j, k)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

asl−1
t (k) − b

( nl∑
h=1

Vl (i, h)
∂ rl

t−1(h)
∂ Wl (i, k)

)
, j = i,

−b

( nl∑
h=1

Vl ( j, h)
∂ rl

t−1(h)
∂ Wl ( j, k)

)
, j 	= i,

∂ αl
t (i)

∂ Vl ( j, h)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−b

(
rl

t−1(h) +
nl∑

h=1

Vl (i, h)
∂ rl

t−1(h)
∂ Vl (i, h)

)
, j = i,

−b

( nl∑
h=1

Vl ( j, h)
∂ rl

t−1(h)
∂ Vl ( j, h)

)
. j 	= i.

In the feedforward process, the FT neurons coupling generate the stimulus
signals and neurotrophin densities. In the CBP process, the neurotrophin
densities are indirectly regulated by the supervised stimulus signals, so we
still need to supply the feedforward errors caused by the neurotrophin den-
sities. The calculation procedure of partial derivatives

(
∂ rl

t/∂ Wl, ∂ rl
t/∂ Vl

)
is similar to that of

(
∂ αl

t/∂ Wl, ∂ αl
t/∂ Vl

)
. Here, we directly provide the

results:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ rl
t (i)

∂ Wl ( j, k)
= ∂ rl

t (i)
∂ βl (i)

∂ βl
t (i)

∂ Wl ( j, k)
,

∂ rl
t (i)

∂ Vl ( j, h)
= ∂ rl

t (i)
∂ βl (i)

∂ βl
t (i)

∂ Vl ( j, h)
,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ βl
t (i)

∂ Wl ( j, k)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

bsl−1
t (k) + a

( nl∑
h=1

Vl (i, h)
∂ rl

t−1(h)
∂ Wl (i, k)

)
, j = i,

a

( nl∑
h=1

Vl ( j, h)
∂ rl

t−1(h)
∂ Wl ( j, k)

)
, j 	= i,

∂ βl
t (i)

∂ Vl ( j, h)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a

(
rl

t−1(h) +
nl∑

h=1

Vl (i, h)
∂ rl

t−1(h)
∂ Vl (i, h)

)
, j = i,

a

( nl∑
h=1

Vl ( j, h)
∂ rl

t−1(h)
∂ Vl ( j, h)

)
. j 	= i.

Then we can obtain the gradients (∇Wl E,∇Vl E) and correct the concentra-
tion parameters according to
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Flexible Transmitter Network 2961

⎧⎨
⎩

Ŵl = Wl − η∇Wl E,

V̂l = Vl − η∇Vl E,

where η is the learning rate. To ensure convergence, we adopt adaptive
learning rates compatible with ADAM (Kingma & Ba, 2014) or WADA
(Zhong et al., 2020). Before prediction (in the time interval [0, T]), we still
need to update the imaginary parts (neurotrophin densities rl

0, . . . , rl
T ) as

follows:

⎧⎨
⎩

s0
t = xt,

rl
t = σ

(
bŴlsl−1

t + aV̂lrl
t−1

)
,

and reset the imaginary errors
(
∂ rl

T/∂ Wl, ∂ rl
T/∂ Vl

)
as zeros.

4 Experiments

The goal of experiments is to validate the power of FTNet in handling spa-
tiotemporal data. We compare FTNet with several mature fully connected
feedforward neural networks, including FCN with MP neurons and spik-
ing neural networks (SNNs) and some state-of-the-art models on three data
sets. We force all contenders to adopt the same setting or parameter magni-
tudes as possible, except for SNNs, which encourage more neurons to en-
sure convergence. The entire data set is partitioned into three parts: training,
validation, and testing sets, with a partition ratio of around 56%:24%:20%.
We employ tanh as the activation function. Other hyperparameters cannot
be fixed across tasks; otherwise, the performance may be embarrassingly
unsatisfactory. We examine various configurations on the validation set and
pick out the best validation performance. Finally, we retrain each model on
the combination of training and validation data sets and predict the testing
one. The following tables list the final testing performance.

4.1 Image Recognition on Pixel-by-Pixel MNIST. We first conduct the
experiments on a benchmark image recognition task to evaluate the abil-
ity of FTNet for processing spatial information. Pixel-by-pixel MNIST (Le,
Jaitly, & Hinton, 2015) is a famous challenging image recognition data set,
a standard benchmark to test the performance of a learning algorithm. We
adopt the typical split of 60,000 training and 10,000 testing samples without
data augmentation and select 30% from the training samples to constitute
the validation set.

Here, we compare our FTNet with another bio-inspired neural network,
that is, SNN. Following a similar setup to Pillow, Paninski, Uzzell, Simon-
celli, and Chichilnisky (2005) and Zhang, Zhang, and Zhou (2019), each
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Table 1: Accuracy of Comparative Models for the Task of Classifying Pixel-Pixel
MNIST.

Accuracy
Types Models Cascade Paras (%)

CNNs CNN-SVM (Niu & Suen, 2012) – – 98.79
LeNet-5 (LeCun, Bottou,

Bengio, & Haffner, 1998)
– 6.2 × 104 99.05

MP-based FCN with MP neurons size(*,40,10) 3.2 × 104 86.47
FCN with MP neurons size(*,150,10) 1.2 × 105 93.82

SNNs SLAYER size(*,300,10) 2.4 × 105 94.13
BSNN size(*,300,10) 3.2 × 105 96.65

Recurrent
Networks

uRNN (Arjovsky et al., 2016) size(*,150,10) 3.3 × 104 97.28
CNN-RNN size(*,150,10) 2.9 × 104 95.21
CNN-LSTM size(*,150,10) 8.2 × 104 98.66

Our Work FT0 size(*,0,10) 4.0 × 102 92.87
FT1 size(*,150,10) 3.0 × 104 99.12

handwritten digit image is converted into a spiking train with a forma-
tion of 784 × T binary matrix via Poisson encoding. For classification, we
use the spiking counting strategy. During training, we specify a target of 20
spikes for the true neuron and 5 spikes for each false neuron; while testing,
the output class is the one that generates the highest spike count. Both SNN
models, SLAYER (Shrestha & Orchard, 2018) and BSNN (Zhang et al., 2019),
converge within 200 iterations.

All models except SLAYER and BSNN employ the softmax function for
classification and are optimized by a cross-entropy loss. These models con-
verge within 800 iterations. The experimental results, set out in Table 1,
show that FT1 achieves highly competitive performance.

4.2 Univariate Time Series Forecasting: Yancheng Automobile Reg-
istration. We conduct experiments on the Yancheng Automobile Regis-
tration Forecasting1 competition, a real-world univariate time series fore-
casting task. This competition requires players to use the daily automobile
registration records of a certain period (nearly 1000 dates) in the past to
predict the number of automobile registrations per day for a period of time
in the future. Although the actual competition allows the contestant to de-
velop other data sets or information as an aid freely, we only consider the
total number of automobile registrations for five car brands, not including
any specific date information. This task is challenging since accurate auto-
mobile registration records are a mixture of five car brands, yet there are

1
https://tianchi.aliyun.com/competition/entrance/231641/information
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Table 2: MSE and Settings of Comparative Models for the Task of Forecasting
Yancheng Automobile Registration Records.

Types Models Settings Paras MSE (105)

Statistical
Models

ARIMA (p, d, q) = (6, 1, 3) – 84.5129
MAR (Won & Gray, 2013) – – 92.6458
AGP (Blaauw & Christen,

2011)
– – 41.0147

KNNs (Yang, Bukkapatnam,
& Barajas, 2011)

(K,w) = (1, 1) – 31.2573

Neural
Networks

FCN with MP neurons size(5,50,1) 200 19.5360
FCN with MP neurons size(5,500,1) 3.0 × 103 19.5360
NARXnet (Guzman, Paz, &

Tagert, 2017)
size(5,50,1) – 20.2631

RNN (Gers & Schmidhuber,
2000)

size(5,50,1) 2.8 × 103 18.0729

LSTM (Hochreiter &
Schmidhuber, 1997)

size(5,50,1) 8.3 × 103 10.7250

LSTNet (Lai, Chang, Yang, &
Liu, 2018)

size(5,64,1) 9.7 × 103 8.4176

Our Work FT0 size(5,0,1) <100 16.4721
FT1 size(5,50,1) 2.9 × 103 4.5067

many missing data and sudden changes caused by holidays or other guid-
ing factors that we cannot know in advance.

We compare our proposed FTNet with several state-of-the-art statistical
models and neural networks (Cheng et al., 2015) and evaluate the perfor-
mance by mean square error (MSE). All neural network models converge
within 100 epochs. The experimental results, summarized in Table 2, con-
firm the superiority of our FTNet to other models.

4.3 Multivariate Time Series Forecasting: Traffic Prediction on HDUK.
We also validate FTNet on the Highway Data of United Kingdom (HDUK),2

a representative multivariate traffic prediction data set. HDUK contains
massive average journey time, speed, and traffic flow information for 15-
minute periods on all motorways and A-level roads managed by the High-
ways Agency (known as the Strategic Road Network in England). Journey
times and speeds are estimated using various sources, including automatic
number plate recognition cameras, in-vehicle global positioning systems,
and inductive loops built into the road surface. For convenience, we choose
roads with relatively large several traffic flow for study and collect the traf-
fic data of the 12 months in 2011 and partition the first 7 months, the sub-
sequent 3 months, and the last 2 months as training, validation, and testing

2
http://data.gov.uk/dataset/dft-eng-srn-routes-journey-times.
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Table 3: MSE and Confusion Accuracy of Comparative Models for the Task of
Forecasting HDUK.

Models & Settings NARXnet RNN LSTM LSTNet FT0 FT1
Data Sets Evaluation(%) � 
 
 
 ♦ 

A1 MSE 0.0469 0.1499 0.0262 0.0247 0.1169 0.0221

TPR 97.20 97.20 98.13 98.13 96.20 99.07
TNR 95.29 91.74 96.47 97.41 94.12 97.65

A1033 MSE 0.1584 0.1716 0.1397 0.1401 0.1372 0.1119
TPR 88.51 93.10 94.25 94.11 94.11 96.55
TNR 91.43 93.33 92.38 92.25 92.38 97.14

A11 MSE 0.1754 0.1770 0.1725 0.1690 0.1755 0.1651
TPR 97.06 96.08 97.06 97.06 97.06 99.02
TNR 95.56 91.11 93.33 95.93 96.67 94.44

Notes: �Denotes a size(*,0,1) cascade structure and iterates 100 times. 
Denotes
size(*,100,1) cascade structure and iterates 100 times. ♦Indicates a network configuration
with 100 recurrent neurons and 32-dimensional convolution layer and iterates 100 epochs.
The best performance on each data set is in bold.

data sets, respectively. For this forecasting task, we input the observation
values of (Total Traffic Flow & Travel Time & Fused Average Speed & Link
Length) in the previous 8 time intervals and predict one-step ahead value
of (Total Traffic Flow).

Besides, “decayed prediction” is a predominant issue in multivariate
time series forecasting (see Tschernig & Yang, 2000, for detailed) though
one adopts over-parameterized architectures (Zhou, 2021). In this case, it is
insufficient to use only one indicator, MSE, to evaluate the forecasting mod-
els’ performance. To alleviate this issue, we use the “mean-std” normalizer
and employ the confusion accuracy, which consists of the true positive rate
(TPR) and the true negative rate (TNR), as auxiliary evaluation indicators
(Zhang & Zhou, 2020).

Table 3 shows the comparative results of FTNet and other neural net-
works on a collection of HDUK data sets. FTNet achieves the best per-
formance as other competing neural networks under the same parameter
magnitude.

5 Discussion

5.1 About Modeling Synaptic Plasticity. In section 1.1, we introduced
the modeling mechanisms of the classical MP and spiking neuron mod-
els. At present, modeling discrete action potentials or “pulses” to exchange
and transmit information is still the mainstream of realizing machine
intelligence with neuromorphic computing (see Roy, Jaiswal, & Panda,
2019). Recently, some researchers have put attention on another kind of
synaptic plasticity, short-term synapticplasticity (STP). In neuroscience, STP

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/11/2951/1966588/neco_a_01431.pdf by R
am

ona M
archand on 05 N

ovem
ber 2021



Flexible Transmitter Network 2965

describes a millisecond-level phenomenon that presynaptic activity in-
creases the Ca2+ concentration in the synaptic cleft but depletes neuro-
transmitter stores (Zucker & Regehr, 2002; Regehr, 2012). This phenomenon
appears on a timescale of tens of milliseconds to a few minutes; thus, it is
distinct from our LTP or LTD, which usually lasts from minutes to hours
and is more commonly known. In mathematical formulation, the modeling
manner of STP is similar to the spiking one; the icon-integrated procedure
is often simulated by a first-order equation and reset to zero (rest voltage)
once its concentration exceeds a pregiven threshold (Masse, Yang, Song,
Wang, & Freedman, 2019; Yang, Song, Newsome, & Wang, 2017).

There is still a lot of seminal work in neuroscience to develop neuron
models from modeling communication particulars such as neurotransmit-
ters, neurotrophins, and receptors (Bertram, Smith, & Sherman, 1999; Hol-
cman & Triller, 2006; Trevathan et al., 2017). These bio-plausible neuron
models provide the possibility for a better understanding of biological neu-
rons or brains, although most of them have failed in practical applications.
For example, only a tiny part of SNNs has made passable progress on small-
scale image recognition tasks (Shrestha & Orchard, 2018).

Our work proposes the FT neuron model, starting from a view of
“neuroscience-inspired artificial intelligence” (Hassabis, Kumaran, Sum-
merfield, & Botvinick, 2017; Hao, Andolina, Wang, & Zhang, 2021). This
study focuses on the development for artificial intelligence technology
rather than only providing a better bio-plausible understanding for biolog-
ical neurons. The experiments in section 4 demonstrate the superiority and
effectiveness of our proposed FTNet in handling spatio-temporal data.

5.2 About Complex-Valued Reaction. There has been a great deal of ef-
fort on developing neural networks using complex-valued formation. For
example, Arjovsky et al. (2016) force the connection weights as a unitary
matrix in the complex-valued domain for circumventing the issue of van-
ishing and exploding gradients in RNNs. Trabelsi et al. (2017) propose a
complex-valued connection matrix that works like a convolution build-
ing for deep neural networks and later develops this technology into a
quaternion-valued formation (Parcollet et al., 2018).

Our proposed FT model is essentially different from previous work.
First, the motivations are different. Existing neural networks relative to
complex-valued formation are motivated to explore an atomic component
for overcoming drawbacks or improving neural networks’ representational
capacity. However, the FT model is a novel type of neuron model that de-
picts the neurotransmitter communication mechanism in synaptic plasticity
and is formulated by a two-variable, two-valued function. The complex-
valued reaction is a valid implementation for the two-variable, two-valued
function as well as the FT model. Second, the use of complex-valued forma-
tion is different. The connection matrices in Arjovsky et al. (2016) are asked
to have complex-valued eigenvalues with an absolute value 1. Thus, the
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gradients of recurrent networks are guaranteed to avoid the explosion. The
inputs of Trabelsi et al. (2017) and Parcollet et al. (2018) are preprocessed
into a complex-valued or quaternion-valued formation for facilitating sub-
sequent convolution-like operation. In this work, we employ a new vari-
able, the neurotrophin density, to model the behavior that the tissue size
of synapses would change in the learning process. The neurotrophin den-
sities are regarded as the complex-valued function’s imaginary parts for
the complex-valued reaction, leading to a local recurrent system in the FT
model. The experimental results in section 4 show that the FT model has
potential for handing spatiotemporal data.

Finally, we have to note that the complex-valued reaction is just a for-
mulation of the FT model, and many valid implementation approaches
are worthy of being tried. Furthermore, numerous holomorphic conversion
functions and activations are worthy of being explored; custom-built con-
version functions may extract potential and significant adjoint features on
some real-world applications. Besides, in this letter, we have provided only
the simplest fully connected feedforward network, the FTNet. Various al-
ternative network architectures can be explored in the future.

5.3 Comparison with RNNs. As noted, the proposed FT model
derives a local recurrent system. It easily reminds us of the typical re-
current neural networks. The RNN’s unit is formalized by a real-valued
function st = g(xt, st−1;w, v ), while the FT model is dominated by (st, rt ) =
f (xt, rt−1;w, v ). Obviously, the RNN’s unit is a special case of the FT model;
these two models are equivalent to each other when presetting rt = st .
Therefore, the FT model may have a broader representational capacity than
the RNN’s unit. Further experiments in section 4 demonstrate the superi-
ority of the FT model.

6 Conclusion

We have proposed the FT model, a new model for the bio-plausible nervous
system. In contrast to the traditional MP model regarding the full nervous
synapse as a real-valued parameter, the FT model meticulously depicts the
neurotransmitter communication mechanism in synaptic plasticity. Specifi-
cally, we employ a pair of parameters to model the transmitters and put up
a variable to denote the regulated neurotrophin density. The FT model has
a formulation of a two-variable, two-valued function, thus taking the MP
model and RNN’s unit as its special cases. To demonstrate the power and
potential of our proposed FT model, we present the FTNet using the most
common fully connected feedforward architecture. We employ the holo-
morphic complex-valued reaction as an implementation paradigm for sim-
plicity and then offer a practicable and effective CBP algorithm for training
an FTNet. The experiments conducted on wide-range tasks confirm the ef-
fectiveness and superiority of our model.
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