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Abstract 

Recently, a new technique called 2-dimensional principal component analysis (2DPCA) was 

proposed for face representation and recognition. The main idea behind 2DPCA is that it is based 

on 2D matrices as opposed to the standard PCA, which is based on 1D vectors. Although 2DPCA 

obtains higher recognition accuracy than PCA, a vital unresolved problem of 2DPCA is that it 

needs many more coefficients for image representation than PCA. In this paper, we first indicate 

that 2DPCA is essentially working in the row direction of images, and then propose an alternative 

2DPCA which is working in the column direction of images. By simultaneously considering the 

row and column directions, we develop the 2-Directional 2DPCA, i.e. (2D)2PCA, for efficient face 

representation and recognition. Experimental results on ORL and a subset of FERET face 

databases show that (2D)2PCA achieves the same or even higher recognition accuracy than 

2DPCA, while the former needs a much reduced coefficient set for image representation than the 

latter. 
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1 Introduction 

Principal component analysis (PCA) [3] is a well-known feature extraction and data 

representation technique widely used in the areas of pattern recognition, computer vision and 

signal processing, etc [2], [4]. In the PCA-based face representation and recognition methods [6], 

[9], [10], the 2D face image matrices must be previously transformed into 1D image vectors 

column by column or row by row. However, concatenating 2D matrices into 1D vectors often 

leads to a high-dimensional vector space, where it is difficult to evaluate the covariance matrix 

accurately due to its large size and the relatively small number of training samples [7]. 

Furthermore, computing the eigenvectors of a large size covariance matrix is very 

time-consuming. 

To overcome those problems, a new technique called 2-dimensional principal component 

analysis (2DPCA) [7] was recently proposed, which directly computes eigenvectors of the 

so-called image covariance matrix without matrix-to-vector conversion. Because the size of the 

image covariance matrix is equal to the width of images, which is quite small compared with the 

size of a covariance matrix in PCA, 2DPCA evaluates the image covariance matrix more 

accurately and computes the corresponding eigenvectors more efficiently than PCA. It was 

reported in [7] that the recognition accuracy on several face databases was higher using 2DPCA 

than PCA, and the extraction of image features is computationally more efficient using 2DPCA 

than PCA. 

However, the main disadvantage of 2DPCA is that it needs many more coefficients for image 

representation than PCA [7], [8]. For example, suppose the image size is 100×100, then the 

number of coefficients of 2DPCA is 100×d, where d is usually set to no less than 5 for satisfying 

accuracy. Although this problem can be alleviated by using PCA after 2DPCA for further 

dimensional reduction, it is still unclear how the dimension of 2DPCA could be reduced directly 

[7]. In this paper, we first indicate that 2DPCA is essentially working in the row direction of 

images, and then propose an alternative 2DPCA which is working in the column direction of 

images. By simultaneously considering the row and column directions (see Eq. (8) in Section 4) , 

we develop the 2-Directional 2DPCA, i.e. (2D)2PCA, for efficient face representation and 

recognition. Experimental results on ORL and a subset of FERET face databases show that 

(2D)2PCA achieves the same or even higher recognition accuracy than 2DPCA, while the number 



of coefficients needed by the former for image representation is much less than that of the latter. 

The experimental results also indicate that (2D)2PCA is more computationally efficient than both 

PCA and 2DPCA. 

The rest of this paper is organized as follows: Section 2 briefly reviews the 2DPCA method; 

Section 3 presents an alternative 2DPCA method; The proposed (2D)2PCA method is introduced 

in Section 4; In Section 5, some experiments on several face databases are given to compare the 

performances of 2DPCA and (2D)2PCA; Finally, we conclude in Section 6. 

 

2 2DPCA 

Consider an m by n random image matrix A. Let n dR ×∈X  be a matrix with orthonormal 

columns, . Projecting A onto X yields an m by d matrixn d≥ =Y AX . In 2DPCA, the total 

scatter of the projected samples was used to determine a good projection matrix X. That is, the 

following criterion is adopted: 
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where the last term in Eq. (1) results from the fact that trace(AB)=trace(BA), for any two matrices 

[1]. Define the image covariance matrix ( ) (TE E E )⎡ ⎤= − −⎣ ⎦G A A A A , which is an n by n 

nonnegative definite matrix. Suppose that there are M training face images, denoted by m by n 

matrices , and denote the average image as ( 1,2,... )k k =A M 1
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It has been proven that the optimal value for the projection matrix  is composed by the 

orthonormal eigenvectors  of  corresponding to the d largest eigenvalues, i.e. 

. Because the size of  is only n by n, computing its eigenvectors is very 

efficient. Also, like in PCA the value of d can be controlled by setting a threshold as follows 
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where 1 2, ,..., nλ λ λ  is the n biggest eigenvalues of  and G θ  is a pre-set threshold. 

 

3 Alternative 2DPCA 

Let  and(1) (2) ( )[( ) ( ) ...( ) ]T T m T
k k k k=A A A A T (1) (2) ( )[( ) ( ) ...( ) ]T T m T=A A A A T , where  

and 

( )i
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( )iA  denote the i-th row vectors of  and kA A  respectively. Then Eq. (2) can be 

rewritten as 
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Equation (4) reveals that the image covariance matrix  can be obtained from the outer 

product of row vectors of images, assuming the training images have zero mean, i.e. 

G

( )0
m n×

=A . 

For that reason, we claim that original 2DPCA is working in the row direction of images. 

Illuminated by Eq. (4), a natural extension is to use the outer product between column vectors 

of images to construct . Let  andG (1) (2) ( )[( )( )...( )]m
k k k k=A A A A (1) (2) ( )[( )( )...( )]m=A A A A , 

where  and ( )j
kA ( )jA  denote the j-th column vectors of  and kA A  respectively. Then an 

alternative definition for image covariance matrix  is: G
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Now we will show how Eq. (5) can be derived at a similar way as in 2DPCA. Let m qR ×∈Z  

be a matrix with orthonormal columns. Projecting the random matrix A onto Z yields a q by n 

matrix . Similar as in Eq. (1), the following criterion is adopted to find the optimal 

projection matrix Z: 

T=B Z A
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From Eq. (6), the alternative definition of image covariance matrix  is: G
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Similarly, the optimal projection matrix  can be obtained by computing the eigenvectors 

 of Eq. (7) corresponding to the q largest eigenvalues, i.e. . The 

value of q can also be controlled by setting a threshold as in Eq. (3). Because the eigenvectors of 

Eq. (7) only reflect the information between columns of images, we say that the alternative 

2DPCA is working in the column direction of images. 
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4 (2D)2PCA 

As discussed in Section 2 and Section 3, 2DPCA and alternative 2DPCA only works in the 

row and column direction of images respectively. That is, 2DPCA learns an optimal matrix X from 

a set of training images reflecting information between rows of images, and then projects an m by 

n image A onto X, yielding an m by d matrix =Y AX . Similarly, the alternative 2DPCA learns 

optimal matrix Z reflecting information between columns of images, and then projects A onto Z, 

yielding a q by n matrix . In the following, we will present a way to simultaneously 

use the projection matrices X and Z. 

T=B Z A

Suppose we have obtained the projection matrices X ( in Section 2) and Z ( in Section 3), 

projecting the m by n image A onto X and Z simultaneously, yielding a q by d matrix C 

T=C Z AX .         (8) 

The matrix C is also called the coefficient matrix in image representation, which can be used 

to reconstruct the original image A, by 

ˆ T=A ZCX .         (9) 

When used for face recognition, the matrix C is also called the feature matrix. After projecting 

each training image  onto X and Z, we obtain the training feature matrices 

. Given a test face image A, first use Eq. (8) to get the feature matrix C, then a 

( 1,2,... )k k =A M

)M( 1,2,...k k =C



nearest neighbor classifier is used for classification. Here the distance between C and  is 

defined by 
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5 Experiments 

In this section, we experimentally evaluate our proposed (2D)2PCA method with PCA, 2DPCA 

and alternative 2DPCA, on two well-known face databases: ORL and FERET [5]. All of our 

experiments are carried out on a PC machine with P4 1.7GHz CPU and 256MB memory. If 

without extra explanations, the number of projection vectors in all methods are controlled by the 

value of θ , which is set to 0.95 in all the experiments. 

 

5.1 Results on ORL database 

The ORL database (http://www.uk.research.att.com/facedatabase.html) contains images from 

40 individuals, each providing 10 different images with size of 112×92. In this experiment, the 

first five image samples per class are used for training, and the remaining images for test. Table 1 

gives the comparisons of four methods on recognition accuracy, dimensions of feature vector and 

running times. Table 1 shows that 2DPCA, alternative 2DPCA and (2D)2PCA achieves the same 

improvements in accuracy than PCA on this database, while the latter needs much reduced 

dimension of feature vector for the following classification than the former two. Table 1 also 

indicates that (2D)2PCA needs the least running time among the four methods.  

 

Table 1. Comparisons of four methods on ORL database. 

Method Accuracy (%) Dimension Time (s) 
PCA 88.0 110 26.65 

2DPCA 90.5 27×112 7.30 
Alternative 2DPCA 90.5 26×92 5.77 

(2D)2PCA 90.5 27×26 3.43 

 

To further disclose the relationship between the accuracy and dimension of feature vectors, 

classification experiments under a series of different dimensions between (2D)2PCA and PCA, 



2DPCA are performed and the results are plotted in Fig. 1(a) and 1(b) respectively. It can be seen 

from Figs. 1 that under the same dimensions of feature vectors, (2D)2PCA obtains better accuracy 

than both 2DPCA and PCA. 

 

 

(a) 

 

(b) 

 

Figure 1 Comparisons of accuracies between (2D)2PCA and 2DPCA (a), and between (2D)2PCA 

and PCA (b) under different dimensions. 

 



5.2 Results on partial FERET database 

This partial FERET face database comprises 400 gray-level frontal view face images from 200 

persons, each of which is cropped with the size of 60×60. There are 71 females and 129 males; 

each person has two images (fa and fb) with different facial expressions. The fa images are used 

as gallery for training while the fb images as probes for test. Table 2 gives the comparisons of four 

methods on recognition accuracy, dimensions of feature vector and running times. Also, (2D)2PCA 

outperforms the other methods in accuracy and speed. 

 

Table 2. Comparisons of four methods on partial FERET database. 

Method Accuracy (%) Dimension Time (s) 
PCA 83.0 73 10.32 

2DPCA 84.5 13×60 1.82 
Alternative 2DPCA 84.5 14×60 1.80 

(2D)2PCA 85.0 13×14 1.15 

 

 

Figure 2 Some reconstructed training images on FERET database. First row: original images. 

Second row: images gotten by PCA. Third row: images gotten by 2DPCA. Bottom row: images 

gotten by the proposed (2D)2PCA method. 

 



Finally, experiments are carried out to compare abilities of PCA, 2DPCA and (2D)2PCA in 

representing face images under similar compression ratios. Suppose there are M m by n training 

face images, the number of projection vectors in PCA, 2DPCA and alternative 2DPCA is p, d and 

q. Then the compression ratios of PCA, 2DPCA, alternative 2DPCA and (2D)2PCA are computed 

as /( )Mmn Mp mnp+ , /( )Mmn Mmd nd+ , /( )Mmn Mnq mq+  and /( )Mmn Mdq nd mq+ +  

respectively. Figure 2 plots some reconstructed training face images using PCA, 2DPCA and 

(2D)2PCA on FERET database under similar compression ratios. It can be shown that (2D)2PCA 

yields higher quality images than the other two methods, when using similar amount of storage. 

 

6 Conclusions 

In this paper, an efficient face representation and recognition method called (2D)2PCA is 

proposed. The main difference between (2D)2PCA and existing 2DPCA is that the latter only 

works in the row direction of face images, while the former works simultaneously in the row and 

the column directions of face images. The main advantage of (2D)2PCA over 2DPCA lies in that 

the number of coefficients needed by the former for face representation and recognition is much 

smaller than the latter. Experimental results show the effects of the proposed method. 

Note that Eqs. (8) and (9) are essentially different from singular value decomposition (SVD). 

On one hand, the C here is not a diagonal matrix as that used in SVD. On the other hand, in 

contrast to SVD where the X and Z are only relative to the current matrix A, here the X and Z are 

computed beforehand and the columns of them correspond to the eigenvectors of Eqs. (2) and (5) 

respectively.  
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