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Abstract

Most active learning approaches select either informative or representative unla-
beled instances to query their labels. Although several active learning algorithms
have been proposed to combine the two criteria for query selection, they are usu-
ally ad hoc in finding unlabeled instances that are both informative and repre-
sentative. We address this challenge by a principled approach, termed QUIRE,
based on the min-max view of active learning. The proposed approach provides
a systematic way for measuring and combining the informativeness and represen-
tativeness of an instance. Extensive experimental results show that the proposed
QUIRE approach outperforms several state-of -the-art active learning approaches.

1 Introduction

In this work, we focus on the pool-based active learning, which selects an unlabeled instance from
a given pool for manually labeling. There are two main criteria, i.e., informativeness and represen-
tativeness, that are widely used for active query selection. Informativeness measures the ability of
an instance in reducing the uncertainty of a statistical model, while representativeness measures if
an instance well represents the overall input patterns of unlabeled data [16]. Most active learning
algorithms only deploy one of the two criteria for query selection, which could significantly limit the
performance of active learning: approaches favoring informative instances usually do not exploit the
structure information of unlabeled data, leading to serious sample bias and consequently undesirable
performance for active learning; approaches favoring representative instances may require querying
a relatively large number of instances before the optimal decision boundary is found. Although sev-
eral active learning algorithms [19, 8, 11] have been proposed to find the unlabeled instances that
are both informative and representative, they are usually ad hoc in measuring the informativeness
and representativeness of an instance, leading to suboptimal performance.

In this paper, we propose a new active learning approach by QUerying Informative and Represen-
tative Examples (QUIRE for short). The proposed approach is based on the min-max view of active
learning [11], which provides a systematic way for measuring and combining the informativeness
and the representativeness. The interesting feature of the proposed approach is that it measures both
the informativeness and representativeness of an instance by its prediction uncertainty: the informa-
tiveness of an instance x is measured by its prediction uncertainty based on the labeled data, while
the representativeness of x is measured by its prediction uncertainty based on the unlabeled data.

The rest of this paper is organized as follows: Section 2 reviews the related work on active learning;
Section 3 presents the proposed approach in details; experimental results are reported in Section 4;
Section 5 concludes this work with issues to be addressed in the future.
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(a) A binary classification
problem

(b) An approach favoring
informative instances

(c) An approach favoring
representative instances

(d) Our approach

Figure 1: An illustrative example for selecting informative and representative instances

2 Related Work

Querying the most informative instances is probably the most popular approach for active learning.
Exemplar approaches include query-by-committee [17, 6, 10], uncertainty sampling [13, 12, 18, 2]
and optimal experimental design [9, 20]. The main weakness of these approaches is that they are
unable to exploit the abundance of unlabeled data and the selection of query instances is solely
determined by a small number of labeled examples, making it prone to sample bias. Another school
of active learning is to select the instances that are most representative to the unlabeled data. These
approaches aim to exploit the cluster structure of unlabeled data [14, 7], usually by a clustering
method. The main weakness of these approaches is that their performance heavily depends on the
quality of clustering results [7].

Several active learning algorithms tried to combine the informativeness measure with the represen-
tativeness measure for finding the optimal query instances. In [19], the authors propose a sampling
algorithm that exploits both the cluster information and the classification margins of unlabeled in-
stances. One limitation of this approach is that since clustering is only performed on the instances
within the classification margin, it is unable to exploit the unlabeled instances outside the margin.
In [8], Donmez et al. extended the active learning approach in [14] by dynamically balancing the
uncertainty and the density of instances for query selection. This approach is ad hoc in combining
the measure of informativeness and representativeness for query selection, leading to suboptimal
performance.

Our work is based on the min-max view of active learning, which was first proposed in the study of
batch mode active learning [11]. Unlike [11] which measures the representativeness of an instance
by its similarity to the remaining unlabeled instances, our proposed measure of representativeness
takes into account the cluster structure of unlabeled instances as well as the class assignments of the
labeled examples, leading to a better selection of unlabeled instances for active learning.

3 QUIRE: QUery Informative and Representative Examples

We start with a synthesized example that illustrates the importance of querying instances that are
both informative and representative for active learning. Figure 1 (a) shows a binary classification
problem with each class represented by a different legend. We examine three different active learning
algorithms by allowing them to sequentially select 15 data points. Figure 1 (b) and (c) show the
data points selected by an approach favoring informative instances (i.e., [18]) and by an approach
favoring representative instances (i.e., [7]), respectively. As indicated by Figure 1 (b), due to the
sample bias, the approach preferring informative instances tends to choose the data points close to
the horizontal line, leading to incorrect decision boundaries. On the other hand, as indicated by
Figure 1 (c), the approach preferring representative instances is able to identify the approximately
correct decision boundary but with a slow convergence. Figure 1 (d) shows the data points selected
by the proposed approach that favors data points that are both informative and representative. It is
clear that the proposed algorithm is more efficient in finding the accurate decision boundary than the
other two approaches.

We denote by 𝒟 = {(x1, 𝑦1), (x2, 𝑦2), ⋅ ⋅ ⋅ , (x𝑛𝑙
, 𝑦𝑛𝑙

), x𝑛𝑙+1, ⋅ ⋅ ⋅ ,x𝑛} the training data set that
consists of 𝑛𝑙 labeled instances and 𝑛𝑢 = 𝑛 − 𝑛𝑙 unlabeled instances, where each instance
x𝑖 = [𝑥𝑖1, 𝑥𝑖2, ⋅ ⋅ ⋅ , 𝑥𝑖𝑑]

⊤ is a vector of 𝑑 dimension and 𝑦𝑖 ∈ {−1,+1} is the class label of x𝑖.
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Active learning selects one instance x𝑠 from the pool of unlabeled data to query its class label. For
convenience, we divide the data set 𝒟 into three parts: the labeled data 𝒟𝑙, the currently selected
instance x𝑠, and the rest of the unlabeled data 𝒟𝑢. We also use 𝒟𝑎 = 𝒟𝑢 ∪ {x𝑠} to represent all
the unlabeled instances. We use y = [y𝑙, 𝑦𝑠,y𝑢] for the class label assignment of the entire data set,
where y𝑙, 𝑦𝑠 and y𝑢 are the class labels assigned to 𝒟𝑙, x𝑠 and 𝒟𝑢, respectively. Finally, we denote
by y𝑎 = [𝑦𝑠,y𝑢] the class assignment for all the unlabeled instances.

3.1 The Framework

To motivate the proposed approach, we first re-examine the margin-based active learning from the
viewpoint of min-max [11]. Let 𝑓∗ be a classification model trained by the labeled examples, i.e.,

𝑓∗ = argmin
𝑓∈ℋ

𝜆

2
∣𝑓 ∣2ℋ +

𝑛𝑙∑
𝑖=1

ℓ(𝑦𝑖, 𝑓(x𝑖)), (1)

where ℋ is a reproducing kernel Hilbert space endowed with kernel function 𝜅(⋅, ⋅) : ℝ𝑑×ℝ𝑑 → ℝ.
ℓ(𝑧) is the loss function. Given the classifier 𝑓∗, the margin-based approach chooses the unlabeled
instance closest to the decision boundary, i.e.,

𝑠∗ = argmin
𝑛𝑙<𝑠≤𝑛

∣𝑓∗(x𝑠)∣. (2)

It is shown in the supplementary document that this criterion can be approximated by
𝑠∗ = argmin

𝑛1<𝑠≤𝑛
ℒ(𝒟𝑙,x𝑠), (3)

where
ℒ(𝒟𝑙,x𝑠) = max

𝑦𝑠=±1
min
𝑓∈ℋ

𝜆

2
∣𝑓 ∣2ℋ +

𝑛𝑙∑
𝑖=1

ℓ(𝑦𝑖, 𝑓(x𝑖)) + ℓ(𝑦𝑠, 𝑓(x𝑠)). (4)

We can also write Eq. 3 in a minimax form
min

𝑛𝑙<𝑠≤𝑛
max
𝑦𝑠=±1

𝐴(𝒟𝑙,x𝑠),

where
𝐴(𝒟𝑙,x𝑠) = min

𝑓∈ℋ
𝜆

2
∣𝑓 ∣2ℋ +

𝑛𝑙∑
𝑖=1

ℓ(𝑦𝑖, 𝑓(x𝑖)) + ℓ(𝑦𝑠, 𝑓(x𝑠)).

In this min-max view of active learning, it guarantees that the selected instance x𝑠 will lead to a
small value for the objective function regardless of its class label 𝑦𝑠. In order to select queries that
are both informative and representative, we extend the evaluation function ℒ(𝒟𝑙,x𝑠) to include all
the unlabeled data. Hypothetically, if we know the class assignment y𝑢 for the unselected unlabeled
instances in 𝒟𝑢, the evaluation function can be modified as

ℒ(𝒟𝑙,𝒟𝑢,y𝑢,x𝑠) = max
𝑦𝑠=±1

min
𝑓∈ℋ

𝜆

2
∣𝑓 ∣2ℋ +

𝑛∑
𝑖=1

ℓ(𝑦𝑖, 𝑓(x𝑖)). (5)

The problem is that the class assignment y𝑢 is unknown. According to the manifold assumption [3],
we expect that a good solution for y𝑢 should result in a small value of ℒ(𝒟𝑙,𝒟𝑢,y𝑢,x𝑠). We
therefore approximate the solution for y𝑢 by minimizing ℒ(𝒟𝑙,𝒟𝑢,y𝑢,x𝑠), which leads to the
following evaluation function for query selection:

ℒ̂(𝒟𝑙,𝒟𝑢,x𝑠) = min
y𝑢∈{±1}𝑛𝑢−1

ℒ(𝒟𝑙,𝒟𝑢,y𝑢,x𝑠) (6)

= min
y𝑢∈{±1}𝑛𝑢−1

max
𝑦𝑠=±1

min
𝑓∈ℋ

𝜆

2
∣𝑓 ∣2ℋ +

𝑛∑
𝑖=1

ℓ(𝑦𝑖, 𝑓(x𝑖))

3.2 The Solution

For computational simplicity, for the rest of this work, we choose a quadratic loss function, i.e.,
ℓ(𝑦, 𝑦) = (𝑦 − 𝑦)2/2 1. It is straightforward to show

min
𝑓∈ℋ

𝜆

2
∣𝑓 ∣2ℋ +

1

2

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑓(x𝑖))
2 =

1

2
y⊤𝐿y,

1Although quadratic loss may not be ideal for classification, it does yield competitive classification results
when compared to the other loss functions such as hinge loss [15].
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where 𝐿 = (𝐾 + 𝜆𝐼)−1 and 𝐾 = [𝜅(x𝑖,x𝑗)]𝑛×𝑛 is the kernel matrix of size 𝑛 × 𝑛. Thus, the
evaluation function ℒ̂(𝒟𝑙,𝒟𝑢,x𝑠) is simplified as

ℒ̂(𝒟𝑙,𝒟𝑢,x𝑠) = min
y𝑢∈{−1,+1}𝑛𝑢−1

max
𝑦𝑠∈{−1,+1}

y⊤𝐿y. (7)

Our goal is to efficiently compute the above quantity for each unlabeled instance. For the conve-
nience of presentation, we refer to by subscript 𝑢 the rows/columns in a matrix 𝑀 for the unlabeled
instances in 𝒟𝑢, by subscript 𝑙 the rows/columns in 𝑀 for labeled instances in 𝒟𝑙, and by subscript
𝑠 the row/column in 𝑀 for the selected instance. We also refer to by subscript 𝑎 the rows/columns
in 𝑀 for all the unlabeled instances (i.e., 𝒟𝑢 ∪ {x𝑠}). Using these conventions, we rewrite the
objective y⊤𝐿y as

y⊤𝐿y = y𝑙𝐿𝑙,𝑙y𝑙 + 𝐿𝑠,𝑠 + y𝑇
𝑢𝐿𝑢,𝑢y𝑢 + 2y𝑇

𝑢 (𝐿𝑢,𝑙y𝑙 + 𝐿𝑢,𝑠𝑦𝑠) + 2𝑦𝑠y
⊤
𝑙 𝐿𝑙,𝑠.

Note that since the above objective function is concave (linear) in 𝑦𝑠 and convex (quadratic) in
y𝑢, we can switch the maximization of y𝑢 with the minimization of 𝑦𝑠 in (7). By relaxing y𝑢 to
continuous variables, the solution to miny𝑢 y⊤𝐿y is given by

ŷ𝑢 = −𝐿𝑢,𝑢
−1(𝐿𝑢,𝑙y𝑙 + 𝐿𝑢,𝑠𝑦𝑠), (8)

leading to the following expression for the evaluation function ℒ̂(𝒟𝑙,𝒟𝑢,x𝑠):

ℒ̂(𝒟𝑙,𝒟𝑢,x𝑠) = 𝐿𝑠,𝑠 + y𝑇
𝑙 𝐿𝑙,𝑙y𝑙 +max

𝑦𝑠

{2𝑦𝑠𝐿𝑠,𝑙y𝑙 (9)

−(𝐿𝑢,𝑙y𝑙 + 𝐿𝑢,𝑠𝑦𝑠)
𝑇𝐿𝑢,𝑢

−1(𝐿𝑢,𝑙y𝑙 + 𝐿𝑢,𝑠𝑦𝑠)}
∝ 𝐿𝑠,𝑠 − det(𝐿𝑎,𝑎)

𝐿𝑠,𝑠
+ 2

∣∣(𝐿𝑠,𝑙 − 𝐿𝑠,𝑢𝐿
−1
𝑢,𝑢𝐿𝑢,𝑙

)
y𝑙

∣∣ ,
where the last step follows the relation

det
([

𝐴11 𝐴12

𝐴21 𝐴22

])
= det(𝐴22)det

(
𝐴11 −𝐴12𝐴

−1
22 𝐴21

)
.

Note that although y𝑢 is relaxed to real numbers, according to our empirical studies, we find that in
most cases, y𝑢 falls between −1 and +1.

Remark. The evaluation function ℒ̂(𝒟𝑙,𝒟𝑢,x𝑠) essentially consists of two components: 𝐿𝑠,𝑠 −
det(𝐿𝑎,𝑎)/𝐿𝑠,𝑠 and ∣(𝐿𝑠,𝑙 − 𝐿𝑠,𝑢𝐿

−1
𝑢,𝑢𝐿𝑢,𝑙)y𝑙∣. Minimizing the first component is equivalent to

minimizing 𝐿𝑠,𝑠 because 𝐿𝑎,𝑎 is independent from the selected instance x𝑠. Since 𝐿 = (𝐾+𝜆𝐼)−1,
we have

𝐿𝑠,𝑠 =

[
𝐾𝑠,𝑠 − (𝐾𝑠,𝑙,𝐾𝑠,𝑢)

(
𝐾𝑙,𝑙 𝐾𝑙,𝑢

𝐾𝑢,𝑙 𝐾𝑢,𝑢

)(
𝐾𝑙,𝑠

𝐾𝑢,𝑠

)]−1

≈ 1

𝐾𝑠,𝑠

[
1 +

1

𝐾𝑠,𝑠
(𝐾𝑠,𝑙,𝐾𝑠,𝑢)

(
𝐾𝑙,𝑙 𝐾𝑙,𝑢

𝐾𝑢,𝑙 𝐾𝑢,𝑢

)(
𝐾𝑙,𝑠

𝐾𝑢,𝑠

)]
.

Therefore, to choose an instance with small 𝐿𝑠,𝑠, we select the instance with large self-similarity
𝐾𝑠,𝑠. When self-similarity 𝐾𝑠,𝑠 is a constant, this term will not affect query selection.

To analyze the effect of the second component, we approximate it as:

2
∣∣(𝐿𝑠,𝑙 − 𝐿𝑠,𝑢𝐿

−1
𝑢,𝑢𝐿𝑢,𝑙

)
y𝑙

∣∣ ≈ 2 ∣𝐿𝑠,𝑙y𝑙∣+ 2
∣∣𝐿𝑠,𝑢𝐿

−1
𝑢,𝑢𝐿𝑢,𝑙y𝑙

∣∣ (10)

≈ 2∣𝐿𝑠,𝑙y𝑙∣+ 2∣𝐿𝑠,𝑢ŷ𝑢∣.
The first term in the above approximation measures the confidence in predicting x𝑠 using only
labeled data, which corresponds to the informativeness of x𝑠. The second term measures the pre-
diction confidence using only the predicted labels of the unlabeled data, which can be viewed as the
measure of representativeness. This is because when x𝑠 is a representative instance, it is expected to
share a large similarity with many of the unlabeled instances in the pool. As a result, the prediction
for x𝑠 by the unlabeled data in 𝒟𝑢 is decided by the average of their assigned class labels ŷ𝑢. If we
assume that the classes are evenly distributed over the unlabeled data, we should expect a low con-
fidence in predicting the class label for x𝑠 by unlabeled data. It is important to note that unlike the
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Algorithm 1 The QUIRE Algorithm
Input:

𝒟 : A data set of 𝑛 instances
Initialize:

𝒟𝑙 = ∅; 𝑛𝑙 = 0 % no labeled data is available at the very beginning
𝒟𝑢 = 𝒟; 𝑛𝑢 = 𝑛 % the pool of unlabeled data

Calculate 𝐾
repeat

Calculate 𝐿−1
𝑎,𝑎 using Proposition 2 and det(𝐿𝑎,𝑎)

for 𝑠 = 1 to 𝑛𝑢 do
Calculate 𝐿−1

𝑢𝑢 according to Theorem 1
Calculate ℒ̂(𝒟𝑙,𝒟𝑢,x𝑠) using Eq. 9

end for
Select the x𝑠∗ with the smallest ℒ̂(𝒟𝑙,𝒟𝑢,x𝑠∗) and query its label 𝑦𝑠∗
𝒟𝑙 = 𝒟𝑙 ∪ (x𝑠∗ , 𝑦𝑠∗); 𝒟𝑢 = 𝒟𝑢 ∖ x𝑠∗

until the number of queries or the required accuracy is reached

existing work that measures the representativeness only by the cluster structure of unlabeled data,
our proposed measure of representativeness depends on ŷ𝑢, which essentially combines the cluster
structure of unlabeled data with the class assignments of labeled data. Given high-dimensional data,
there could be many possible cluster structures that are consistent with the unlabeled data and it is
unclear which one is consistent with the target classification problem. It is therefore critical to take
into account the label information when exploiting the cluster structure of unlabeled data.

3.3 Efficient Algorithm

Computing the evaluation function ℒ̂(𝒟𝑙,𝒟𝑢,x𝑠) in Eq. 9 requires computing 𝐿−1
𝑢,𝑢 for every un-

labeled instance x𝑠, leading to high computational cost when the number of unlabeled instances is
very large. The theorem below allows us to improve the computational efficiency dramatically.

Theorem 1. Let
𝐿−1
𝑎,𝑎 =

(
𝐿𝑠,𝑠 𝐿𝑠,𝑢

𝐿𝑢,𝑠 𝐿𝑢,𝑢

)−1

=

(
𝑎 −b⊤
−b 𝐷

)
.

We have
𝐿−1
𝑢,𝑢 = 𝐷 − 1

𝑎
bb⊤.

The proof can be found in the supplementary document. As indicated by Theorem 1, we only need
to compute 𝐿−1

𝑎,𝑎 once; for each x𝑠, its 𝐿−1
𝑢,𝑢 can be computed directly from 𝐿−1

𝑎,𝑎. The following
proposition allows us to simplify the computation for 𝐿−1

𝑎,𝑎.

Proposition 2. 𝐿−1
𝑎,𝑎 = (𝜆𝐼𝑎 +𝐾𝑎,𝑎)−𝐾𝑎,𝑙(𝜆𝐼𝑙 +𝐾𝑙,𝑙)

−1𝐾𝑙,𝑎

Proposition 2 follows directly from the inverse of a block matrix. As indicated by Proposition 2,
we only need to compute (𝜆𝐼 + 𝐾𝑙,𝑙)

−1. Given that the number of labeled examples is relatively
small compared to the size of unlabeled data, the computation of 𝐿−1

𝑎,𝑎 is in general efficient. The
pseudo-code of QUIRE is summarized in Algorithm 1. Excluding the time for computing the kernel
matrix, the computational complexity of our algorithm is just 𝑂(𝑛𝑢).

4 Experiments

We compare QUIRE with the following five baseline approaches: (1) RANDOM: randomly select
query instances, (2) MARGIN: margin-based active learning [18], a representative approach which
selects informative instances, (3) CLUSTER: hierarchical-clustering-based active learning [7], a rep-
resentative approach that chooses representative instances, (4) IDE: active learning that selects in-
formative and diverse examples [11], and (5) DUAL: a dual strategy for active learning that exploits
both informativeness and representativeness for query selection. Note that the original algorithm
in [11] is designed for batch mode active learning. We turn it into an active learning algorithm that
selects a single instance in each iteration by setting the parameter 𝑘 = 1.
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Figure 2: Comparison on classification accuracy

Twelve data sets are used in our study and their statistics are shown in the supplementary document.
Digit1 and g241n are benchmark data sets for semi-supervised learning [5]; austria, isolet, titato,
vechicle, and wdbc are UCI data sets [1]; letter is a multi-class data set [1] from which we select
five pairs of letters that are relatively difficult to distinguish, i.e., D vs P, E vs F, I vs J, M vs N,
U vs V, and construct a binary class data set for each pair. Each data set is randomly divided into
two parts of equal size, with one part as the test data and the other part as the unlabeled data that is
used for active learning. We assume that no labeled data is available at the very beginning of active
learning. For MARGIN, IDE and DUAL, instances are randomly selected when no classification
model is available, which only takes place at the beginning. In each iteration, an unlabeled instance
is first selected to solicit its class label and the classification model is then retrained using additional
labeled instance. We evaluate the classification model by its performance on the holdout test data.
Both classification accuracy and Area Under ROC curve (AUC) are used for evaluation metrics. For
every data set, we run the experiment for ten times, each with a random partition of the data set. We
also conduct experiments with a few initially labeled examples and have similar observation. Due to
the space limit, we put in the supplementary document the experimental results with a few initially
labeled examples. In all the experiments, the parameter 𝜆 is set to 1 and a RBF kernel with default
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Table 1: Comparison on AUC values (mean ± std). The best performance and its comparable
performances based on paired 𝑡-tests at 95% significance level are highlighted in boldface.

Data Algorithms Number of queries (percentage of the unlabeled data)
5% 10% 20% 30% 40% 50% 80%

austra RANDOM .868±.027 .894±.022 .897±.023 .901±.022 .909±.015 .909±.012 .917±.011
MARGIN .751±.137 .838±.119 .885±.043 .909±.010 .911±.012 .914±.009 .915±.008
CLUSTER .877±.045 .888±.029 .894±.015 .896±.015 .903±.014 .907±.015 .913±.011
IDE .858±.101 .885±.058 .902±.012 .912±.008 .913±.009 .914±.007 .916±.007
DUAL .866±.037 .878±.036 .875±.018 .876±.016 .879±.013 .881±.013 .904±.008
QUIRE .887±.014 .901±.010 .906±.016 .912±.009 .914±.009 .915±.007 .916±.007

digit1 RANDOM .945±.009 .969±.006 .979±.005 .984±.003 .985±.003 .988±.003 .991±.002
MARGIN .941±.028 .972±.009 .989±.002 .992±.002 .992±.002 .992±.002 .992±.002
CLUSTER .938±.035 .952±.018 .963±.019 .974±.011 .985±.002 .988±.003 .992±.002
IDE .954±.011 .973±.007 .987±.002 .991±.002 .992±.002 .992±.002 .992±.002
DUAL .929±.014 .953±.009 .975±.004 .982±.005 .985±.003 .987±.003 .991±.002
QUIRE .976±.006 .986±.003 .990±.002 .992±.002 .992±.002 .992±.002 .992±.002

g241n RANDOM .713±.040 .769±.021 .822±.018 .854±.016 .873±.015 .886±.012 .906±.014
MARGIN .700±.057 .751±.048 .830±.022 .864±.019 .896±.012 .911±.008 .918±.008
CLUSTER .720±.038 .770±.024 .815±.018 .835±.021 .860±.022 .880±.013 .909±.009
IDE .727±.030 .786±.029 .840±.017 .866±.016 .883±.013 .899±.011 .916±.010
DUAL .722±.040 .751±.019 .822±.011 .838±.022 .865±.016 .881±.012 .912±.007
QUIRE .757±.035 .825±.019 .857±.020 .884±.013 .900±.009 .912±.006 .920±.009

isolet RANDOM .995±.006 .998±.002 .999±.001 1.00±.000 1.00±.000 1.00±.000 1.00±.000
MARGIN .965±.052 .999±.001 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
CLUSTER .998±.002 .999±.002 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
IDE .998±.003 .999±.002 .999±.001 1.00±.001 1.00±.000 1.00±.000 1.00±.000
DUAL .993±.008 .999±.001 .999±.001 1.00±.000 1.00±.001 1.00±.000 1.00±.000
QUIRE .997±.002 .999±.001 .999±.001 1.00±.000 1.00±.001 1.00±.000 1.00±.000

titato RANDOM .762±.033 .861±.031 .954±.023 .979±.011 .991±.007 .997±.004 1.00±.000
MARGIN .645±.096 .753±.078 .946±.043 .998±.001 1.00±.000 1.00±.000 1.00±.000
CLUSTER .717±.087 .806±.054 .908±.031 .971±.021 .989±.010 .997±.003 1.00±.000
IDE .735±.040 .906±.029 .996±.003 .999±.001 1.00±.001 1.00±.000 1.00±.000
DUAL .708±.069 .782±.064 .900±.027 .981±.012 .995±.006 .999±.001 1.00±.000
QUIRE .736±.037 .861±.025 .991±.004 .999±.001 1.00±.000 1.00±.000 1.00±.000

vehicle RANDOM .818±.064 .864±.039 .925±.032 .949±.026 .968±.016 .975±.013 .989±.006
MARGIN .693±.078 .828±.077 .883±.105 .981±.014 .993±.005 .993±.005 .992±.005
CLUSTER .771±.088 .845±.056 .927±.022 .955±.018 .973±.010 .978±.011 .992±.006
IDE .731±.141 .849±.106 .878±.093 .957±.037 .977±.010 .985±.009 .991±.006
DUAL .680±.074 .706±.114 .817±.061 .875±.035 .908±.035 .947±.035 .980±.016
QUIRE .750±.137 .912±.024 .956±.025 .985±.007 .989±.006 .991±.005 .992±.005

wdbc RANDOM .984±.006 .986±.005 .990±.004 .991±.004 .991±.004 .991±.004 .993±.003
MARGIN .967±.038 .990±.002 .993±.003 .993±.003 .993±.003 .993±.003 .993±.003
CLUSTER .981±.007 .987±.004 .991±.003 .992±.003 .992±.003 .993±.003 .993±.003
IDE .983±.006 .984±.008 .990±.004 .992±.003 .993±.003 .993±.003 .993±.003
DUAL .955±.025 .964±.016 .972±.015 .988±.009 .992±.003 .992±.003 .992±.004
QUIRE .985±.006 .990±.004 .993±.003 .993±.003 .993±.003 .993±.003 .993±.003

letterDvsP RANDOM .990±.004 .995±.002 .997±.002 .998±.001 .998±.001 .998±.001 .999±.001
MARGIN .994±.005 .999±.001 .999±.000 .999±.001 .999±.001 .999±.001 .999±.001
CLUSTER .988±.008 .995±.004 .997±.002 .998±.001 .999±.001 .999±.001 .999±.001
IDE .992±.006 .997±.002 .998±.001 .999±.001 .999±.001 .999±.001 .999±.001
DUAL .978±.005 .986±.001 .988±.004 .990±.004 .996±.001 .998±.001 .999±.001
QUIRE .998±.001 .999±.001 .999±.001 .999±.001 .999±.001 .999±.001 .999±.001

letterEvsF RANDOM .977±.020 .988±.009 .994±.002 .997±.002 .998±.001 .999±.001 1.00±.000
MARGIN .987±.008 .999±.001 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
CLUSTER .975±.016 .991±.003 .997±.004 .999±.001 1.00±.000 1.00±.000 1.00±.000
IDE .977±.014 .995±.003 .999±.000 .999±.000 .999±.000 1.00±.000 1.00±.000
DUAL .976±.011 .993±.003 .996±.002 .996±.002 .996±.002 .998±.001 1.00±.000
QUIRE .988±.009 .999±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000

letterIvsJ RANDOM .943±.025 .966±.017 .980±.004 .983±.005 .985±.005 .987±.004 .990±.004
MARGIN .882±.096 .960±.027 .986±.005 .989±.006 .991±.004 .991±.004 .991±.004
CLUSTER .952±.022 .961±.017 .976±.008 .985±.007 .987±.006 .989±.005 .991±.004
IDE .934±.030 .969±.011 .979±.006 .980±.006 .982±.008 .985±.005 .990±.004
DUAL .819±.120 .897±.058 .934±.030 .954±.017 .959±.014 .953±.015 .988±.004
QUIRE .951±.023 .963±.013 .976±.011 .989±.010 .991±.004 .991±.004 .991±.004

letterMvsN RANDOM .977±.010 .992±.002 .994±.003 .996±.002 .997±.001 .997±.001 .998±.001
MARGIN .964±.040 .991±.014 .999±.000 .999±.000 .999±.000 .999±.000 .999±.000
CLUSTER .971±.017 .986±.009 .994±.003 .997±.002 .998±.001 .998±.001 .999±.000
IDE .969±.017 .988±.007 .997±.002 .998±.001 .998±.001 .998±.001 .999±.000
DUAL .950±.025 .972±.011 .974±.007 .980±.008 .983±.007 .983±.007 .998±.001
QUIRE .986±.007 .996±.003 .998±.001 .999±.000 .999±.000 .999±.000 .999±.000

letterUvsV RANDOM .992±.005 .996±.004 .998±.001 .999±.000 1.00±.000 1.00±.000 1.00±.000
MARGIN .998±.002 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
CLUSTER .990±.008 .996±.009 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
IDE .995±.004 .999±.001 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
DUAL .983±.014 .986±.008 .990±.008 .991±.008 .993±.007 .995±.005 .999±.000
QUIRE .999±.001 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000

parameters is used (performances with linear kernel are not as stable as that with RBF kernel).
LibSVM [4] is used to train a SVM classifier for all active learning approaches in comparison.
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Table 2: Win/tie/loss counts of QUIRE versus the other methods with varied numbers of queries.

Algorithms Number of queries (percentage of the unlabeled data)
5% 10% 20% 30% 40% 50% 80% In All

RANDOM 4/8/0 8/4/0 9/3/0 9/2/1 10/2/0 10/2/0 6/6/0 56/27/1
MARGIN 6/6/0 4/7/1 2/8/2 2/8/2 0/11/1 0/11/1 1/11/0 15/62/7
CLUSTER 6/6/0 7/5/0 8/4/0 11/1/0 9/3/0 6/6/0 3/9/0 50/34/0
IDE 6/6/0 6/5/1 6/5/1 8/4/0 8/4/0 8/4/0 2/10/0 44/38/2
DUAL 8/4/0 10/2/0 11/1/0 10/2/0 10/2/0 11/1/0 9/3/0 69/15/0
In All 30/30/0 35/23/2 36/21/3 40/17/3 37/22/1 35/24/1 21/39/0 234/176/10

4.1 Results

Figure 2 shows the classification accuracy of different active learning approaches with varied num-
bers of queries. Table 1 shows the AUC values, with 5%, 10%, 20%, 30%, 40%, 50% and 80% of
unlabeled data used as queries. For each case, the best result and its comparable performances are
highlighted in boldface based on paired 𝑡-tests at 95% significance level. Table 2 summarizes the
win/tie/loss counts of QUIRE versus the other methods based on the same test. We also perform the
Wilcoxon signed ranks test at 95% significance level, and obtain almost the same results, which can
be found in the supplementary document.

First, we observe that the RANDOM approach tends to yield decent performance when the number
of queries is very small. However, as the number of queries increases, this simple approach loses
its edge and often is not as effective as the other active learning approaches. MARGIN, the most
commonly used approach for active learning, is not performing well at the beginning of the learn-
ing stage. As the number of queries increases, we observe that MARGIN catches up with the other
approaches and yields decent performance. This phenomenon can be attributed to the fact that with
only a few training examples, the learned decision boundary tends to be inaccurate, and as a result,
the unlabeled instances closest to the decision boundary may not be the most informative ones. The
performance of CLUSTER is mixed. It works well on some data sets, but performs poorly on the
others. We attribute the inconsistency of CLUSTER to the fact that the identified cluster structure
of unlabeled data may not always be consistent with the target classification model. The behavior
of IDE is similar to that of CLUSTER in that it achieves good performance on certain data sets and
fails on the others. DUAL does not yield good performance on most data sets although we have
tried our best efforts to tune the related parameters. We attribute the failure of DUAL to the setup
of our experiment in which no initially labeled examples are provided. Further study shows that
starting with a few initially labeled examples does improve the performance of DUAL though it is
still significantly outperformed by QUIRE.Detailed results can be found in the supplementary doc-
ument. Finally, we observe that for most cases, QUIRE is able to outperform the baseline methods
significantly, as indicated by Figure 2, Tables 1 and 2. We attribute the success of QUIRE to the prin-
ciple of choosing unlabeled instances that are both informative and representative, and the specially
designed computational framework that appropriately measures and combines the informativeness
and representativeness. The computational cost are reported in the supplementary document.

5 Conclusion

We propose a new approach for active learning, called QUIRE, that is designed to find unlabeled in-
stances that are both informative and representative. The proposed approach is based on the min-max
view of active learning, which provides a systematic way for measuring and combining the infor-
mativeness and the representativeness. Our current work is restricted to binary classification. In the
future, we plan to extend this work to multi-class learning. We also plan to develop the mechanism
which allows the user to control the tradeoff between informativeness and representativeness based
on their domain, leading to the incorporation of domain knowledge into active learning algorithms.
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