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Abstract

In this paper, we formalizenulti-instance multi-label learningvhere each train-
ing example is associated with not only multiple instanagsabso multiple class
labels. Such a problem can occur in many real-world tasls a@ image usually
contains multiple patches each of which can be described®stare vector, and
the image can belong to multiple categories since its seosatdn be recognized
in different ways. We analyze the relationship between iamdtance multi-label
learning and the learning frameworks to&ditional supervised learningmulti-
instance learningand multi-label learning Then, we propose the MLBoOOST
and MiML SvM algorithms which achieve good performance in an applicaio
scene classification.

1 Introduction

In traditional supervised learningan object is represented by an instance (or feature veatat)
associated with a class label. Formally, létdenote the instance space (or feature spacepand
the set of class labels. Then the task is to learn a functianX¥ — ) from a given data set
{(x1,91), (®2,¥2)," -+, (Tm,ym)}, Wherex; € X is an instance ang; € ) the known label ofe;.

Although the above formalization is prevailing and sucidsghere are many real-world problems
which do not fit this framework well, where a real-world olijetay be associated with a number of
instances and a number of labels simultaneously. For exaraplimage usually contains multiple
patches each can be represented by an instance, while ire ioh@sgification such an image can
belong to several classes simultaneously, e.g. an imagbatang tomountainsas well asAfrica.
Another example is text categorization, where a documamdllyscontains multiple sections each of
which can be represented as an instance, and the documere oegarded as belonging to different
categories if it was viewed from different aspects, e.g. eudtent can be categorized ssentific
novel Jules Verne’s writingor evenbooks on travelling Web mining is a further example, where
each of the links can be regarded as an instance while the agebitself can be recognized resws
page sports pagesoccer pageetc.

In order to deal with such problems, in this paper we forneatilti-instance multi-label learning
(abbreviated as MiL). In this learning framework, a training example is desedillby multiple
instances and associated with multiple class labels. Hitynet X denote the instance space and
Y the set of class labels. Then the task is to learn a fungtipp, : 2% — 2Y _from_ a given _data
set{(X1,Y1), (X2,Y2), -, (Xm,Ym)}, whereX; C X is a set of instancege(”, ', - -, z{},
2 € X (j = 1,2,---,n;), andY; C Vis a set of labeldy(”, y{", - 57}, ot € ¥ (k =
1,2,---,1;). Heren,; denotes the number of instancesXpnand!; the number of labels iir;.

After analyzing the relationship betweeniv. and the frameworks of traditional supervised learn-
ing, multi-instance learningand multi-label learning we propose two MuL algorithms, MmL -



BoosTtand MML SvM. Application to scene classification shows that, solvinmsaeal-world
problems in the MML framework can achieve better performance than solving timeexisting
frameworks such as multi-instance learning and multidlédsning.

2 Multi-Instance Multi-Label Learning

We start by investigating the relationship betweemM and the frameworks of traditional super-
vised learning, multi-instance learning and multi-laleglrhing, and then we develop some solutions.

Multi-instance learning [4] studies the problem where d-veéarld object described by a number of
instances is associated with one class label. Formallytaseis to learn a functiotfiy;;, : 2% —
{-1,+1} from a given data sef(X1,v1), (X2,92),  +, (Xm,ym)}, WhereX, C X is a set of
instances{:cgl),mg),---,xﬁf}}, my) €X(j=12--,n),y; € {—1,+1} is the label ofX;.
Multi-instance learning techniques have been succegsiplied to diverse applications including
scene classification [3, 7].

Multi-label learning [8] studies the problem where a re@ld object described by one instance is
associated with a number of class labels. Formally, theisagklearn a functiorfa; .y, : X — 2Y
from a given data seft(z1, Y1), (x2,Y2), -+, (€, Yim) }, Wherex; € X is an instance andl; C Y

a set of labelgy\”, y{, ... ,yl(f)}, v e ¥ (k = 1,2,---,1;).2 Multi-label learning techniques
have also been successfully applied to scene classifidafion

In fact, themulti- learning frameworks result from the ambiguity in represanteal-world objects.
Multi-instance learning studies the ambiguity in the ingpi&ce (or instance space), where an object
has many alternative input descriptions, i.e. instancastitabel learning studies the ambiguity
in the output space (or label space), where an object has aimative output descriptions, i.e.
labels; while MML considers the ambiguity in the input and output spaces simebusly. We
illustrate the differences among these learning framesvorkigure 1.
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instante [~--=~- ® - ,, : _'. ......
(a) Traditional supervised learning (b) Multi-instance learning
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------
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Figure 1: Four different learning frameworks

Traditional supervised learning is evidently a degenéragzsion of multi-instance learning as well
as a degenerated version of multi-label learning, whilditianal supervised learning, multi-instance
learning and multi-label learning are all degeneratediorssof MiML. Thus, we can tackle ML

by identifying its equivalence in the traditional supeeddearning framework, using multi-instance
learning or multi-label learning as the bridge.

According to notions used in multi-instance learnitd,, v:) is a labelecdhagwhile X; an unlabeled bag.

2Although most works on multi-label learning assume that an instanceecassipciated with multiple valid
labels, there are also works assuming that only one of the labels asdagititean instance is correct [6]. We
adopt the former assumption in this paper.



Solution 1. Using multi-instance learning as the bridge: We can tramsfa MiML learning task,
i.e. to learn a functioryy,rarr : 2% — 2Y, into a multi-instance learning task, i.e. to learn a
function farrr @ 2% x Y — {—1,+1}. Foranyy € Y, furr(Xi,y) = +1if y € Y; and
—1 otherwise. The proper labels for a new examjlé can be determined according Y6 =

{ylarg, ey [faro (X, y) = +1]}. We can transform this multi-instance learning task furiheo

a traditional supervised learning task, i.e. to learn afioncfs;sg : X x Y — {—1,+1}, under

a constraint specifying how to derive,; (X;,y) from fSISL(m§i),y) (j =1,---,n;). For any

yey, fSISL(:B;i),y) = +1if y € Y; and—1 otherwise. Here the constraint canfe; .. (X;,y) =

sz’gn[z;‘il fSISL(w;i),y)] which has been used in transforming multi-instance legrtasks into
traditional supervised learning tasks f9Note that other kinds of constraint can also be used here.

Solution 2: Using multi-label learning as the bridge: We can also ti@ms a MiML learning task,

i.e. to learn a functiorfa sz : 2% — 2Y, into a multi-label learning task, i.e. to learn a function
furr + 2 — 2Y0 Foranyz; € Z, furn(zi) = furn(Xe) if 2z = ¢(X;), ¢ 0 2Y — Z.
The proper labels for a new exampte® can be determined according¥d = fa;r1(¢(X*)). We

can transform this multi-label learning task further intvaditional supervised learning task, i.e. to
learn a functionfsrsr, : 2 x Y — {—1,+1}. Foranyy € Y, fsrsr(zi,y) = +1if y € Y; and

—1 otherwise. Thatisfarr(z:) = {y|arg,cy[fsisc(zi,y) = +1]}. Here the mapping can be
implemented witlconstructive clusteringvhich has been used in transforming multi-instance bags
into traditional single-instances [11]. Note that otherds of mapping can also be used here.

3 Algorithms

In this section, we propose two algorithms for solvingM¥ problems: MML BoosTworks along
the first solution described in Section 2, whilaML SvM works along the second solution.

3.1 MiML BoosT

Given any sef), let|Q2| denote its size, i.e. the number of element&Qjrgiven any predicate, let
[] be 1 if = holds and O otherwise; give(¥X;,Y;), foranyy € Y, let¥(X,,y) = +1ify € V;
and—1 otherwise, wherd is a functionV : 2% x Y — {—1, +1}. The MimL BoosTalgorithm is
presented in Table 1.
In the first step, each MiL example(X,,Y,) (v = 1,2,---,m) is transformed into a set ¢}/|
number of multi-instance bags, IH(Xuv yl)v \I](Xua yl)]a [(Xuv yQ)v \P(Xua yQ)]v ) [(Xu, yl)/\)v
U (Xy,yy))]}- Note that[(Xu,y.), U(Xu,y0)] (v = 1,2,---,|Y]) is a labeled multi-instance
bag where(X,,, y,) is a bag containing.,, number of instances, i.e{(z\", y.), (@5, 5.), - -,
(:c,(Jj;),yv)}, and¥(X,,y,) € {+1, —1} is the label of this bag.
Thus, the original MML data set is transformed into a multi-instance data set sontgm x |)|
number of bagS, i‘e{[(Xla yl)v \Ij(le yl)]v Tty [(Xla y\y|)7 \I’(le yD}\)]a [(XQ, yl)v \II(X27 yl)]v
(X )y (X, yy)]} Let (XD, y@), B(X @, )] denote theth of thesem x |V|
number of bags, that i$X ("), y(1)) denoteg Xy, 1), - - -, (XI¥D, y(I¥D) denoteg X1, yjy)), -+ -,
(X (mxIVD) yy(mxIYD)) denoteq X, yjy), where(X @, y()) containsn; number of instances, i.e.
Then, from the data set a multi-instance learning funcfign;, can be learned, which can accom-

plish the desired MuL function becausgra (X ™) = {y| arg, ey (sign[far (X, y)] = +1)}.
Here we use NBOOSTING[9] to implementfa;rz..

For convenience, ldtB, g) denote the baf( X, y), ¥ (X, y)]. Then, here the goal is to learn a func-
tion F(B) minimizing the bag-level exponential lodss Eg zlexp(—gF(B))], which ultimately

3This constraint assumes that all instances contribute equally and irdiginto a bag’s label, which is
different from the standard multi-instance assumption that there is @y ithkstance in a bag that triggers
whether the bag’s class label will be positive or negative. Neverthetdsss been shown that this assumption
is reasonable and effective [9]. Note that the standard multi-instascen@sion does not always hold, e.g. the
label Africa of an image is usually triggered by several patches jointly instead of byomypatch.



Table 1: The MmL BoosTalgorithm

1 Transform each MiL example(X,, Yu) (u=1,2,--+,m) into|Y| number of multi-
instance bag$[(Xu, 1), V(Xu,y1)], -+, [(Xu, y13)), ¥(Xu, yjy))]}. Thus, the original
data set is transformed into a multi-instance data set containing|)’| number of
multi-instance bags, denoted By X @, ), w(X® ¢} (G =1,2,---,m x |Y]).

sy =12, m x V).

2 Initialize weight of each bag to ") = —

3 Repeatfot =1,2,---,T iterations:
3a SetW( D= W(”/n (i=1,2,---,m x |Y]|), assign the bag’s lab&l (X () 4/(*))
to each of its mstance{sr:;.zﬁ G >) (j=1,2,---,n;), and build an instance-level
predictorh,[(x\”,y )] € {~1,+1}.
3b  For theith bag, compute the error rat€) e [0, 1] by counting the number of
Do Il ) #w(x D 0]

n;

misclassified instances within the bag, €) =
3c Ife” <o0.5forallie {1,2,---,m x |V|}, go to Step 4.
3d Compute; = argmin,, mem W exp[(2e) — 1)cq].
3e Ifer <€0,goto Step 4.

3f  Setw® = W(2 expl[(2¢¥ — l)ct] ---,m x |Y|) and re-normalize such
thato < W@ < 1and> 7P

4  ReturnY” = {y|arg,, sign (Z] > ctht[(mj,y)]) = 41} (x is X*’s jth instance).

estimates the bag-level log-odds functibivg % In each boosting round, the aim is to

expandF(B) into F(B) + cf(B), i.e. adding a new weak classifier, so that the exponental lo
is minimized. Assuming all instances in a bag contributeafiguand independently to the bag's
label, f(B) = nlB >_; h(b;) can be derived, wherk(b;) € {—1,+1} is the prediction of the

instance-level CIaSS|f|ér( ) for the jth instance in bagd3, andnB is the number of instances 1.

It has been shown by [9] that the be4tB) to be added can be achieved by seekiig which
maximizesy ., Z?;l[n%W(“g(i)h(by))], given the bag-level weightd” = exp(—gF(B)). By
assigning each instance the label of its bag and the comesmp weightWW(*) /n;, h(-) can be

learned by minimizing the weighted instance-level clasaifon error. This actually corresponds to
the Step 3a of ML BoosT. When f(B) is found, the best multiplies > 0 can be got by directly

optimizing the exponential loss:
_ @5 ppl?
Z_W(Z) exple (923(3) ]
3 ’]’Li

= Z_W(i) exp[(2¢V — 1)(]

wheree() = -L Zj[[(h(by)) # ¢()] (computed in Step 3b). Minimization of this expectation ac-
tually corresponds to Step 3d, where numeric optimizatchniques such as quasi-Newton method
can be used. Finally, the bag-level weights are updateckeip Htaccording to the additive structure
of F(B).

EpEg|slexp(—gF(B) + c(—gf(B)))]

3.2 MIML SvM

Given (X;,Y;) andz; = #(X;) whereg : 2%¥ — Z foranyy € Y, let®(z;,y) = +1if y € Y;
and —1 otherwise, where is a function® : Z x Y — {—1,+1}. The MimL Svm algorithm is
presented in Table 2.

In the first step, theX,, of each MML example(X,,Y,) (v = 1,2,---,m) is collected and put
into a data sef’. Then, in the second step;medoids clustering is performed d&h Since each



Table 2: The MmL Svm algorithm

1 For MiML examplegX,,Y,) (u=1,2,---,m), I ={Xu|Ju=1,2,---,m}.
2 Randomly seleat elements fron" to initialize the medoidd//; (t = 1,2, -, k),
repeat until allM, do not change:
2a T ={M:} (t=1,2,---,k).
2b Repeatforeack, € (I' — {M|t =1,2,---,k}):
index = argminge 1 ... g} A (Xu, Mt), Tindez = Dindea U {Xu}.
2c M;=argmin Y dy(A,B)({t=1,2,---,k).
A€y gt
3 Transform(X,,Y.) into a multi-label exampléz,,Y.) (v = 1,2,---,m), where
Zy = (Zul, Zu2, 7, Zuk) = (dH(Xu, ]\41)7 dH(,Xu7 ]\/[2)7 e ,dH(X“, Mk))

4  Foreachy € ), derive adata séd, = {(zu, ® (zu,y)) |lu=1,2,---,m}, and then
train an M hy = SVMTrain(D,).

5 ReturnY™* = {argma}};chy(z*)} U {ylhy(2*) > 0,y € Y}, wherez* = (du(X™, M1),
ye
du(X™, Ma), -+ ,du (X", My)).

data item inl", i.e. X, is an unlabeled multi-instance bag instead of a singlaintg, we employ
Hausdorff distance [5] to measure the distance. In deta#ngtwo bagsA = {a1, a2, -, a,,}
andB = {by, b, -, b, }, the Hausdorff distance betwednand B is defined as

d (A, B) = max{max min ||a — b[|, max min ||b — a||}

where ||a — b|| measures the distance between the instancaad b, which takes the form of
Euclidean distance here.

After the clustering process, we divide the datals@ito & partitions whose medoids afd; (t =
1,2,--- k), respectively. With the help of these medoids, we transfibrenoriginal multi-instance
exampleX,, into ak-dimensional numerical vecter,, where theith (i = 1,2, ---, k) component
of z, is the distance betweeXi,, and M,, that is,dy (X,,, M;). In other wordsz,; encodes some
structure information of the data, that is, the relatiopdhetweenX,, and theith partition ofI".
This process reassembles ttanstructive clusteringrocess used by [11] in transforming multi-
instance examples into single-instance examples excapirtfil1] the clustering is executed at the
instance level while here we execute it at the bag level. Ttmesoriginal MML exampleg X,,,Y,,)

(u = 1,2,---,m) have been transformed into multi-label examples, Y,) (v = 1,2,---,m),
which corresponds to the Step 3 ofilvl. SvM. Note that this transformation may lose information,
nevertheless the performance oim SvM is still good. This suggests thatIML is a powerful
framework which has captured more original informatiomtbéher learning frameworks.

Then, from the data set a multi-label learning functify,; can be learned, which can accom-
plish the desired MiL function becausénsarn(X*) = farnr(z*). Here we use MSvm [1] to
implementfy/ .z

Concretely, M.SvMm decomposes the multi-label learning problem into multiptiependent binary
classification problems (one per class), where each exaasgleciated with the label skt is re-
garded as a positive example when buildingSfor any clasg, € Y, while regarded as a negative
example when building \®&v for any clasg ¢ Y, as shown in the Step 4 of ML SvMm. In making
predictions, the-Criterion[1] is used, which actually corresponds to the Step 5 of thei\Bvm
algorithm. That is, the test example is labeled by all theslabels with positive 8 scores ex-
cept that when all the\Bv scores are negative, the test example is labeled by thelalzsisvhich
is with thetop (least negative) score.

4 Application to Scene Classification

The data set consists of 2,000 natural scene images befptagihe classedesert mountainssea
sunsetandtrees as shown in Table 3. Some images were from tlkREL image collection while
some were collected from the Internet. Over 22% images batmmultiple classes simultaneously.



Table 3: The image data set (desert m: mountainss: seg su sunsett: tree9

label #images| label  #images| label #images| label #images
d 340 d+m 19 m+su 19 d+m+su 1
m 268 d+s 5 m+t 106 d+su+t 3
s 341 d+su 21 s+su 172 m+s+t 6
su 216 d+t 20 S+t 14 m+su+t 1
t 378 m+s 38 su+t 28 S+su+t 4

4.1 Comparison with Multi-Label Learning Algorithms

Since the scene classification task has been successfakiedaby multi-label learning algo-
rithms [1], we compare the MiL algorithms with established multi-label learning alglonits AD-
ABOOST.MH [8] and MLSvM [1]. The former is the core of a successful multi-label |é@grsystem
BOOSTEXTER[8], while the latter has achieved excellent performancgcene classification [1].

For MiMmL BoosTand MiML SvM, each image is represented as a bag of nine instances geherat
by the N method [7]. Here each instance actually corresponds to agenpatch, and better
performance can be expected with better image patch gemeraethod. For AABooOsT.MH and
MLSvM, each image is represented as a feature vector obtainednbgtenating the instances of
MiMLBoOOSTOr MIML SyMm. Gaussian kernel IBsvM [2] is used to implement MSvm, where

the cross-trainingstrategy is used to build the classifiers while Th€riterion is used to label the
images [1]. The MvL Svm algorithm is also realized with a Gaussian kernel, whileghmmeter

k is set to be 20% of the number of training imadesote that the instance-level predictor used in
Step 3a of MML BoOsTis also a Gaussian kerneldsvm (with default parameters).

Since AbABoOST.MH and MLSvMm make multi-label predictions, here the performance of the
compared algorithms are evaluated according to five mafiell evaluation metrics, as shown in
Tables 4 to 7, where|' indicates ‘the smaller the better’ whiléindicates ‘the bigger the better’.
Details of these evaluation metrics can be found in [8]. ®&h€Eross-validation is performed and
‘mean + std’ is presented in the tables, where the best performacitieveed by each algorithm
is bolded. Note that since in each boosting rounduMB0OOST performs more operations than
ADABOOST.MH does, for fair comparison, the boosting rounds used bxBoosT.MH are set to
ten times of that used by MiL BoosTsuch that the time cost of them are comparable.

Table 4:The performance of MiL BoosTwith different boosting rounds

boosting evaluation metric

rounds hamm.loss'  one-error' coverage! rank.loss' ave.prec.’
5 .202+.011 .373:.045 1.026-.093 .208t.028 .764+.027
10 .19A.010 .362£.040 1.013.109 191027 77@.026
15 .195t.009 .364.034 1.004:.101 .186t.025 772.023
20 .193t.008 .355:.037 .996£.102 .183:.025 775£.024
25 .189+.009 .351-.039 .989+.103 .18%.026 78025

Table 5:The performance of AABoosT.MH with different boosting rounds

boosting evaluation metric

rounds  hamm.loss' one-errort coverage' rank.loss' ave.prec.’
50 .228+.013 A73+.031  1.299-.099 .263t.022 .695-.022
100 .234:.019 A465:.042  1.292-.138 .259:.030 .698-.033
150 .233t.020 465-.053  1.279%.140 .255+.032 .70@:.033
200 .232+.012 453£.031  1.269-.107 .253.022 .706:.020
250 .23%.018 451+.046  1.258-.137 .25@£.031 .708:.030

“In preliminary experiments, several percentage values have béed tasging from 20% to 100% with an
interval of 20%. The results show that these values do not significarflgt afie performance of MiL SvM.



Table 6:The performance of MiL Svm with differenty used in Gaussian kernel

Gaussian evaluation metric

kernel hamm. loss'  one-error!  coverage! rank.loss' ave.prec.!
y=.1 .181+.017 .332:.036  1.024-.089  .187.018 .780+.021
v=.2 .180+.017 327#.033  1.022-.085 .187.018 .783:.020
y=.3 .188+.016 .344-.032  1.065:-.094 .196:.020 J772:.020
y=.4 .193+.014 .358:.030  1.08@-.099 .202£.022 .764£.021
y=.5 .196+.014 .37@:.033 1.109.101 .209:.023 .75%.023

Table 7:The performance of MSvm with differenty used in Gaussian kernel

Gaussian evaluation metric

kernel hamm. loss ' one-error'  coverage' rank.loss' ave.prec.!
y=1 .200+.014 379%.032 1.125-.115 .214-.020 .75%.022
=2 .196+.013 .368+.032  1.115-.122 .211.023 .756:.022
vy=3 .195+.015 370+£.034 1.129-.113 .214-.022 .754+.023
vy=4 .196+.016 372:.034  1.15%#.122 .22@:.024 .751.023
vy=5 .202+.015 .388:.032  1.18%#.128 .229-.026 74%.023

Comparing Tables 4 to 7 we can find that bottMdBoosTand MiML Svm are apparently better
than AbABoosST.MH and MLSvM. Impressively, pair-wisé-tests with .05 significance level reveal
that the worst performance of ML BoosT(with 5 boosting rounds) is even significantly better than
the best performance ofaBoosT.MH (with 250 boosting rounds) on all the evaluation metrics
and is significantly better than the best performance oSvi (with v = 2) in terms ofcoverage
while comparable on the remaining metrics; the worse peréoice of MML SvMm (with v = .5)

is even comparable to the best performance afSMm and is significantly better than the best
performance of AAB0o0ST.MH on all the evaluation metrics. These observations corttirat for-
malizing the scene classification task as aM problem to solve by ML BoosTor MIML SVM is
better than formalizing it as a multi-label learning prabl® solve by AABOOSTMH or MLSvM.

4.2 Comparison with Multi-Instance Learning Algorithms

Since the scene classification task has been successftiiedaby multi-instance learning algo-
rithms [7], we compare the MiL algorithms with established multi-instance learning &lthons
DiIvERSE DENSITY [7] and Bv-DD [10]. The former is one of the most influential multi-instanc
learning algorithm and has achieved excellent performamceeene classification [7], while the
latter has achieved excellent performance on multi-ircgdrenchmark tests [10].

Here all the compared algorithms use the same input redegs®en That is, each image is repre-
sented as a bag of nine instances generated by#hen&thod [7]. The parameters of \ZERSE
DENSITY and Bv-DD are set according to the settings that resulted in the befsirpgance [7, 10].
The MimL BoosTand MiML Svm algorithms are implemented as described in Section 4., 2t
boosting rounds for ML BoosTwhile v = .2 for MIML SvMm.

Since DVERSE DENSITY and Bv-DD make single-label predictions, here the performance of the
compared algorithms are evaluated accordingragdictive accuracyi.e. classification accuracy
on test set. Note that for MiLBoosT and MIML SvMm, the top ranked classs regarded as the
single-label prediction. Tenfold cross-validation is foemed and ‘meant std’ is presented in
Table 8, where the best performance on each image classlischdlote that besides the predictive
accuracies on each class, the overall accuracy is alsonpeessvhich is denoted by ‘overall’.

We can find from Table 8 that MiL BoosTachieves the best performance on image cladssert
andtreeswhile MIML SvM achieves the best performance on the remaining image slaSserall,
MIML Svm achieves the best performance. Pair-wigests with .05 significance level reveal that
the overall performance of MiL SvM is comparable to that of MiL BoOST, both are significantly
better than that of VERSE DENSITY and Ev-DD. These observations confirm that formalizing the
scene classification task as anl problem to solve by MvL BoosTor MIML SvM is better than
formalizing it as a multi-instance learning problem to soby DIVERSE DENSITY or EM-DD.



Table 8:Compare predictive accuracy ofIML BOOST, MIML SvM, DIVERSE DENSITY and Ev-DD

Image Compared algorithms

class MMLBOOST MIMLSVM  DIVERSEDENSITY EM-DD
desert .869+.014 .868+.026 .768:.037 .751-.047
mountains  .791+.024 .820+.022 .7214.030 71#.036
sea 729+.026 .730+.030 .587+.038 .63%.063
sunset .864+.033 .883+.023 .8414.036 .815:.063
trees .801+.015 .798+.017 .781.028 .632.060
overall .811+.022 .820+.024 .739+.034 .711.054

5 Conclusion

In this paper, we formalizeulti-instance multi-label learningshere an example is associated with
multiple instances and multiple labels simultaneouslythdligh there were some works investi-
gating the ambiguity of alternative input descriptions bemative output descriptions associated
with an object, this is the first work studying both these ayualties simultaneously. We show that
an MiML problem can be solved by identifying its equivalence in tiaglitional supervised learn-
ing framework, using multi-instance learning or multi-¢dtearning as the bridge. The proposed
algorithms, MMLBoosTand MiML SvM, have achieved good performance in the application to
scene classification. An interesting future issue is to kg iML versions of other popular ma-
chine learning algorithms. Moreover, it remains an opeiblem that whether MiL can be tackled
directly, possibly by exploiting the connections betweles instances and the labels. It is also in-
teresting to discover the relationship between the instsand labels. By unravelling the mixed
connections, maybe we can get deeper understanding of aitybig
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