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Abstract: Multi-label learning originated from the investigation of text cat-
egorization problem, where each document may belong to several predefined
topics simultaneously. In multi-label learning, the training set is composed of
instances each associated with a set of labels, and the task is to predict the la-
bel sets of unseen instances through analyzing training instances with known
label sets. In this paper, a multi-label lazy learning approach named Ml-
knn is presented, which is derived from the traditional k-Nearest Neighbor
(kNN) algorithm. In detail, for each unseen instance, its k nearest neighbors
in the training set are firstly identified. After that, based on statistical in-
formation gained from the label sets of these neighboring instances, i.e. the
number of neighboring instances belonging to each possible class, maximum
a posteriori (MAP) principle is utilized to determine the label set for the
unseen instance. Experiments on three different real-world multi-label learn-
ing problems, i.e. Yeast gene functional analysis, natural scene classification
and automatic web page categorization, show that Ml-knn achieves superior
performance to some well-established multi-label learning algorithms.

Keywords: Machine learning, multi-label learning, lazy learning, k-nearest
neighbor, functional genomics, natural scene classification, text categorization

1 Introduction

Multi-label learning tasks are omnipresent in real-world problems. For in-
stance, in text categorization, each document may belong to several predefined
topics, such as government and health [14,19]; in functional genomics, each
gene may be associated with a set of functional classes, such as metabolism,
transcription and protein synthesis [7]; in scene classification, each scene im-
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age may belong to several semantic classes, such as beach and urban [2]. In all
these cases, each instance in the training set is associated with a set of labels,
and the task is to output a label set whose size is unknown a priori for each
unseen instance.

Traditional two-class and multi-class problems can both be cast into multi-
label ones by restricting each instance to have only one label. On the other
hand, the generality of multi-label problems inevitably makes it more difficult
to learn. An intuitive approach to solving multi-label problem is to decompose
it into multiple independent binary classification problems (one per category).
However, this kind of method does not consider the correlations between the
different labels of each instance and the expressive power of such a system
can be weak [14,19,7]. Fortunately, several approaches specially designed for
multi-label learning tasks have been proposed, such as multi-label text cate-
gorization algorithms [14,19,11,13], multi-label decision trees [3,4], multi-label
kernel methods [7,2] and multi-label neural networks [23]. In this paper, a
lazy learning algorithm named Ml-knn, i.e. Multi-Label k-Nearest Neigh-
bor, is proposed, which is the first multi-label lazy learning algorithm. As
its name implied, Ml-knn is derived from the popular k-Nearest Neighbor
(kNN) algorithm [1]. Firstly, for each test instance, its k nearest neighbors
in the training set are identified. Then, according to statistical information
gained from the label sets of these neighboring instances, i.e. the number of
neighboring instances belonging to each possible class, maximum a posteriori
(MAP) principle is utilized to determine the label set for the test instance.
The effectiveness of Ml-knn is evaluated through three different multi-label
learning problems, i.e. Yeast gene functional analysis [7], natural scene classifi-
cation and automatic web page categorization [21]. Experimental results show
that the performance of Ml-knn is superior to those of some well-established
multi-label learning methods.

The rest of this paper is organized as follows. In Section 2, notations and eval-
uation metrics used in multi-label learning are briefly introduced. In Section 3,
previous works on multi-label learning are reviewed. In Section 4, Ml-knn is
proposed. In Section 5, experimental results of Ml-knn and other multi-label
learning algorithms are presented. Finally in Section 6, the main contribution
of this paper is summarized.

2 Preliminaries

Let X denote the domain of instances and let Y = {1, 2, . . . , Q} be the finite
set of labels. Given a training set T = {(x1, Y1), (x2, Y2), ..., (xm, Ym)} (xi ∈
X , Yi ⊆ Y) i.i.d. drawn from an unknown distribution D, the goal of the learn-
ing system is to output a multi-label classifier h : X → 2Y which optimizes
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some specific evaluation metric. In most cases however, instead of outputting
a multi-label classifier, the learning system will produce a real-valued function
of the form f : X × Y → R. It is supposed that, given an instance xi and its
associated label set Yi, a successful learning system will tend to output larger
values for labels in Yi than those not in Yi, i.e. f(xi, y1) > f(xi, y2) for any
y1 ∈ Yi and y2 /∈ Yi.

The real-valued function f(·, ·) can be transformed to a ranking function
rankf (·, ·), which maps the outputs of f(xi, y) for any y ∈ Y to {1, 2, . . . , Q}
such that if f(xi, y1) > f(xi, y2) then rankf (xi, y1) < rankf (xi, y2). Note that
the corresponding multi-label classifier h(·) can also be derived from the func-
tion f(·, ·): h(xi) = {y|f(xi, y) > t(xi), y ∈ Y}, where t(·) is a threshold
function which is usually set to be the zero constant function.

Performance evaluation of multi-label learning system is different from that
of classic single-label learning system. Popular evaluation metrics used in
single-label system include accuracy, precision, recall and F-measure [20]. In
multi-label learning, the evaluation is much more complicated. For a test set
S = {(x1, Y1), (x2, Y2), ..., (xp, Yp)}, the following multi-label evaluation met-
rics proposed in [19] are used in this paper:

(1)hamming loss : evaluates how many times an instance-label pair is mis-
classified, i.e. a label not belonging to the instance is predicted or a label
belonging to the instance is not predicted. The performance is perfect when
hlossS(h) = 0; the smaller the value of hlossS(h), the better the performance.

hlossS(h) =
1

p

p∑

i=1

1

Q
|h(xi)∆Yi| (1)

where ∆ stands for the symmetric difference between two sets. Note that
when |Yi| = 1 for all instances, a multi-label system is in fact a multi-class
single-label one and the hamming loss is 2

Q
times the usual classification error.

While hamming loss is based on the multi-label classifier h(·), the following
metrics are defined based on the real-valued function f(·, ·) which concern the
ranking quality of different labels for each instance:

(2)one-error : evaluates how many times the top-ranked label is not in the set of
proper labels of the instance. The performance is perfect when one-errorS(f) =
0; the smaller the value of one-errorS(f), the better the performance.

one-errorS(f) =
1

p

p∑

i=1

[[ [arg max
y∈Y

f(xi, y)] /∈ Yi]] (2)

where for any predicate π, [[π]] equals 1 if π holds and 0 otherwise. Note that,
for single-label classification problems, the one-error is identical to ordinary
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classification error.
(3)coverage: evaluates how far we need, on the average, to go down the list
of labels in order to cover all the proper labels of the instance. It is loosely
related to precision at the level of perfect recall. The smaller the value of
coverageS(f), the better the performance.

coverageS(f) =
1

p

p∑

i=1

max
y∈Yi

rankf (xi, y)− 1 (3)

(4)ranking loss : evaluates the average fraction of label pairs that are reversely
ordered for the instance. The performance is perfect when rlossS(f) = 0; the
smaller the value of rlossS(f), the better the performance.

rlossS(f) =
1

p

p∑

i=1

1

|Yi||Y i|
|{(y1, y2)|f(xi, y1) ≤ f(xi, y2), (y1, y2) ∈ Yi × Yi}|(4)

where Y denotes the complementary set of Y in Y .
(5)average precision: evaluates the average fraction of labels ranked above a
particular label y ∈ Y which actually are in Y . It is originally used in infor-
mation retrieval (IR) systems to evaluate the document ranking performance
for query retrieval [17]. The performance is perfect when avgprecS(f) = 1; the
bigger the value of avgprecS(f), the better the performance.

avgprecS(f) =
1

p

p∑

i=1

1

|Yi|
∑

y∈Yi

|{y′|rankf (xi, y
′) ≤ rankf (xi, y), y′ ∈ Yi}|
rankf (xi, y)

(5)

3 Previous Works Review

As stated in Section 1, the generality of multi-label problems inevitably makes
it more difficult to solve than traditional single-label (two-class or multi-class)
problems. Until now, only a few literatures on multi-label learning are avail-
able, which mainly concern the problems of text categorization [14,19,4,21,11,13],
bioinformatics [3,7,23] and scene classification [2].

Research of multi-label learning was initially motivated by the difficulty of
concept ambiguity encountered in text categorization, where each document
may belong to several topics (labels) simultaneously. One famous approach to
solving this problem is BoosTexter proposed by Schapire and Singer [19],
which is in fact extended from the popular ensemble learning method Ad-
aBoost [9]. In the training phase, BoosTexter maintains a set of weights
over both training examples and their labels, where training examples and
their corresponding labels that are hard (easy) to predict correctly get incre-
mentally higher (lower) weights. McCallum [14] proposed a Bayesian approach
to multi-label document classification, where a mixture probabilistic model
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(one mixture component per category) is assumed to generate each document
and EM [5] algorithm is utilized to learn the mixture weights and the word
distributions in each mixture component. Ueda and Saito [21] presented two
types of probabilistic generative models for multi-label text called parametric
mixture models (Pmm1, Pmm2), where the basic assumption under Pmms
is that multi-label text has a mixture of characteristic words appearing in
single-label text that belong to each category of the multi-categories. It is
worth noting that the generative models used in [14] and [21] are both based
on learning text frequencies in documents, and are thus specific to text ap-
plications. Comité et al. [4] extended alternating decision tree [8] to handle
multi-label data, where the AdaBoost.MH algorithm proposed by Schapire
and Singer [18] is employed to train the multi-label alternating decision trees.

Gao et al. [11] generalized the maximal figure-of-merit (MFoM) approach [10]
for binary classifier learning to the case of multiclass, multi-label text catego-
rization. They defined a continuous and differentiable function of the classifier
parameters to simulate specific performance metrics, such as precision and
recall etc. (micro-averaging F1 in their paper). Their method assigns a uni-
form score function to each category of interest for each given test example,
and thus the classical Bayes decision rules can be applied. Kazawa et al. [13]
converted the original multi-label learning problem of text categorization into
a multiclass single-label problem by regarding a set of topics (labels) as a new
class. To cope with the data sparseness caused by the huge number of possible
classes (Q topics will yield 2Q classes), they embedded labels into a similarity-
induced vector space in which prototype vectors of similar labels will be placed
close to each other. They also provided an approximation method in learning
and efficient classification algorithms in testing to overcome the demanding
computational cost of their method.

In addition to text categorization, multi-label learning has also manifested
its effectiveness in other real-world applications, such as bioinformatics and
scene classification. Clare and King [3] adapted C4.5 decision tree [16] to
handle multi-label data (gene expression in their case) through modifying
the definition of entropy. They chose decision trees as the baseline algorithm
because of its output (equivalently a set of symbolic rules) is interpretable
and can be compared with existing biological knowledge. It is also noteworthy
that their goal is to learn a set of accurate rules, not necessarily a complete
classification. Through defining a special cost function based on ranking loss
(as shown in Eq.(4)) and the corresponding margin for multi-label models,
Elisseeff and Weston [7] proposed a kernel method for multi-label classification
and tested their algorithm on a Yeast gene functional classification problem
with positive results. Zhang and Zhou [23] designed the multi-label version of
BP neural network through employing a novel error function capturing the
characteristics of multi-label learning, i.e. the labels belonging to an instance
should be ranked higher than those not belonging to that instance. Boutell
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et al. [2] applied multi-label learning techniques to scene classification. They
decomposed the multi-label learning problem into multiple independent binary
classification problems (one per category), where each example associated with
label set Y will be regarded as positive example when building classifier for
class y ∈ Y while regarded as negative example when building classifier for
class y /∈ Y . They also provided various labeling criteria to predict a set of
labels for each test instance based on its output on each binary classifier. Note
that although most works on multi-label learning assume that an instance can
be associated with multiple valid labels, there are also works assuming that
only one of the labels associated with an instance is correct [12] 1 .

4 ML-KNN

For convenience, several notations are introduced before presenting Ml-knn.
Given an instance x and its associated label set Y ⊆ Y , suppose k nearest
neighbors are considered in the Ml-knn method. Let ~yx be the category vector
for x, where its l-th component ~yx(l) (l ∈ Y) takes the value of 1 if l ∈ Y and
0 otherwise. In addition, let N(x) denote the set of k nearest neighbors of x
identified in the training set. Thus, based on the label sets of these neighbors,
a membership counting vector can be defined as:

~Cx(l) =
∑

a∈N(x)
~ya(l), l ∈ Y (6)

where ~Cx(l) counts the number of neighbors of x belonging to the l-th class.

For each test instance t, Ml-knn firstly identifies its k nearest neighbors N(t)
in the training set. Let H l

1 be the event that t has label l, while H l
0 be the

event that t has not label l. Furthermore, let El
j (j ∈ {0, 1, . . . ,k}) denote the

event that, among the k nearest neighbors of t, there are exactly j instances
which have label l. Therefore, based on the membership counting vector ~Ct,
the category vector ~yt is determined using the following maximum a posteriori
principle:

~yt(l) = arg maxb∈{0,1} P (H l
b|El

~Ct(l)
), l ∈ Y (7)

Using the Bayesian rule, Eq.(7) can be rewritten as:

~yt(l) = arg maxb∈{0,1}
P (H l

b)P (El
~Ct(l)

|H l
b)

P (El
~Ct(l)

)

= arg maxb∈{0,1} P (H l
b)P (El

~Ct(l)
|H l

b) (8)

1 In this paper, only the former formalism of multi-label learning is studied.
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[~yt, ~rt]=Ml-knn(T , k, t, s)

%Computing the prior probabilities P (H l
b)

(1) for l ∈ Y do

(2) P (H l
1) = (s +

∑m
i=1 ~yxi

(l)) /(s× 2 + m) ; P (H l
0) = 1− P (H l

1);

%Computing the posterior probabilities P (El
j|H l

b)

(3) Identify N(xi), i ∈ {1, 2, . . . , m};
(4) for l ∈ Y do

(5) for j ∈ {0, 1, . . . ,k} do

(6) c[j] = 0; c′[j] = 0;

(7) for i ∈ {1, 2, . . . , m} do

(8) δ = ~Cxi
(l) =

∑
a∈N(xi) ~ya(l);

(9) if (~yxi
(l) == 1) then c[δ] = c[δ] + 1;

(10) else c′[δ] = c′[δ] + 1;

(11) for j ∈ {0, 1, . . . ,k} do

(12) P (El
j|H l

1) = (s + c[j])/(s× (k + 1) +
∑k

p=0 c[p]);

(13) P (El
j|H l

0) = (s + c′[j])/(s× (k + 1) +
∑k

p=0 c′[p]);

%Computing ~yt and ~rt

(14) Identify N(t);

(15) for l ∈ Y do

(16) ~Ct(l) =
∑

a∈N(t) ~ya(l);

(17) ~yt(l) = arg maxb∈{0,1} P (H l
b)P (El

~Ct(l)
|H l

b);

(18) ~rt(l) = P (H l
1|El

~Ct(l)
)= (P (H l

1)P (El
~Ct(l)

|H l
1))/P (El

~Ct(l)
)

= (P (H l
1)P (El

~Ct(l)
|H l

1))/(
∑

b∈{0,1} P (H l
b)P (El

~Ct(l)
|H l

b));

Fig. 1. Pseudo code of Ml-knn.

As shown in Eq.(8), in order to determine the category vector ~yt, all the
information needed is the prior probabilities P (H l

b) (l ∈ Y , b ∈ {0, 1}) and
the posterior probabilities P (El

j|H l
b) (j ∈ {0, 1, . . . ,k}). Actually, these prior

and posterior probabilities can all be directly estimated from the training set
based on frequency counting.
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Fig. 1 gives the complete description of Ml-knn. T is the training set as
shown in Section 2 and the meanings of the input arguments k, t and the
output argument ~yt are the same as described previously. Furthermore, the
input argument s is a smoothing parameter controlling the strength of uni-
form prior (In this paper, s is set to be 1 which yields the Laplace smoothing).
~rt is a real-valued vector calculated to rank labels in Y , where ~rt(l) corresponds
to the posterior probability P (H l

1|El
~Ct(l)

). As shown in Fig. 1, based on the

multi-label training instances, steps (1) and (2) estimate the prior probabilities
P (H l

b). Steps from (3) to (13) estimate the posterior probabilities P (El
j|H l

b),
where c[j] used in each iteration of l counts the number of training instances
with label l whose k nearest neighbors contain exactly j instances with label l.
Correspondingly, c′[j] counts the number of training instances without label l
whose k nearest neighbors contain exactly j instances with label l. Finally, us-
ing the Bayesian rule, steps from (14) to (18) compute the algorithm’s outputs
based on the estimated probabilities.

5 Experiments

As reviewed in Section 3, there have been several approaches to solving multi-
label problems. In this paper, Ml-knn is compared with the boosting-style al-
gorithm BoosTexter [19] 2 , multi-label decision tree Adtboost.MH [4] 3 ,
and the multi-label kernel method Rank-svm [7], which are all general-
purpose multi-label learning algorithms applicable to various multi-label prob-
lems.

For Ml-knn, Euclidean metric is used to measure distances between instances.
For BoosTexter and Adtboost.MH, the number of boosting rounds is set
to be 500 and 50 respectively because on all data sets studied in this paper,
the performance of these two algorithms will not significantly change after the
specified boosting rounds; For Rank-svm, polynomial kernels with degree 8
are used which yield the best performance as shown in the literature [7].

In this paper, comparative studies of those algorithms are performed on one
bioinformatic data [7], one natural scene classification data, and one automatic
web page categorization data [21].

2 Program available at http://www.cs.princeton.edu/˜schapire/boostexter.html.
3 The algorithm and a graphical user interface are available at
http://www.grappa.univ-lille3.fr/grappa/index.php3?info=logiciels.
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5.1 Yeast Gene Functional Analysis

In this paper, the effectiveness of multi-label learning algorithms is firstly
evaluated through predicting the gene functional classes of the Yeast Saccha-
romyces cerevisiae, which is one of the best studied organisms. Specifically,
the Yeast data set studied in the literatures [7] and [15] is investigated. Each
gene is described by the concatenation of micro-array expression data and
phylogenetic profile and is associated with a set of functional classes whose
maximum size can be potentially more than 190. In order to make it easier,
Elisseeff and Weston [7] preprocessed the data set where only the known struc-
ture of the functional classes are used. Actually, the whole set of functional
classes is structured into hierarchies up to 4 levels deep 4 . In this paper, as
what has been done in the literature [7], only functional classes in the top
hierarchy are considered. The first level of the hierarchy is depicted in Fig. 2.
The resulting multi-label data set contains 2 417 genes each represented by
a 103-dimensional feature vector. There are 14 possible class labels and the
average number of labels for each gene is 4.24± 1.57.

Yeast

Saccharomyces cerevisiae


Ionic

Homeostasis


Cell Growth,

Cell Division,


DNA synthesis


Transposable Elements

Viral and Plasmid Proteins


Cell Rescue,

Defense, Cell


Death and Aging


Protein

Synthesis


Cellular

Biogenesis


Cellular

Organization


Cellular Transport,

Transport Mechanisms


Protein

Destination


Metabolism
 Transcription

Transport

Facilitation


Energy

Cellular communication,

Signal Transduction


YAL062w


Fig. 2. First level of the hierarchy of the Yeast gene functional classes. One gene, for
instance the one named YAL062w, can belong to several classes (shaded in grey) of
the 14 possible classes.

Ten-fold cross-validation is performed on this data set. The experimental re-

4 See http://mips.gsf.de/proj/yeast/catalogues/funcat/ for more details.
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Table 1
Experimental results of Ml-knn (mean±std) on the Yeast data with different num-
ber of nearest neighbors considered.

Evaluation Number of Nearest Neighbors Considered

Criterion k=8 k=9 k=10 k=11 k=12

Hamming Loss 0.195±0.010 0.193±0.009 0.194±0.010 0.193±0.008 0.192±0.010

One-error 0.233±0.032 0.230±0.041 0.230±0.030 0.225±0.036 0.232±0.032

Coverage 6.291±0.238 6.297±0.223 6.275±0.240 6.285±0.208 6.283±0.228

Ranking Loss 0.169±0.016 0.168±0.016 0.167±0.016 0.167±0.015 0.167±0.015

Average Precision 0.763±0.021 0.764±0.022 0.765±0.021 0.766±0.021 0.765±0.020

Table 2
Experimental results of each multi-label learning algorithm (mean±std) on the
Yeast data.

Evaluation Algorithm

Criterion Ml-knn BoosTexter Adtboost.MH Rank-svm

Hamming Loss 0.194±0.010 0.220±0.011 0.207±0.010 0.207±0.013

One-error 0.230±0.030 0.278±0.034 0.244±0.035 0.243±0.039

Coverage 6.275±0.240 6.550±0.243 6.390±0.203 7.090±0.503

Ranking Loss 0.167±0.016 0.186±0.015 N/A 0.195±0.021

Average Precision 0.765±0.021 0.737±0.022 0.744±0.025 0.749±0.026

sults of Ml-knn are reported in Table 1, where the number of nearest neigh-
bors considered by Ml-knn (i.e. the parameter k as shown in Fig. 1) varies
from 8 to 12. The value following “±” gives the standard deviation and the
best result on each metric is shown in bold face. Table 1 shows that the number
of nearest neighbors used by Ml-knn does not significantly affect the perfor-
mance of the algorithm. Therefore, all the results of Ml-knn shown in the
rest of this paper are obtained with the parameter k set to be the moderate
value of 10.

Table 2 reports the experimental results of Ml-knn and other multi-label
learning algorithms on the Yeast data, where the best result on each metric
is shown in bold face. To make a clearer view of the relative performance be-
tween each algorithm, a partial order “Â” is defined on the set of all comparing
algorithms for each evaluation criterion, where A1 Â A2 means that the per-
formance of algorithm A1 is statistically better than that of algorithm A2 on
the specific metric (based on two-tailed paired t-test at 5% significance level).
The partial order on all the comparing algorithms in terms of each evaluation
criterion is summarized in Table 3.

Note that the partial order “Â” only measures the relative performance be-
tween two algorithms A1 and A2 on one specific evaluation criterion. However,
it is quite possible that A1 performs better than A2 in terms of some met-
rics but worse that A2 in terms of other ones. In this case, it is hard to judge

9



Table 3
Relative performance between each multi-label learning algorithm on the Yeast data.

Evaluation Algorithm

Criterion A1-Ml-knn; A2-BoosTexter; A3-Adtboost.MH; A4-Rank-svm

Hamming Loss A1 Â A2, A1 Â A3, A1 Â A4, A3 Â A2, A4 Â A2

One-error A1 Â A2, A3 Â A2, A4 Â A2

Coverage A1 Â A2, A1 Â A3, A1 Â A4, A2 Â A4, A3 Â A2, A3 Â A4

Ranking Loss A1 Â A2, A1 Â A4

Average Precision A1 Â A2, A1 Â A3

Total Order Ml-knn(11)>Adtboost.MH(1)>Rank-svm(-3)>BoosTexter(-9)

which algorithm is superior. Therefore, in order to give an overall performance
assessment of an algorithm, a score is assigned to it which takes account of
its relative performance with other algorithms on all metrics. Concretely, for
each evaluation criterion, for each possible pair of algorithms A1 and A2, if
A1 Â A2 holds, then A1 is rewarded by a positive score +1 and A2 is penalized
by a negative score -1. Based on the accumulated score of each algorithm on
all evaluation criteria, a total order ”>” is defined on the set of all comparing
algorithms as shown in the last line of Table 3, where A1 > A2 means that A1
performs better than A2 on the Yeast data. The accumulated score of each
algorithm is also shown in the parentheses.

Table 3 shows that Ml-knn performs fairly well in terms of all the evaluation
criteria, where on all these metrics no algorithm has outperformed Ml-knn.
Especially, Ml-knn outperforms all the other algorithms with respect to ham-
ming loss, coverage and ranking loss 5 . It is also worth noting that BoosTex-
ter performs quite poorly compared to other algorithms. As indicated in the
literature [7], the reason may be that the simple decision function realized by
this method is not suitable to learn from the Yeast data set. On the whole (as
shown by the total order), Ml-knn substantially outperforms all the other
algorithms on the Yeast data.

5.2 Natural Scene Classification

In natural scene classification, each natural scene image may belong to several
image types (classes) simultaneously, e.g. the image shown in Fig. 3(a) can be
classified as a mountain scene as well as a tree scene, while the image shown
in Fig. 3(b) can be classified as a sea scene as well as a sunset scene. Through
analyzing images with known label sets, a multi-label learning system will
automatically predict the sets of labels for unseen images. The above process
of semantic scene classification can be applied to many areas, such as content-

5 Note that ranking loss is not provided by the Adtboost.MH program.

10



Fig. 3. Examples of multi-labelled images.

Table 4
Summary of the natural scene image data set.

Label Set #Images Label Set #Images Label Set #Images

desert 340 desert+sunset 21 sunset+trees 28

mountains 268 desert+trees 20 desert+mountains+sunset 1

sea 341 mountains+sea 38 desert+sunset+trees 3

sunset 216 mountains+sunset 19 mountains+sea+trees 6

trees 378 mountains+trees 106 mountains+sunset+trees 1

desert+mountains 19 sea+sunset 172 sea+sunset+trees 4

desert+sea 5 sea+trees 14 Total 2 000

based indexing and organization and content-sensitive image enhancement,
etc [2]. In this paper, the effectiveness of multi-label learning algorithms is
also evaluated via this specific kind of multi-label learning problem.

The experimental data set consists of 2 000 natural scene images, where a set
of labels is manually assigned to each image. Table 4 gives the detailed descrip-
tion of the number of images associated with different label sets, where all the
possible class labels are desert, mountains, sea, sunset and trees. The number
of images belonging to more than one class (e.g. sea+sunset) comprises over
22% of the data set, many combined classes (e.g. mountains+sunset+trees)
are extremely rare. On average, each image is associated with 1.24 class labels.
In this paper, each image is represented by a feature vector using the same
method employed in the literature [2]. Concretely, each color image is firstly
converted to the CIE Luv space, which is a more perceptually uniform color
space such that perceived color differences correspond closely to Euclidean
distances in this color space. After that, the image is divided into 49 blocks
using a 7 × 7 grid, where in each block the first and second moments (mean
and variance) of each band are computed, corresponding to a low-resolution
image and to computationally inexpensive texture features respectively. Fi-
nally, each image is transformed into a 49× 3× 2 = 294-dimensional feature
vector.

Ten-fold cross-validation is also performed on this image data set. Experimen-
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Table 5
Experimental results of each multi-label learning algorithm (mean±std) on the nat-
ural scene image data set.

Evaluation Algorithm

Criterion Ml-knn BoosTexter Adtboost.MH Rank-svm

Hamming Loss 0.169±0.016 0.179±0.015 0.193±0.014 0.253±0.055

One-error 0.300±0.046 0.311±0.041 0.375±0.049 0.491±0.135

Coverage 0.939±0.100 0.939±0.092 1.102±0.111 1.382±0.381

Ranking Loss 0.168±0.024 0.168±0.020 N/A 0.278±0.096

Average Precision 0.803±0.027 0.798±0.024 0.755±0.027 0.682±0.093

Table 6
Relative performance between each multi-label learning algorithm on the natural
scene image data set.

Evaluation Algorithm

Criterion A1-Ml-knn; A2-BoosTexter; A3-Adtboost.MH; A4-Rank-svm

Hamming Loss A1 Â A2, A1 Â A3, A1 Â A4, A2 Â A3, A2 Â A4, A3 Â A4

One-error A1 Â A3, A1 Â A4, A2 Â A3, A2 Â A4, A3 Â A4

Coverage A1 Â A3, A1 Â A4, A2 Â A3, A2 Â A4, A3 Â A4

Ranking Loss A1 Â A4, A2 Â A4

Average Precision A1 Â A3, A1 Â A4, A2 Â A3, A2 Â A4, A3 Â A4

Total Order Ml-knn(10)>BoosTexter(8)>Adtboost.MH(-4)>Rank-svm(-14)

tal results of Ml-knn and other multi-label learning algorithms are reported
in Table 5, where the best result on each evaluation criterion is shown in bold
face. Similarly as the Yeast data, the partial order “Â” and the total order
“>” are also defined on the set of all comparing algorithms which are shown
in Table 6.

As shown in Table 6, it is obvious that both Ml-knn and BoosTexter are
superior to Adtboost.MH and Rank-svm in terms of all evaluation criteria.
Furthermore, Adtboost.MH outperforms Rank-svm on all evaluation met-
rics and Ml-knn outperforms all the other algorithms in terms of hamming
loss. On the whole (as shown by the total order), Ml-knn slightly outperforms
BoosTexter and is far superior to Adtboost.MH and Rank-svm on the
natural scene image data set. Fig. 4 shows some example images on which
Ml-knn works better than BoosTexter, Adtboost.MH and Rank-svm,
where null means that the predicted label set is empty.

Note that in this data set, the average number of class labels associated with
each image is relatively small (e.g. 1.24). Therefore, to further evaluate the
performance of the multi-label learning algorithms on the problem of natural
scene classification, images with only one class label are excluded from the
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Fig. 4. Some example images on which Ml-knn works better than Boos-
Texter, Adtboost.MH and Rank-svm. (a) Ground-truth: desert, Ml-knn:
desert, BoosTexter: desert+trees, Adtboost.MH: null, Rank-svm: moun-
tains; (b) Ground-truth: mountains, Ml-knn: mountains, BoosTexter: moun-
tains+trees, Adtboost.MH: trees, Rank-svm: trees; (c) Ground-truth: moun-
tains+trees, Ml-knn: mountains+trees, BoosTexter: null, Adtboost.MH:
mountains, Rank-svm: mountains; (d) Ground-truth: sea+sunset, Ml-knn:
sea+sunset, BoosTexter: sunset, Adtboost.MH: null, Rank-svm: sunset.

original data set. Thus, a filtered data set containing 457 images is obtained,
in which each image is associated with 2.03 class labels on average. Ten-
fold cross-validation is again performed on the filtered image data set, where
experimental results of the multi-label learning algorithms are reported in
Table 7 with the best result on each evaluation criterion shown in bold face.
Similarly as the Yeast data, the partial order “Â” and the total order “>” are
also defined on the set of all comparing algorithms which are shown in Table
8.

Table 8 shows that both Ml-knn and BoosTexter are superior or at least
comparable to Adtboost.MH and Rank-svm in terms of all evaluation
criteria. Furthermore, Ml-knn outperforms Adtboost.MH on all evalua-
tion metrics while BoosTexter outperforms Adtboost.MH and Ml-knn
outperforms Rank-svm on all evaluation metrics except one-error. On the
whole (as shown by the total order), the same as the original (unfiltered) data
set, Ml-knn again slightly outperforms BoosTexter and is far superior to
Adtboost.MH and Rank-svm on the filtered natural scene image data set.
These results show that Ml-knn can also work well on the problem of natural
scene classification when more class labels are associated with each image.
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Table 7
Experimental results of each multi-label learning algorithm (mean±std) on the fil-
tered natural scene image data set.

Evaluation Algorithm

Criterion Ml-knn BoosTexter Adtboost.MH Rank-svm

Hamming Loss 0.235±0.019 0.240±0.043 0.270±0.027 0.275±0.035

One-error 0.205±0.051 0.211±0.058 0.250±0.070 0.236±0.064

Coverage 1.875±0.072 1.921±0.140 2.080±0.151 2.054±0.162

Ranking Loss 0.195±0.021 0.204±0.034 N/A 0.228±0.040

Average Precision 0.832±0.018 0.828±0.029 0.799±0.034 0.805±0.032

Table 8
Relative performance between each multi-label learning algorithm on the filtered
natural scene image data set.

Evaluation Algorithm

Criterion A1-Ml-knn; A2-BoosTexter; A3-Adtboost.MH; A4-Rank-svm

Hamming Loss A1 Â A3, A1 Â A4, A2 Â A3, A2 Â A4

One-error A1 Â A3

Coverage A1 Â A3, A1 Â A4, A2 Â A3

Ranking Loss A1 Â A4

Average Precision A1 Â A3, A1 Â A4, A2 Â A3, A2 Â A4

Total Order Ml-knn(8)>BoosTexter(5)>Rank-svm(-6)>Adtboost.MH(-7)

5.3 Automatic Web Page Categorization

Recently, Ueda and Saito [21] presented two types of probabilistic gener-
ative models called parametric mixture models (Pmm1, Pmm2) for multi-
label text. They also designed efficient learning and prediction algorithms for
Pmms and tested the effectiveness of their method with application to the
specific text categorization problem of WWW page categorization 6 . Specif-
ically, they tried to categorize real Web pages linked from the “yahoo.com”
domain, where it consists of 14 top-level categories (i.e. “Arts&Humanities”,
“Business&Economy”, etc.) and each category is classified into a number of
second-level subcategories. By focusing on the second-level categories, they
used 11 out of the 14 independent text categorization problems. For each
problem, the training set contains 2 000 documents while the test set contains
3 000 documents.

In this paper, these data sets are used to further evaluate the performance of
each multi-label learning algorithm. The simple term selection method based

6 Data set available at http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz.
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Table 9
Characteristics of the web page data sets (after term selection). PMC denotes the
percentage of documents belonging to more than one category, ANL denotes the
average number of labels for each document, and PRC denotes the percentage of
rare categories, i.e. the kind of category where only less than 1% instances in the
data set belong to it.

Number of Vocabulary Training Set Test Set

Data Set Categories Size PMC ANL PRC PMC ANL PRC

Arts&Humanities 26 462 44.50% 1.627 19.23% 43.63% 1.642 19.23%

Business&Economy 30 438 42.20% 1.590 50.00% 41.93% 1.586 43.33%

Computers&Internet 33 681 29.60% 1.487 39.39% 31.27% 1.522 36.36%

Education 33 550 33.50% 1.465 57.58% 33.73% 1.458 57.58%

Entertainment 21 640 29.30% 1.426 28.57% 28.20% 1.417 33.33%

Health 32 612 48.05% 1.667 53.13% 47.20% 1.659 53.13%

Recreation&Sports 22 606 30.20% 1.414 18.18% 31.20% 1.429 18.18%

Reference 33 793 13.75% 1.159 51.52% 14.60% 1.177 54.55%

Science 40 743 34.85% 1.489 35.00% 30.57% 1.425 40.00%

Social&Science 39 1 047 20.95% 1.274 56.41% 22.83% 1.290 58.97%

Society&Culture 27 636 41.90% 1.705 25.93% 39.97% 1.684 22.22%

on document frequency (the number of documents containing a specific term)
is used to reduce the dimensionality of each data set. Actually, only 2% words
with highest document frequency are retained in the final vocabulary 7 . Note
that other term selection methods such as information gain and mutual in-
formation could also be adopted. After term selection, each document in the
data set is described as a feature vector using the “Bag-of-Words” represen-
tation [6], i.e. each dimension of the feature vector corresponds to the number
of times a word in the vocabulary appearing in this document. Table 9 sum-
marizes the characteristics of the web page data sets. It is worth noting that,
compared with the Yeast data and the natural scene image data, instances
are represented by much higher dimensional feature vectors and a large por-
tion of them (about 20% ∼ 45%) are multi-labelled over the 11 problems.
Furthermore, in those 11 data sets, the number of categories are much larger
(minimum 21, maximum 40) and many of them are rare categories (about
20% ∼ 55%). Therefore, the web page data sets are more difficult to learn
from than the previous data collections.

The experimental results on each evaluation criterion are reported in Tables
10 to 14, where the best result on each data set is shown in bold face. Similarly
as the Yeast data, the partial order “Â” and total order “>” are also defined

7 Based on a series experiments, Yang and Pedersen [22] have shown that based
on document frequency, it is possible to reduce the dimensionality by a factor of 10
with no loss in effectiveness and by a factor of 100 with just a small loss.
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Table 10
Experimental results of each multi-label learning algorithm on the web page data
sets in terms of hamming loss.

Algorithm

Data Set Ml-knn BoosTexter Adtboost.MH Rank-svm

Arts&Humanities 0.0612 0.0652 0.0585 0.0615

Business&Economy 0.0269 0.0293 0.0279 0.0275

Computers&Internet 0.0412 0.0408 0.0396 0.0392

Education 0.0387 0.0457 0.0423 0.0398

Entertainment 0.0604 0.0626 0.0578 0.0630

Health 0.0458 0.0397 0.0397 0.0423

Recreation&Sports 0.0620 0.0657 0.0584 0.0605

Reference 0.0314 0.0304 0.0293 0.0300

Science 0.0325 0.0379 0.0344 0.0340

Social&Science 0.0218 0.0243 0.0234 0.0242

Society&Culture 0.0537 0.0628 0.0575 0.0555

Average 0.0432 0.0459 0.0426 0.0434

Table 11
Experimental results of each multi-label learning algorithm on the web page data
sets in terms of one-error.

Algorithm

Data Set Ml-knn BoosTexter Adtboost.MH Rank-svm

Arts&Humanities 0.6330 0.5550 0.5617 0.6653

Business&Economy 0.1213 0.1307 0.1337 0.1237

Computers&Internet 0.4357 0.4287 0.4613 0.4037

Education 0.5207 0.5587 0.5753 0.4937

Entertainment 0.5300 0.4750 0.4940 0.4933

Health 0.4190 0.3210 0.3470 0.3323

Recreation&Sports 0.7057 0.5557 0.5547 0.5627

Reference 0.4730 0.4427 0.4840 0.4323

Science 0.5810 0.6100 0.6170 0.5523

Social&Science 0.3270 0.3437 0.3600 0.3550

Society&Culture 0.4357 0.4877 0.4845 0.4270

Average 0.4711 0.4463 0.4612 0.4401

on the set of all comparing algorithms which are shown in Table 15.

As shown in Table 15, Ml-knn achieves comparable results in terms of all the
evaluation criteria, where on all these metrics no algorithm has outperformed
Ml-knn. On the other hand, although BoosTexter performs quite well in
terms of one-error, coverage, ranking loss and average precision, it performs
almost worst among all the comparing algorithms in terms of hamming loss.
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Table 12
Experimental results of each multi-label learning algorithm on the web page data
sets in terms of coverage.

Algorithm

Data Set Ml-knn BoosTexter Adtboost.MH Rank-svm

Arts&Humanities 5.4313 5.2973 5.1900 9.2723

Business&Economy 2.1840 2.4123 2.4730 3.3637

Computers&Internet 4.4117 4.4887 4.4747 8.7910

Education 3.4973 4.0673 3.9663 8.9560

Entertainment 3.1467 3.0883 3.0877 6.5210

Health 3.3043 3.0780 3.0843 5.5400

Recreation&Sports 5.1010 4.4737 4.3380 5.6680

Reference 3.5420 3.2100 3.2643 6.9683

Science 6.0470 6.6907 6.6027 12.4010

Social&Science 3.0340 3.6870 3.4820 8.2177

Society&Culture 5.3653 5.8463 4.9545 6.8837

Average 4.0968 4.2127 4.0834 7.5075

Table 13
Experimental results of each multi-label learning algorithm on the web page data
sets in terms of ranking loss.

Algorithm

Data Set Ml-knn BoosTexter Adtboost.MH Rank-svm

Arts&Humanities 0.1514 0.1458 N/A 0.2826

Business&Economy 0.0373 0.0416 N/A 0.0662

Computers&Internet 0.0921 0.0950 N/A 0.2091

Education 0.0800 0.0938 N/A 0.2080

Entertainment 0.1151 0.1132 N/A 0.2617

Health 0.0605 0.0521 N/A 0.1096

Recreation&Sports 0.1913 0.1599 N/A 0.2094

Reference 0.0919 0.0811 N/A 0.1818

Science 0.1167 0.1312 N/A 0.2570

Social&Science 0.0561 0.0684 N/A 0.1661

Society&Culture 0.1338 0.1483 N/A 0.1716

Average 0.1024 0.1028 N/A 0.1930

It is also worth noting that all the algorithms perform quite poorly in terms
of one-error (around 45% for all comparing algorithms). The reason may be
that there are much more categories in those 11 data sets which makes the
top-ranked label be in the set of proper labels of an instance much more
difficult. On the whole (as shown by the total order), Ml-knn is comparable
to BoosTexter and both of them slightly outperform Adtboost.MH and
are far superior to Rank-svm on the web page data sets.
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Table 14
Experimental results of each multi-label learning algorithm on the web page data
sets in terms of average precision.

Algorithm

Data Set Ml-knn BoosTexter Adtboost.MH Rank-svm

Arts&Humanities 0.5097 0.5448 0.5526 0.4170

Business&Economy 0.8798 0.8697 0.8702 0.8694

Computers&Internet 0.6338 0.6449 0.6235 0.6123

Education 0.5993 0.5654 0.5619 0.5702

Entertainment 0.6013 0.6368 0.6221 0.5637

Health 0.6817 0.7408 0.7257 0.6839

Recreation&Sports 0.4552 0.5572 0.5639 0.5315

Reference 0.6194 0.6578 0.6264 0.6176

Science 0.5324 0.5006 0.4940 0.5007

Social&Science 0.7481 0.7262 0.7217 0.6788

Society&Culture 0.6128 0.5717 0.5881 0.5717

Average 0.6249 0.6378 0.6318 0.6046

Table 15
Relative performance between each multi-label learning algorithm on the web page
data sets.

Evaluation Algorithm

Criterion A1-Ml-knn; A2-BoosTexter; A3-Adtboost.MH; A4-Rank-svm

Hamming Loss A3 Â A2, A4 Â A2

One-error A2 Â A3

Coverage A1 Â A4, A2 Â A4, A3 Â A4

Ranking Loss A1 Â A4, A2 Â A4

Average Precision A2 Â A4

Total Order {Ml-knn(2), BoosTexter(2)}>Adtboost.MH(1)>Rank-svm(-5)

6 Conclusion

In this paper, a lazy learning algorithm named Ml-knn, which is the multi-
label version of kNN, is proposed. Based on statistical information derived
from the label sets of an unseen instance’s neighboring instances, i.e. the mem-
bership counting statistic as shown in Section 4, Ml-knn utilizes maximum
a posteriori principle to determine the label set for the unseen instance. Ex-
periments on three real-world multi-label learning problems, i.e. Yeast gene
functional analysis, natural scene classification and automatic web page cate-
gorization, show that Ml-knn outperforms some well-established multi-label
learning algorithms.
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In this paper, the distance between instances is simply measured by Euclidean
metric. Therefore, it is interesting to see whether other kinds of distance met-
rics could further improve the performance of Ml-knn. On the other hand,
investigating more complex statistical information other than the membership
counting statistic to facilitate the usage of maximum a posteriori principle is
another interesting issue for future work.
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